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Outline

• Multi-Level Gate Circuits
• NAND and NOR Gates
• Design of Two-Level Circuits Using NAND  and 

NOR Gates



Multi-Level Gate Circuits (1/3)

• The maximum number of gates cascaded 
in series between a circuit input and the 
output is referred to as the number of 
levels of gates.
– sum-of-products: two levels
– product-of-sums: two levels

• Inverters are not counted.



Multi-Level Gate Circuits (2/3)



Multi-Level Gate Circuits (3/3)

• When the input of a gate is changed, there 
is a finite time before the output changes.

• The number of gates which can be 
cascaded is limited by gate delays.

• When several gates are cascaded, the 
gate delay may become excessive and 
slow down the operation of the digital 
system.



NAND and NOR Gates (1/5)
• NAND gate

– F(ABC)=(ABC)’=A’+B’+C’
• NOR gate

– F(ABC)=(A+B+C)’=A’B’C’
• Any logic function can be implemented using 

only NAND or NOR gates.



NAND and NOR Gates (2/5)

• If we can use NAND or NOR gates to implement 
AND, OR, and inverter, then we can prove that 
any logic function can be expressed using only 
NAND or NOR gates.

• A set of logic operations is said to be functionally 
complete if any Boolean function can be 
expressed in terms of this set of operations. The 
set AND, OR, and NOT is obviously functionally 
complete.



NAND and NOR Gates (3/5)

X’=X nand X
AB=(A nand B) nand (A nand B)
A+B=(A nand A) nand (B nand B)



NAND and NOR Gates (4/5)

• Actually, as long as we could show NAND 
can express OR and NOT (AND and 
NOT), we can show NAND is functionally 
complete.
– XY=(X’+Y’)’ 
– X+Y=(X’Y’)’



NAND and NOR Gates (5/5)

• Can you prove that NOR is functionally 
complete?



Design of Two-Level Circuits Using 
NAND and NOR Gates (1/7)

• The conversion from circuits composed of 
AND and OR gates to circuits composed 
of NAND or NOR gates is carried out by 
using F=(F’)’ and then applying 
DeMorgan’s laws:
– (X1+X2+…+Xn)’=X1’X2’…Xn’
– (X1X2…Xn)’= X1’+X2’+…+Xn’



Design of Two-Level Circuits Using 
NAND and NOR Gates (2/7)

• F=A+BC’+B’CD
• =[(A+BC’+B’CD)’]’ (F’)’
• =[A’(BC’)’(B’CD)’]’ NAND-NAND
• =[A’(B’+C)(B+C’+D’)]’ OR-NAND
• =A+(B’+C)’+(B+C’+D’)’ NOR-OR
• We started with the minimum sum-of-products 

expression.



Design of Two-Level Circuits Using 
NAND and NOR Gates (3/7)

• Procedure for designing a minimum two-level 
NAND-NAND circuit
– Find a minimum sum-of-products expression for F: 

Karnaugh maps, Quinne-McCluskey and Petrick 
methods

– Draw the corresponding two-level AND-OR circuit
– Replace all gates with NAND gates leaving the gate 

interconnections unchanged.
– If the output gate has any single literals as inputs, 

complement these literals.



Design of Two-Level Circuits Using 
NAND and NOR Gates (4/7)



Design of Two-Level Circuits Using 
NAND and NOR Gates (5/7)

• F=(A+B+C)(A+B’+C’)(A+C’+D)
• ={[(A+B+C)(A+B’+C’)(A+C’+D)]’}’ (F’)’
• =[(A+B+C)’+(A+B’+C’)’+(A+C’+D)’]’ NOR-NOR
• =(A’B’C’+A’BC+A’CD)’ AND-NOR
• =(A’B’C’)’(A’BC)’(A’CD)’ NAND-AND
• We started with the minimum product-of-sums 

expression.



Design of Two-Level Circuits Using 
NAND and NOR Gates (6/7)

• Procedure for designing a minimum two-
level NOR-NOR circuit
– Find a minimum product-of-sums expression 

for F
– Draw the corresponding two-level OR-AND 

for F
– Replace all gates with NOR gates leaving the 

gate interconnections unchanged. 
– If the output gate has any single literals as 

inputs, complement these literals. 



Design of Two-Level Circuits Using 
NAND and NOR Gates (7/7)



Design of Two-Level, Multiple-
Output Circuits (1/10)

• Given a logic function, we can simplify it using 
some methods.

• But if we need to design a circuit to implement 
several functions, it may not be enough to 
simplify each function separately.

• Example: 
– F1(A,B,C,D)=sum[m(11,12,13,14,15)]
– F2(A,B,C,D)=sum[m(3,7,11,12,13,15)]
– F3(A,B,C,D)=sum[m(3,7,12,13,14,15)]



Design of Two-Level, Multiple-
Output Circuits (2/10)

F1=AB+ACD F2=ABC’+CD F3=A’CD+AB



Design of Two-Level, Multiple-Output Circuits (3/10)



Design of Two-Level, Multiple-
Output Circuits (4/10)



Design of Two-Level, Multiple-
Output Circuits (5/10)

• Determination of Essential Prime 
Implicants for Multiple-Output Realization
– Some of the prime implicants essential to an 

individual function may not be essential to the 
multiple-output realization.



Design of Two-Level, Multiple-
Output Circuits (6/10)

F1 F2 F3

ab’ and bd are essential to F1, but not to the multiple-
output system.

bd

ab'



Design of Two-Level, Multiple-
Output Circuits (7/10)

• Determination of Essential Prime 
Implicants for Multiple-Output Realization
– Some of the prime implicants essential to an 

individual function may not be essential to the 
multiple-output realization.

– When checking 1’s for essential prime 
implicants, we only check those 1’s which do 
not appear on the other function maps.



Design of Two-Level, Multiple-
Output Circuits (8/10)



Design of Two-Level, Multiple-
Output Circuits (9/10)

1 1

1

1 1 1

1 1 1
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When checking 1’s for essential prime 
implicants, we only check those 1’s which 
do not appear on the other function maps.

This 1 appears on both maps.



Design of Two-Level, Multiple-
Output Circuits (10/10)

•In this picture, no minterm only appears in one 
Karnaugh map.
•How to find essential prime implicants for a multi-output 
system is not discussed in the textbook.


