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Chapter 1

Introduction

1.1 What is VHDL?

VHDL is an acronym which stands for VHSIC Hardware Description Lan-
guage. VHSIC is yet another acronym standing for Very High Speed Inte-
grated Circuit.

Thus, VHDL is a very high speed integrated circuit hardware description
language. It is a programming language designed to describe the operation
of digital hardware, and as such, combines the following features:

1.1.1 A Simulation Modeling Language

VHDL has many features appropriate for describing the behavior of electronic
components ranging from simple logic gates to complete microprocessors and
custom IC’s. Features of VHDL allow electrical aspects of a circuit such as
the rise and fall time of a signal and the propagation delay through a gate
to be precisely described. The resulting VHDL model can then be used as a
building block in a larger circuit.

1.1.2 A Design Entry Language

Much like Pascal or C, VHDL includes features useful for structured design
techniques, and offers a rich set of control and data representation features.
Unlike other programming languages, VHDL allows concurrent events to
be described. This is important since the hardware described by VHDL is
inherently concurrent in it’s operation.
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1.2. VHDL AS AN IEEE STANDARD 2

1.1.3 A Verification Language

One of the most important applications of VHDL is to capture the perfor-
mance specification for a circuit in the form of a test bench. A test bench
is a VHDL description of inputs to the system, and the expected outputs
that verify the behavior of a circuit over time. Test benches should be an
integral part of any VHDL project, and should be created in parallel with
the hardware description source.

1.1.4 A Netlist Language

While VHDL is a powerful language with which to enter new designs at a high
level, it is also useful as a low-level form of communication between different
tools in a computer-based design environment. VHDL’s structural language
features allow it to be effectively used as a netlist language, replacing other
netlist languages such as EDIF.

1.1.5 A Standard Language

One of the most compelling reasons to become familiar with VHDL is it’s
adoption as a standard in the electronic design community. Using a standard
language such as VHDL virtually guarantees that you will not have to throw
away and redesign your hardware when a new version of the software tools
is released. Using VHDL also allows an exchange of ideas and concepts with
other developers without disclosing the entire project.

1.2 VHDL as an IEEE Standard

VHDL was developed in the early 1980’s as a spin-off from a high-speed in-
tegrated circuit research project funded by the United States Department
of Defense. IBM, Texas Instruments and Intermetrics designed and imple-
mented a new language-based design description method, which was released
to the public for the first time in 1985. In 1987 the IEEE standardized the
language, leading to the standard IEEE 1076-1987 which is the basis for vir-
tually every simulation and synthesis product sold today. An enhanced and
updated version was released five years later, known as IEEE 1076-1993.

1.2.1 Standard 1164

Although IEEE standard 1076 defines the complete VHDL language, there
are aspects which make it difficult to write code which is completely portable
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1.3. SIMULATION VS SYNTHESIS 3

between different vendors. To improve this, the IEEE released another stan-
dard, numbered 1164, which allows commonly used declarations to be col-
lected into an external library in much the same that C uses platform specific
header files. Virtually all VHDL code you write will include the 1164 library
as shown:

library ieee;

use ieee.std_logic_1164.all;

1.3 Simulation vs Synthesis

VHDL can essentially be thought of as two separate languages. One designed
specifically for implementing hardware in an integrated circuit, and the other
as a general purpose hardware language. VHDL code written with a hard-
ware design in mind is known as synthesizable VHDL, since the code will be
used to synthesize actual hardware. Synthesizable VHDL is a smaller subset
of the complete VHDL specification, and uses a restricted set of commands.
The entire VHDL command set can be used to simulate the hardware de-
sign in the form of test benches, since the code will be executed on a PC or
workstation, and is not designed to be programmed into an IC. These lecture
notes will concentrate on synthesizable VHDL since you will be required to
design and implement a number of physical circuits during this course.

1.4 Design Structure

A VHDL design is usually broken into several small design entities, each
having an entity and architecture block. The entity declaration describes
the circuit as it appears from the top-most physical layer, detailing the cir-
cuit’s input and output interfaces. An entity can be thought of as a block
symbol on a schematic diagram. The architecture declaration describes the
actual function, or contents, of the entity to which it is bound. Several
entity/architecture pairs can be grouped together to form a package. The
overall arrangement of these modules is shown in Figure 1.1.
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1.4. DESIGN STRUCTURE 4

Entity/Architecture

Entity/Architecture

Entity/Architecture

Package

Package

VHDL Source File

Figure 1.1: A modular VHDL design
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Chapter 2

Objects and Data Types

There are three basic types of objects in VHDL - signals, variables and con-
stants. Each object has a specific data type, and a unique set of possible
values. The values that an object can take will depend on the definition of
the type used for that object. For example, an object of type bit has only
two possible values, ’0’ and ’1’, while an object of type real has many
possible values.

2.1 Signals, Variables and Constants

2.1.1 Signals

Signals are objects used to connect concurrent elements (such as components,
processes, and concurrent assignments). Signals can be declared globally in
an external package or locally within an architecture, block, or other declar-
ative region.

As a minimum, a signal declaration must include the name of the signal
and it’s type. If more than one signal of the same type is required, multiple
signals can be specified in a single declaration:

architecture example of my_circuit is

signal A : std_logic;

signal X,Y : std_logic_vector(3 downto 0);

begin

...

...

end example;

In this case A is only visible within the example design unit, and will not
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2.1. SIGNALS, VARIABLES AND CONSTANTS 6

be visible from other design units. To make a signal accessible globally, the
declaration needs to be made in an external package:

package my_package is

signal A : std_logic;

end my_package;

...

use work.my_package.A;

...

The signal declaration can also be used to assign an initial value to a
signal as shown:

signal Init : std_logic_vector(7 downto 0) := "01010011";

Signals are used in two primary ways. Firstly, signals are used to carry
information between different functional parts of your design, such as between
two components. And secondly, signals can be used within logic expressions
and are assigned values directly.

2.1.2 Variables

Variables are objects used to store intermediate values between sequential
VHDL statements. Variables are only allowed in processes, procedures and
functions, and they are always local to those areas. Variables in VHDL are
much like variables in a conventional software programming language. They
immediately take on and store the values assigned to them (this is not true of
signals), and they can be used to simplify a complex calculation or sequence
of logical operations.

2.1.3 Constants

Constants are objects that are assigned a value once, when declared, and do
not change their value during operation. Constants are useful for creating
more readable design descriptions, and make it easier to change the design
at a later date. Some examples of constant declaration follow:

architecture example of my_circuit is

constant MaxCount : integer := 255;

constant SRAM : std_logic_vector(7 downto 0) := "00001111";

constant error : boolean := True;

begin
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2.2. LITERALS 7

...

process(...)

constant StartCnt : integer := 57;

...

end process;

...

end example;

Constant declarations can be located in any declaration area in your
design description. They can also be placed in an external package in a
similar way to signals.

2.2 Literals

Explicit data values that are assigned to objects or used within expressions
are called literals. Literals represent specific values, but do not always have an
explicit type. For example, the literal ’1’ could represent either a std logic

type or a character.

Character Literals

Character literals are single character ASCII values enclosed in single quotes,
such as the values ’1’, ’K’ and ’#’.

String Literals

String literals are collections of one or more ASCII characters enclosed in
double quotes, and they may be assigned to appropriately sized arrays of
single-character data types such as std logic vector or to objects of the
built-in type string.

Bit String Literals

Bit string literals are special forms of string literals that are used to represent
binary, octal or hexadecimal numeric data values. Binary numbers must be
preceded by the character ’B’, and may only contain the characters ’0’ and ’1’.
An octal number is preceded by an ’O’ and must only contain the characters
’0’ through ’7’. Hexadecimal characters must be preceded by the character
’X’ and may contain characters ’0’ through ’9’ and ’A’ through ’F’, with
’a’ through ’f’ also allowed. An underscore character may be included to
improve readability. Some examples follow:

La Trobe University Introduction to VHDL



2.3. TYPES 8

B"0111_1101" -- decimal 253

O"654" -- decimal 428

O"146_231" -- decimal 52,377

X"C300" -- decimal 49,920

Numeric Literals

There are two basic forms of numeric literals - integers and reals. These
are used in exactly the same way as any other programming language, and
may include an underscore to improve readability. For example, 1 276 801 is
the integer value 1276801. Note that commas are not permitted in numeric
literals. Also note, that strict type checking is used, so it is not possible to
assign say 9 to an object of type real. You must use 9.0 instead.

Based Literals

Based literals are another form of integer or real values, but they are written
in non-decimal form. To specify a based literal, you precede the literal with
a base specification and enclose the non-decimal value inside a pair of #’s,
as shown:

2#10010001# -- integer value 145

16#FFCC# -- integer value 65,484

Physical Literals

Physical literals are special types of literals used to represent physical quan-
tities such as time, voltage, current, distance etc. Physical literals include
both a numeric part (expressed as an integer) and a unit specification. Some
examples are shown below:

30 ns

500 mA

850 kW

2.3 Types

There are four basic classes of data types -

• Scalar types represent a single numeric value, and may be either an
integer, real, physical or enumerated.

La Trobe University Introduction to VHDL



2.4. OPERATORS 9

• Composite types represent a collection of values. These may be
either an array containing elements of the same type, or records con-
taining elements of different types.

• Access types provide references to objects in a similar way that point-
ers function in C or Pascal, and,

• File types reference objects such as disk files that contain a sequence
of values.

Each type has a defined set of values. For example, an integer has a
defined range of at least -2147483647 to +2147483647. In most cases however,
you will only be interested in a subset of values, and VHDL allows you to
define your own type as shown:

subtype SHORT integer range 0 to 255;

You can also specify a constraint on an existing range when declaring an
object of a given type:

signal ShortInt : integer range 0 to 255;

2.4 Operators

Tables 2.1 and 2.2 summarize the most commonly used operations in VHDL.

2.5 Attributes

Attributes are a feature of VHDL that allow you to extract additional infor-
mation about an object that may not be directly related to the value that the
object carries. There are five fundamental kinds of attributes, categorized
by the results that are returned when they are used. The possible results
returned from these attributes are: a value, a function, a signal, a type or a
range. Predefined attributes are always applied to a prefix (such as a signal
or variable name), as shown in the following example:

wait until clk = ’1’ and clk’event and clk’last_value = ’0’;

In this example, clk could be a signal, and the attributes ’event and
’last value have been applied to it. Other examples of attributes include:
’left which returns the left most element index of a given type or subtype.
’right which returns the right most element. One of the most commonly
used attributes is ’length which returns the number of elements in an array:
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2.6. TYPE CONVERSION 10

and And
or Or
nand Not And
nor Not Or
xor Exclusive Or
xnor Exclusive Not Or
= Equality
/ = Inequality
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
+ Addition
− Subtraction
& Concatenation
∗ Multiplication
/ Division
mod Modulus
rem Remainder
∗∗ Exponentiation
abs Absolute value
not Logical negation

Table 2.1: Relational and Numeric Operators

type bit_array is array(0 to 31) of bit;

variable len : integer := bit_array’length;

In this case, len takes on the value 32.
A commonly used attribute which you will encounter during this course

is ’event which returns a true value if the signal had an event (changed
its value) during the current cycle. Note that the example presented above
which checks for a change in the clk signal can also be represented using
if rising edge(clk), but such code is not synthesizable, although it is
perfectly legitimate VHDL code.

2.6 Type Conversion

VHDL is a strongly typed language, meaning that you cannot simply assign
a literal value or object of one type to an object of another type. To allow
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2.6. TYPE CONVERSION 11

sll Shift left logical
srl Shift right logical
sla Shift left arithmetic
sra Shift right arithmetic
rol Rotate left logical
ror Rotate right logical

Table 2.2: Shift Operators

the transfer of data between objects of different types, VHDL includes type

conversion features for types that are closely related.

2.6.1 Explicit Type Conversions

The simplest type conversions are explicit type conversions, which are only
allowed between closely related types. Two types are said to be closely related
when they are either abstract numeric types, or if they are array types of the
same dimensions and share the same types for all elements in the array.

2.6.2 Type Conversion Function

To convert data from one type to an unrelated type, you must make use of a
type conversion function. A type conversion function is one that accepts one
argument of a specified type, and returns the equivalent value in another type.
This is often done to convert between an integer and std logic vector

data types. Such conversion functions are generally provided in an external
library, so it necessary to include that library in the source code header:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

2.6.3 Ambiguous Literal Types

Functions and procedures are uniquely defined not only by their names, but
also by the types of their arguments. If you were to write an assignment
statement such as :

architecture ambig of my_circuit is

signal int : integer;

begin
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2.6. TYPE CONVERSION 12

int <= to_integer("00100011");

...

end ambig;

the compiler would produce an error message, because it would be unable to
determine which of the two functions is appropriate - the literal ”00100011”
could be either a string or std logic vector data type. To remove this
ambiguity, you can do one of two things. Either introduce an intermediate
constant, signal, or variable like:

architecture unambig of my_circuit is

constant const : bit_vector := "00100011";

signal int : integer;

begin

int <= to_integer(const);

...

end unambig;

or, the second alternative is to introduce a type mark to qualify the assign-
ment as shown:

architecture unambig of my_circuit is

signal int : integer;

begin

int <= to_integer(std_logic_vector"00100011");

..

end unambig;
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Chapter 3

Levels of Abstraction

3.1 Introduction

VHDL supports many possible styles of design description. These styles dif-
fer primarily in how closely they relate to the underlying hardware. Figure
3.1 maps the various points in a top-down design process to the three gen-
eral levels of abstraction - structural, dataflow and behavioral. Each of these
levels will be covered in more detail in the following chapters. As an example
of these three levels of abstraction, it is possible to describe a complex con-
troller in a number of ways. At the lowest level of abstraction (structural),
we could use VHDL’s hierarchy features to connect a sequence of predefined
logic gates and flip-flops to form the complete circuit. To describe the same
circuit at a dataflow level we might describe the combinational logic portion
of the controller using higher-level Boolean logic functions and then feed the
output of that logic into a set of registers that match the registers available
in the target technology. At the behavioral level of abstraction, the target
technology may be ignored completely, and the controller described in terms
of it’s response over time to various input stimuli.

3.2 Structural Description

The structural description method is used to describe a circuit in terms of its
components. Structure can be used to create a very low-level description of a
circuit, such as a transistor-level description, or a very high-level description
like a block diagram.

In a gate-level description of a circuit, for example, components such as
basic logic gates and flip-flops might be connected in some logical structure
to create the circuit. This is often called a netlist. For a higher-level circuit,
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3.2. STRUCTURAL DESCRIPTION 14

Performance Specifications
Test Benches

Sequential Descriptions
State Machines

Register Transfers
Selected Assignments
Arithmetic Operations

Boolean Equations
Hierarchy

Physical Information

Behavior

Dataflow

Structure Level of
Abstraction

Figure 3.1: Levels of Abstraction

one in which the components being connected are larger functional blocks,
a structural approach may be used to segment the design description into
manageable parts.

Structural level VHDL features, such as components and configurations,
are very useful for managing complexity. The use of components can dra-
matically improve your ability to re-use elements of your designs, and they
make it possible to work using a top-down design approach.

Consider the RS flip-flop shown in Figure 3.2, and the corresponding
entity declaration which describes the device. Note that this device requires
active low inputs.

Q
S (set)

R (reset)

b

a

a

b
z

z

Q’ (nq)

Figure 3.2: RS Flip-Flop with normally high (active low) inputs

entity flipflop is

port (s, r : in std_logic;

q, nq : out std_logic);

end flipflop;

The first line defines a new entity called flipflop. The last line concludes
the definition, whilst the lines in between describe the interface, known as
the port clause. The port clause contains a list of interface declarations,
which define one or more signals as either inputs or outputs. Each interface
declaration contains a list of names, a mode and a type. In this example,
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3.3. DATAFLOW DESCRIPTION 15

s and r are assigned as inputs, and of type std logic, which is normally a
binary 0 or 1, but could also be a don’t care or high impedance state. Note
that a semi-colon is used as a statement de-limiter, except on the last line of
a port clause.

Once an entity has been defined, an associated architecture must be de-
scribed. Using a structural approach, the code to do this may look like the
following:

architecture structure of flipflop is

component nand_gate

port(a, b : in std_logic;

z : out std_logic);

end component;

begin

top: nand_gate

port map (s, nq, q);

bot: nand_gate

port map (r, q, nq);

end structure;

The component declaration appears as the first part of the description and
describes the interface of the nand gate entity to be used as a component. It
is assumed that the mathematical operation of this entity has already been
defined. The second part of the architecture defines two component instances.
The port map clause specifies which signals to connect to the interface of the
component in the same order as they appear in the component declaration.
The interface is specified as a, b, z and so when applied to the top gate, the
instance connects to s, nq and q. A similar approach for the bottom gate
maps a, b and z to r, q and nq.

3.3 Dataflow Description

In the dataflow level of abstraction, a circuit is described in terms of how
data moves through the system. At the heart of most digital systems are reg-
isters, so in the dataflow level of abstraction, you describe how information
is passed between registers in the circuit. The dataflow level is often called
the register transfer level, or RTL. This level of abstraction is an interme-
diate level that allows the drudgery of combinational logic to be simplified,
while the important parts of the circuit, the registers, are more completely
specified.
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3.3. DATAFLOW DESCRIPTION 16

There are some drawbacks to using a dataflow method of design in VHDL.
First, there are no built-in registers in VHDL - the language was designed to
be general-purpose, and the emphasis was placed on it’s behavioral aspects.
If you are going to write VHDL at the dataflow level of abstraction, you must
first create behavioral descriptions of the register elements you will be using
in your design. These elements must be provided in the form of components
(using VHDL’s hierarchy features) or in the form of subprograms (functions
or procedures).

Using a data flow description, circuits are described by indicating how
the inputs and outputs of in-built primitives are connected together. Sev-
eral primitives are pre-defined in VHDL, and include entities such as AND,
NAND, OR gates etc. Using the same example as before, shown in Figure 3.2,
the data flow description may be coded as:

entity flipflop is

port (s, r : in std_logic;

q, nq : out std_logic);

end flipflop;

architecture dataflow of flipflop is

begin

q <= s nand nq;

nq <= r nand q;

end dataflow;

Comparing the first two methods, it is clear that the data flow method
of description is shorter, and more easily understood than the structural
descriptive method. This is not always the case though. In this example, a
pre-defined operation was used, thus simplifying the code, if another example
was analyzed, a structural approach may be a better choice.

When a design has been described textually, it can then be simulated to
verify it’s operation. The scheme used to model a VHDL design is known
as discrete event time simulation, which only updates signals when certain
events occur, and these events occur only at discrete instances in time. An
event on a particular signal is said to have occurred when the value of that
signal changes. If data flows from signal A to signal B, and an event occurs on
signal A, then it is necessary to determine the possibly new value of signal B.
Since one event causes another, simulation proceeds in rounds. The simulator
maintains a list of events that require processing, and during each round, all
events in the list are processed, with any new events occurring being placed
in a separate list for processing during a later round. This scheme is known
as scheduling.
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3.3. DATAFLOW DESCRIPTION 17

Taking the data flow architecture of the flipflop entity, the internal
operation was essentially defined using the following code:

q <= s nand nq;

nq <= r nand q;

It is seen that q depends on the values of s and nq, so if either of these
values change, then a new value of q will be evaluated. If the result is different
from the current value of the signal, an event will be scheduled.

Assume that at a particular moment during the simulation, the values
of each signal are s = 1, r = 1, q = 0 and nq = 1. Now suppose the value
of the signal s changes to 0. Since q depends on s, we must re-evaluate the
expression q <= s nand nq, which now equals 1. Since the value of q must
be changed to 1, a new event will be scheduled on the signal q. During the
next round the event scheduled for q is processed and q’s value is updated
to be 1. Also, since nq depends on q, the expression nq <= r nand q must
be re-evaluated. The result of this expression is 0, so an event is scheduled
to update the value of nq. During the next round, when the event on nq
is processed, the expression will be 1, and no new events will be scheduled
because q is already 1.

Now suppose an external event causes s to return to 1. Since q depends
on s, q <= s nand nq is evaluated again. The result of this is 1, and since
q is already 1, no new events are scheduled. Thus it can be seen that this
model correctly describes the operation of the flip-flop shown in Figure 3.2.
When the signal s became 0, the output was set, and when s returned high,
the output was unchanged, thus confirming the circuits operation as a latch.
These discrete event, time simulation results are summarized in Table 3.1.

Table 3.1: Results of RS Flip-Flop Simulation

Round s r q nq Comments
Start 1 1 0 1
1 0 1 0 1 ’1’ is scheduled on q
2 0 1 1 1 ’0’ is scheduled on nq
3 0 1 1 0 No new events are scheduled
4 1 1 1 0 No new events are scheduled

The previous explanation of circuit simulation only dealt with the func-
tional operation, and did not consider any timing information. All designs
which are intended to be constructed in hardware will experience internal
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timing delays, and this can be modeled using VHDL in two ways. The iner-

tial delay model and the transport delay model will be discussed.
The inertial delay model is specified by the inclusion of an after clause

in the signal assignment. This models the internal timing delays within the
entity. For example, to include a delay in the previous flip-flop example, the
code needs to be modified as shown:

q <= s nand nq after 2ns;

nq <= r nand q after 2ns;

The new operation of the circuit is shown in Figure 3.3, where it is clear
that the q output does not change until 2ns after the s input changes state.
Likewise, nq does not change until 2ns after q changes. In order to do this,
the simulator must maintain track of the current time, and process events
accordingly. When there are no events requiring processing at the current
time, the time is updated to the time of the next earliest event and all events
scheduled for that time will be processed.

0ns 2ns 4ns 6ns 8ns 10ns

NQ

Q

R

S

Figure 3.3: RS Flip-Flop timing diagram using the inertial delay model

Although useful for modeling inherent delays, the inertial model does
have a rather obvious downfall. When faced with a input pulse shorter than
the internal delay, the inertial model will not propagate that pulse through
to the output. This is shown in Figure 3.4, where the value of q does not
change because the pulse length of s was not long enough. It is said that
the change in s did not gain enough inertia. This effect is quite useful for
absorbing noise spikes or glitches which could otherwise cause havoc in the
system.

When faced with the need to propagate short-width pulses, the transport
delay model can be used. This is useful for bus systems where a time delay
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0ns 2ns 4ns 6ns 8ns 10ns

NQ

Q

R

S

Figure 3.4: RS Flip-Flop timing diagram with a narrow input pulse

is required, and nothing traveling over that bus should be absorbed. This
model simply delays the change in output by the time specified in the after
clause. Typical application code is shown below, and a timing diagram is
featured in Figure 3.5.

q <= transport s nand nq after 2ns;

nq <= transport r nand q after 2ns;

0ns 2ns 4ns 6ns 8ns 10ns

NQ

Q

R

S

Figure 3.5: RS Flip-Flop timing diagram using the transport delay model

Up until now, all the signals have been of the type std logic. VHDL
provides the facility to use several other types, one of which is the type known
as a std logic vector. This type is comparable to the array structure found
in the Pascal or C programming languages, and is used to perform operations
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on a collection of bits. A typical use may be to describe a bus, and as an
example, an 8 line de-multiplexer is shown below.

entity decode is

port(s : in std_logic_vector(2 downto 0); -- 3 select inputs

z : out std_logic_vector(7 downto 0) -- 8 data outputs

);

end decode;

architecture rtl of decode is

signal temp : std_logic_vector(7 downto 0);

begin

temp(0) <= not s(2) and not s(1) and not s(0);

temp(1) <= not s(2) and not s(1) and s(0);

temp(2) <= not s(2) and s(1) and not s(0);

temp(3) <= not s(2) and s(1) and s(0);

temp(4) <= s(2) and not s(1) and not s(0);

temp(5) <= s(2) and not s(1) and s(0);

temp(6) <= s(2) and s(1) and not s(0);

temp(7) <= s(2) and s(1) and s(0);

z <= temp;

end rtl;

3.4 Behavioral Description

The highest level of abstraction supported in VHDL is called the behavioral
level. When creating a behavioral description of a circuit, you will describe
the circuit operation in terms of it’s operation over time. The concept of
time is the critical distinction between behavioral descriptions of circuits,
and lower-level descriptions.

In a behavioral description, the concept of time may be expressed pre-
cisely, with actual delays between related events (such as the propagation
delay within a gate), or it may simply be an ordering of operations that are
expressed sequentially.

Both the structural and data flow methods of description deal with how
the design is implemented - it is usual to start with a schematic diagram,
and translate that into VHDL. The behavioral method though, differs in that
a black-box approach to design is taken. It models what happens on the
inputs and outputs of the design, but the process occurring inside the box is
irrelevant. This is an advantage when dealing with complicated components
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that would be tedious to model using either of the first two approaches.
This might be the case for example, when interfacing a custom circuit to a
microprocessor system. The internal operation of the microprocessor is not
important, but it’s external behavior can be easily modeled.

Behavioral descriptions are modeled using the process statement, follow-
ing a similar line to the architectural definitions of the structural and data
flow methods. In contrast though, a list of signals, called the sensitivity list

is passed as a parameter to the process statement. The signal sensitivity list
is used to specify which signals should cause the process to be re-evaluated.
Whenever a change occurs to a signal in the sensitivity list, the process is
executed. As an example, consider the following trivial segment of code:

compute_and: process(a,b)

begin

z <= a and b;

end process;

Here, the sensitive signals are a and b, so when an event occurs on either
of these signals, z will be re-evaluated. Unlike signal assignments which
occur outside the process statement, the signal assignments within a process
statement will only be updated when an event occurs on a signal in the
sensitivity list. Therefore, it is essential that the appropriate signals are
correctly specified. Following the execution of the last statement, the process
is finished, and is said to be suspended. A process resumes when an event
occurs on a signal in the sensitivity list and it commences execution. Note
that the process name compute and is optional, and is usually only included
in large designs to make debugging and coding easier.

As is common in high level languages, a programmer has the ability to
declare variables. The syntax and use of variables follows closely that of
Pascal or C, and so will not be dwelt on here. To illustrate this point,
consider the code shown below:

edges: process(in)

variable count : integer := -1;

begin

count := count + 1;

end process;

Once the simulation commences, the variable count will be incremented
each time the signal in changes, since it has been declared in the sensitivity
list. If in was defined to be a std logic signal, then this process will count
the number of rising and falling edges that occur on the signal in. This code
can be modified to use a conditional if statement as shown below.
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rising: process(in)

variable count : integer := -1;

begin

if in=’1’ and in’last_value=’0’ then

count := count + 1;

end if;

end process;

Note the use of the last value attribute which is used to determine the
last value a signal had. VHDL defines a number of attributes, which are
specified using the name of the signal, followed by a ’ (called a tick), and
the attribute name. Hence, in this example, the conditional statement is
only true if the current value of in is ’1’ and it’s previous value was ’0’.
Now since this statement will only be executed when an event occurs on in,
this condition only becomes true when a rising edge occurs on the signal in.
Thus, we have modified our original double-edge counter to one which counts
rising edges only.

A common use of conditional statements is in repetitive loops like that
shown below. Here, a for loop is used to calculate the even parity of an 8-bit
vector. Note that the temporary variable used as a loop counter does not
need to be pre-defined. This is in contrast to many other high level languages
which require all variables to be declared.

...

signal in : std_logic_vector(7 downto 0);

...

process(in)

variable parity : std_logic;

begin

parity := ’0’;

for i in 7 downto 0 loop

parity := parity xor in(i);

end loop;

end process;

An important distinction should be made between the operation of a
variable assignment and a signal assignment in the process statement. A
signal assignment merely schedules an event to occur and does not have an
immediate effect. When a process is resumed, it executes from top to bottom
sequentially and any pending events are not processed until after the process
is suspended. As an example, consider the following process where two events
are scheduled on signals a and c.
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...

signal a,b,c : std_logic;

...

process (b)

begin

a <= b;

c <= not a;

end process;

If the signal b changes, an event will be scheduled on a to make it’s value
the same as b. In addition, an event is also scheduled on c to make it’s value
the opposite of a. It is important to realize here, that the value of c will
not be the opposite of b, because when the second statement is executed, the
event on a has not been processed yet. This has been mentioned because it is
not necessarily the intuitive behavior, and because the operation of variables
differs. For example, in the following code segment, the value of the variable
c would be the opposite of b, because the value of a is changed immediately.

...

process(b)

variable a,c : std_logic;

begin

a := b;

c := not a;

end process;
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Chapter 4

Concurrent and Sequential

Statements

4.1 Introduction

Understanding the fundamental difference between concurrent and sequential
statements in VHDL is important to making effective use of the language.
Figure 4.1 illustrates the basic difference between these two types of state-
ments.

END

BEGIN

STATEMENT

STATEMENT

STATEMENT

STATEMENT

STATEMENT

STATEMENT

BEGIN

END

Figure 4.1: Concurrent and Sequential Statements

The left most diagram illustrates how concurrent statements are executed
in VHDL. Concurrent statements are those which appear between the begin
and end statements of a VHDL architecture clause. All statements in the
concurrent area are executed at the same time, and there is no significance
to the order in which the statements are entered. A process is considered a
single concurrent statement, and each process in an architecture is executed
at the same time.
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The diagram on the right shows how sequential VHDL statements are
executed. Sequential statements are executed one after the other in the order
in which they appear between the begin and end statements of a VHDL
process, procedure or function clause. Although a process is a concurrent
statement, each statement within the process is executed sequentially.

4.2 Concurrent Statements

The most common concurrent statements are signal assignments such as
those shown in the following example. In general, concurrent signal assign-
ments are used to describe either combinational logic, or to describe the
connections between lower level components. Since there is no order depen-
dency to statements in the concurrent area, the following two architecture
declarations are functionally equivalent to each other.

architecture arch1 of my_circuit is

signal A,B,C : std_logic_vector(3 downto 0);

constant init : std_logic_vector(3 downto 0) := "0010";

begin

A <= B and C;

B <= init;

C <= A and B;

end arch1;

architecture arch2 of my_circuit is

signal A,B,C : std_logic_vector(3 downto 0);

constant init : std_logic_vector(3 downto 0) := "0010";

begin

C <= A and B;

A <= B and C;

B <= init;

end arch2;

4.2.1 Conditional Signal Assignments

A conditional signal assignment is a special form of signal assignment, simi-
lar to the if-then-else statements found in other software programming lan-
guages, that allows you to describe a sequence of related conditions under
which one or more signals are assigned values. The following example (a sim-
ple multiplexer) demonstrates the basic form of a conditional assignment:
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entity my_mux is

port ( Sel : in std_logic_vector(1 downto 0);

A,B,C,D : in std_logic_vector(0 to 3);

Y : out std_logic_vector(0 to 3)

);

end my_mux;

architecture mux_arch of my_mux is

begin

y <= A when Sel = "00" else

B when Sel = "01" else

C when Sel = "10" else

D when others;

end mux_arch;

Note: It is very important that all conditions in a conditional assign-

ment are covered, as unwanted latches can easily be generated by synthesis

tools for those conditions which are not covered. In the previous example it

would be incorrect to replace D when others with D when Sel = "11"; be-

cause the data type std logic vector had nine possible values for each bit.

This means that there are actually 81 possible unique values that Sel could

have at any given time.

4.2.2 Selected Signal Assignment

A selected signal assignment is similar to a conditional signal assignment but
differs in that the input conditions have no priority (in other words, there is
no else condition). For example:

entity my_mux is

port ( Sel : in std_logic_vector(1 downto 0);

A,B,C,D : in std_logic_vector(0 to 3);

Y : out std_logic_vector(0 to 3)

);

end my_mux;

architecture mux_arch of my_mux is

begin

with Sel select

Y <= A when "00",

B when "01",

La Trobe University Introduction to VHDL



4.2. CONCURRENT STATEMENTS 27

C when "10",

D when others;

end mux_arch;

The selected expressions may include ranges and multiple values. For exam-
ple, you could specify ranges for a std logic vector selection as follows:

with Address select

CS <= SRAM when X"0000" to X"7FFF",

PORT when X"8000" to X"81FF",

UART when X"8200" to X"83FF",

PROM when others;

You may also use the unaffected keyword as shown:

with Sel select

Y <= A when "00",

B when "01",

C when "10",

unaffected when others;

4.2.3 Procedure Calls

Procedures may be called concurrently within an architecture. When proce-
dures are called concurrently, they must appear as independent statements
within the concurrent area of the architecture. You can think if procedures in
the same way you think of processes within an architecture - as independent
sequential programs that execute whenever there is a change (an event) on
any of their inputs. The advantage of a procedure over a process is that the
body of the procedure (it’s sequential statements) can be kept elsewhere (in
a package for example), and called repeatedly throughout the design. In the
following example, a procedure called dff is called from the concurrent area
of the architecture:

architecture example of shift_reg is

...

begin

...

dff(..);

...

end example;
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4.2.4 Generate Statements

Generate statements are provided as a convenient way to create multiple
instances of concurrent statements, most typically component instantiation
statements. There are two basic varieties of generate statements. The follow-
ing example shows how you might use a for-generate statement to create
four instances of a lower-level component (in this case, a RAM block):

architecture example1 of my_entity is

component RAM16x1

port ( A0,A1,A2,A3,WE,Din : in std_logic;

Dout : out std_logic

);

end component;

begin

...

for i in 0 to 3 generate

RAM : RAM16x1 port map(...);

end generate;

...

end example1;

When this generate statement is evaluated, the compiler will generate
four unique instances of component RAM16x1. Each instance will have a
unique name that is based on the instance label, RAM and the index value.
For-generate statements can be nested, so it is possible to create multi-
dimensional arrays of component instances or other concurrent statements.

The if-generate statement is most useful when you need to condition-
ally generate a concurrent statement, and uses a similar syntax to that shown
above.

4.2.5 Component Instantiations

Component instantiations are statements that reference lower-level compo-
nents in your design, in essence creating unique copies (or instances) of those
components. A component instantiation statement is a concurrent statement,
so there is no significance to the order in which components are referenced.
You must, however, declare any components that you reference in either the
declarative area of the architecture (before the begin statement) or in an
external package.

The example used in Section 3.2 is included again below to illustrate how
component instantiations are written.
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architecture structure of flipflop is

component nand_gate

port(a, b : in std_logic;

z : out std_logic);

end component;

begin

top: nand_gate

port map (s, nq, q);

bot: nand_gate

port map (r, q, nq);

end structure;

The mapping of ports in a component can be described in one of two
ways. The simplest method (and the method used above) is called positional

association. Positional association simply maps signals in the architecture
(the actuals) to corresponding ports in the lower-level entity declaration (the
formals) by their position in the port list. When using positional association,
you must provide exactly the same number and types of ports as are declared
for the lower-level entity.

Although it is quick and easy to use, positional association has some
potential problems. The most troublesome is the lack of error checking. It
is quite easy for example, to swap the order of two ports in the list, and yet
the code will still compile without errors. A better way of mapping ports is
to used named association. Named association is an alternative form of port
mapping that includes both the actual and formal port names in the port
map of a component instantiation.

When specifying port mappings using named association, lower level
names are written on the left side of the => operator while the top level
names are written on the right. This is shown in the example below:

architecture structure of flipflop is

component nand_gate

port(a, b : in std_logic;

z : out std_logic);

end component;

begin

top: nand_gate

port map (a => s, b => nq, z => q);

bot: nand_gate

port map (a => r, b => q, z => nq);

end structure;
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The benefits of named association go beyond simple error checking. Be-
cause named association removes the requirement for any particular order of
the ports, you can enter them in whatever order you want. You can even
leave one or more ports unconnected if you have provided default values in
the lower-level component specification.

4.2.6 Generic Mapping

If the lower-level entity being referenced includes generics (described later),
you can specify a generic map in addition to the port map to pass actual
generic parameters to the lower level entity:

architecture structure of flipflop is

component nand_gate

port(a, b : in std_logic;

z : out std_logic

end component;

begin

top: nand_gate

generic map(tRise => 1ns, tFall => 1ns);

port map (a => s, b => nq, z => q);

bot: nand_gate

generic map(tRise => 1ns, tFall => 1ns);

port map (a => r, b => q, z => nq);

end structure;

4.3 Sequential Statements

Sequential VHDL statements allow you describe the operation of your circuit
as a sequence of related events. Such descriptions are natural for order-
dependent circuits such as state machines and for complex combinational
logic that involves some priority of operations. Sequential statements are
found within processes, functions and procedures, and differ from concurrent
statements in that they have order dependency.

The process statement is the primary method used to enter sequential
commands. Since a process is considered a concurrent statement, you can
write as many processes and other concurrent statements as are necessary to
describe your design, without worrying about the order in which the synthe-
sizer will implement each concurrent statement.

The general form of a process statement is:
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[process_name:] process[(sensitivity_list)]

[declarations]

begin

...

...

end process;

The process name appearing before the process keyword is optional and
can be used to identify specific processes or to clearly identify elements such
as local variables which may have common names in different processes. Im-
mediately following the process statement is an optional list of signals en-
closed in parentheses. This list of signals is called the sensitivity list, and it
specifies the conditions under which the process is to begin execution. Any
change in the value of a signal in the sensitivity list will result in immediate
execution of the process. Although there is a definite order of operations
within a process (from top to bottom), you can think of a process as execut-
ing in zero time. This means that a process can be used to describe circuits
functionally, without regard to their actual timing, and multiple processes
can be executed in parallel with little or no concern for which processes com-
plete their operations first. In the absence of a sensitivity list, the process will
execute continuously, but must be provided with at least one wait statement
to cause the process to suspend periodically.

4.3.1 State Machines

State machines are a common form of sequential logic circuitry that are used
for generating or detecting sequences of events. To describe a synthesizable
state machine in VHDL, you should follow a well-established coding conven-
tion that makes uses of enumerated types and processes. Specifying state
machine encodings can be a long and tedious process, the methods for which
are outside the scope of this lecture series.

4.3.2 Signals and Variables

One important aspect of VHDL you should clearly understand is the relation-
ship between sequential statements, and the scheduling of signal and variable
assignments. Signals within processes have fundamentally different behavior
from variables. Variables are assigned new values immediately, while signal
assignments are scheduled and do not occur until the current process has
been suspended. Deciding whether to use a signal or variable for a given
object can require careful consideration of the requirements of your design.
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Chapter 5

Modularization

Modular or structured programming is a technique that you can use to en-
hance your own design productivity, as well as that of your design team.
A modular design approach allows commonly used segments of code to be
re-used. It also enhances readability.

5.1 Subprograms

Functions and procedures are collectively known as subprograms, and are
directly analogous to functions and procedures in languages such as C or
Pascal. A procedure is a subprogram that has an argument list consisting of
inputs and outputs, and no return value. A function is a subprogram that
has only inputs in its argument list and has a return value.

Statements within a subprogram are sequential, regardless of where the
subprogram is invoked. Subprograms can be called from with the concurrent
area of an architecture or from within a sequential process or higher-level
subprogram. They can also be invoked from within other subprograms.

It is useful to think of subprograms as a process that (a) is located outside
the body of the architecture, and (b) operates only on its input (and in the
case of procedures), and output parameters. Nesting of functions and proce-
dures is allowed to any level of complexity, and recursion is also supported,
although it is not synthesizable.

5.1.1 Global or Local?

Functions and procedures can be declared either globally, so they are usable
throughout a design description, or they can be declared locally within the
declarative region of an architecture, block, process or even within another

32



5.1. SUBPROGRAMS 33

subprogram. An example of a global declaration is shown below:

package my_package is

function my_function(...)

return std_logic;

end my_package;

package body my_package is

function my_function(...)

return std_logic is

begin

...

end my_function;

end my_package;

use work.my_package.my_function;

entity my_design is

begin

...

end my_design;

Compare this to a locally declared function as shown:

architecture example of my_circuit is

begin

process(...)

function my_function(...)

return std_logic is

begin

...

end my_function;

begin

...

end process;

end example;

5.1.2 Functions and Procedures

A function is a subprogram that accepts zero or more input arguments and
returns a single output value. Because a function returns a value, it has a type
associated with it. The following is an example of a function that accepts
two integer arguments and returns the greater of the two as an integer value:
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function maxval(arg1,arg2 : integer) return integer is

variable result : integer;

begin

if arg1 > arg2 then

result := arg1;

else

result := arg2;

end if;

return result;

end maxval;

Functions are commonly used is situations where you require a calculation
or conversion based on the subprogram inputs. Examples of this include
arithmetic or logic functions, type conversion functions, and value checks
such as you might use when writing a test bench.

Procedure differ from functions in that they do not have a return value,
and their arguments may include both inputs and outputs to the subprogram.
Because each argument to a procedure has a mode (in or out), they can be
used very much like you would use an entity/architecture pair to help simplify
and modularize a large and complex design description.

Procedures are used as independent statements, either within the con-
current area of an architecture or within the sequential statement area of
a process or subprogram. The following example defines the behavior of a
clocked JK flipflop with an asynchronous reset input:

procedure jkff(signal rst,clk,j,k : in std_logic;

signal q,qbar : buffer std_logic) is

begin

if rst = ’1’ then

q <= ’0’;

elsif clk = ’1’ and clk’event then

if j = ’1’ and k = ’1’ then

q <= qbar;

elsif j = ’1’ and k = ’0’ then

q <= ’1’;

elsif j = ’0’ and k = ’1’ then

q <= ’0’;

end if;

end if;

qbar <= not q;

end jkff;
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Note that variables declared and used within a procedure are not pre-
served between different executions of the procedure. This is unlike a process,
in which variables maintain their values between executions.

5.1.3 Parameter Mapping

The examples presented above have used positional association to describe
how the actual parameters are paired with the formal parameters of the
subprogram. Just as with the mapping of ports in an entity, subprogram
parameters can also use named association.

5.2 Partitioning Your Design

VHDL provides many high-level features to help you manage a complex de-
sign description. Design partitioning goes beyond simpler design modular-
ity methods to provide comprehensive design management across multiple
projects and allow alternative structural implementations to be tried out
with minimal effort.

The design partitioning features of VHDL include:

• Blocks,

• Packages,

• Libraries,

• Components, and

• Configurations.

5.2.1 Blocks

Blocks in VHDL are analogous to sheets in a multi-sheet schematic. They do
not represent re-usable components, but do enhance readability by allowing
declarations of objects to be kept close to where those objects are actually
used. Blocks are the simplest form of design partitioning. They provide an
easy way to segment a large VHDL architecture into multiple self-contained
parts. Blocks allow the logical grouping of statements within an architec-
ture, and provide a place to declare locally used signals, constants and other
objects as needed.
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5.2.2 Packages

Packages are intended to hold commonly used declarations such as constants,
type declarations and global subprograms. Packages can be included within
the same source files as other design units, or may be placed in a separate
source file and compiled into a named library. When items from a package
are required in other design units, you must include a use statement to make
the package and its contents visible.

The Package Body

Every package can have at most, one package body. Package bodies are
optional, and are only required when a package includes subprograms or
deferred constants.

5.2.3 Libraries

Design libraries are used to collect commonly used design units (typically
packages and package bodies) into uniquely named areas that can be ref-
erenced from multiple source files in your design. If you do not specify a
library, the design units are compiled into a default library named work. For
simple designs, you will use the work library exclusively, and all you need to
do is specify a use statement such as:

use work.my_package.all;

prior to each entity declaration in your design file for each package that you
have declared in your source file. The use statement is quite flexible. You
can specify exactly which items within a package are to be made visible,
specify all items from that package, or all items from that library:

use my_lib.my_package.dff; -- only the dff procedure

use my_lib.my_package.all; -- all subprograms are visible

use my_lib.all; -- everything in the library!

5.2.4 Components

Components are use to connect multiple VHDL design units (entity / archi-
tecture pairs) together to form a larger, hierarchical design. The following
example describes the relationship between three such design units:

architecture structure of shiftcomp is

component compare

La Trobe University Introduction to VHDL



5.2. PARTITIONING YOUR DESIGN 37

port(A,B in std_logic_vector(0 to 7);

EQ : out std_logic

);

end component;

component shift

port(Clk,Rst,Load : in std_logic;

Data : in std_logic_vector(0 to 7);

Q : out std_logic_vector(0 to 7)

);

end component;

signal Q : std_logic_vector(0 to 7);

begin

COMP1 : compare port map (Q,Test,Limit);

SHIFT1 : shift port map (Clk,Rst,Load,Init,Q);

end structure;

In this example, the two lower level components, shift and compare, were
instantiated in the higher level module, shiftcomp, to form a hierarchy of
design units. Component instantiations are concurrent statements and there-
fore have no order dependency. Again, either named or positional association
can be used to pass parameters into a component.

5.2.5 Generics

It is possible to pass instance-specific information other than actual port
connections to an entity using a feature called generics. Generics are very
useful for making design units more general-purpose, or for annotating in-
formation such as timing specifications to an entity at the time the design is
analyzed. The following example shows how generics can be used to create
a parameterizable model of a D flipflop:

library ieee;

use ieee.std_logic_1164.all;

entity dffr is

generic(width : positive);

port(Rst,Clk : in std_logic;

signal D : in std_logic_vector(width-1 downto 0);

signal Q : out std_logic_vector(width-1 downto 0)

);

end dffr;
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architecture behavior of dffr is

begin

process(Rst,Clk)

variable Qreg : std_logic_vector(width-1 downto 0);

begin

if Rst = ’1’ then

Qreg := (others => ’0’);

elsif Clk = ’1’ and Clk’event then

for i in Qreg’range loop

Qreg(i) := D(i);

end loop;

end if;

Q <= Qreg;

end process;

end behavior;

In this example, the dffr entity has a generic list in addition to a port
list. This generic list contains one entry, a positive integer, that corresponds
to the width of the D input and Q output. The architecture declaration uses
a for loop in conjunction with the generic (width) to describe the operation
of the D flipflop.

When instantiated in a higher level design, a generic map must be pro-
vided in addition to the port map, as shown in the example below, which
illustrates how three instances of the dffr design unit can be created using
different values for the generic:

architecture sample of reg is

component dffr

generic(width : positive);

port(Rst,Clk : in std_logic;

signal D : in std_logic_vector(width-1 downto 0);

signal Q : out std_logic_vector(width-1 downto 0)

);

end component;

constant width8 : positive := 8;

constant width16 : positive := 16;

constant width32 : positive := 32;

signal D8,Q8 : std_logic_vector(7 downto 0);

signal D16,Q16 : std_logic_vector(15 downto 0);

signal D32,Q32 : std_logic_vector(31 downto 0);
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begin

FF8: dffr generic map(width8) port map(Rst,Clk,D8,Q8);

FF16: dffr generic map(width16) port map(Rst,Clk,D16,Q16);

FF32: dffr generic map(width32) port map(Rst,Clk,D32,Q32);

end sample;

5.2.6 Configurations

Configurations are not generally supported by synthesis tools, but allow large,
complex designs to be managed during simulation. One example of how you
might use configurations is to construct two versions of a system-level design,
one of which makes use of high-level behavioral descriptions of the system
components, while a second version substitutes in a post synthesis timing
model of one or more components. Since this course is more oriented towards
synthesis, rather than simulation, an in-depth discussion on configurations
will not be presented.

La Trobe University Introduction to VHDL



Chapter 6

Optimising for Synthesis

When using synthesis tools, the single most productive thing you can do
is be aware of what kind of hardware you are describing. Writing a design
description without considering the hardware, and just expecting the sythesis
tool to do the design for you is a recipe for disaster. A common mistake is
to create a design description, validate that description with a simulator,
and assume that this correct specification must also be a good specification.
Understanding the hardware that you are specifiying is the simplest rule for
success. This is particularly important if you want to achieve critical timing
goals.

To get the best results out of synthesis, and to achieve the highest possible
portability between synthesis tools, it is important to describe your designs
using well-established synthesis conventions, and to be aware of some com-
mon mistakes of first-time synthesis users. This chapter will look at some
simple examples of typical circuit coding problems.

6.1 Simulation Optimized Code

In the following example, it is assumed that only one control input will be
active at a time. This description is efficient for simulation, but is a poor
logic description for synthesis because the independence of the control signals
is not described within the VHDL code:

out1 <= ’0’;

out2 <= ’0’;

out3 <= ’0’;

if in1 = ’1’ then

out1 <= ’1’;

elsif in2 = ’1’ then
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out2 <= ’1’;

elsif in3 = ’1’ then

out3 <= ’1’;

end if;

The independence of the control signals needs to be contained within the
design description, or inefficient synthesis will result. The modified design
description may be slightly slower during simulation, but will result in a
smaller logic implementation after synthesis:

out1 <= ’0’;

out2 <= ’0’;

out3 <= ’0’;

if in1 = ’1’ then

out1 <= ’1’;

end if;

if in2 = ’1’ then

out2 <= ’1’;

end if;

if in3 = ’1’ then

out3 <= ’1’;

end if;

Note the issue here is not a long signal path, but an unclear specification
of the design. The best optimizer in the world can’t turn an inefficient
algorithm into an efficient one. And an algorithm that is efficient from one
viewpoint may not be efficient from another.

6.2 Testing For High Impedance

The following examples uses the IEEE 1164 standard logic data types and
values in an attempt to describe the concept “if signal sig is floating”. This
is quite a reasonable test to perform in a simulation model. However, a
synthesis tool has to transform this into a hardware element that matches
this behavior.

if sig = ’Z’ then

-- do something

end if;

As written, if if-then test specifies a logic cell that looks at the drive
of its fan-in, then outputs true if not driven, and false if driven high or
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low. Such a cell does not exist in most programmable silicon. IEEE 1076.3
specifies that this comparison should always be false, so the statements inside
the if are not executed, and no logic is generated. Tests for high impedance
on inputs are therefore not meaningful in the context of synthesis.

6.3 Nested Ifs

Mutliple nested if or elsif clauses can specify long signal paths. The
following example describes a chain of dependent if-then statements:

if sig = "000" then

-- first branch

elsif sig = "001" then

-- second branch

elsif sig = "010" then

-- third branch

elsif sig = "011" then

-- fourth branch

elsif sig = "100" then

-- fifth branch

else

-- last branch

end if;

This code is an inefficient way to describe logic. A case statement would
be much better.

case sig is

when "000" =>

-- first branch

when "001" =>

-- second branch

when "010" =>

-- third branch

when "011" =>

-- fourth branch

when "100" =>

-- fifth branch

when others =>

-- last branch

end case;
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In practice, if the branches contain very little logic, or if there are few
branches, then there may be little difference in the amount of logic generated.
Howere the case statement generally results in a better implementation,
so you should use case statements rather than if-then-else statements
whenever possible.

6.4 Iterative Loops

Loops are very powerful, but each iteration of a loop replicates logic. A
variable that is assigned in one iteration of a loop and used in the next
iteration results in a long signal path. This signal path may not be obvious.

6.5 Using buffer or inout

Mode inout specifies a bi-directional dataflow. Buffer on the other hand,
specifies unidirectional dataflow. There are very few occassions in hardware
design when bi-directional is actually what you want, so you should use
buffer for most cases in which you must (locally) read from an output port.
Use inout only when you want to specify a signal path that is actually routed
bidirectionally through a pin, such as when describing an I/O pad or a bus.

6.6 Initial Values

The initial value of an object is its value when created. Signals and variables
declared in processes are created at zero time. Variables in subprograms are
created when the subprogram is called.

The value at time zero has no meaning in the context of synthesis. There-
fore, the initial value of singals and process variables must be used with care.
This issue does not arise with the initial value of variables declared in sub-
programs.

A general rule is this: You should not depend on the initial value of
signals or process variables if they are not completely specified in the process
in which they are used. In this case, the compiler willl ignore the time zero
condition and use the driven value. For example:

signal res : std_logic := ’0’;

begin

process(tmp,init)

begin
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if (tmp = 26) then

res <= ’1’;

elsif (init = ’1’) then

res <= ’1’;

end if;

end process;

...

In this case, res is never assigned low - the code will be synthesized as
a pull-up. However, during simulation at time zero, res starts at ’0’, and
makes a transition to ’1’, then stays there. If this is really the intent, the
proper solution is to use a flipflop.

6.7 Unintended Latches

Latches, whether intended or accidental, are inferred using an incomplete
specification in an if statement. The following example specifies a latch
gated by address strobe, which may not have been the intent.

process(address, address_strobe)

begin

if address_strobe = ’1’ then

decode_signal <= address = "101010";

end if;

end process;

This description specifies that when address strobe is ’0’, then the sig-
nal decode signal holds its previous value, resulting in a latch implemen-
tation. In this case the intent is probably to ignore decode signal when
address strobe is ’0’. The following, more explicit, code is correct:

if address_strobe = ’1’ then

decode_signal <= address = "101010";

else

decode_signal <= false;

end if;
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Test Benches

A test bench is a program written in VHDL, and is used to test your syn-
thesizable VHDL program. When you first create a new circuit design, you
should also create a test circuit in parallel with that design. Whereas synthe-
sizable VHDL is restricted to a subset of the VHDL syntax, code intended to
be used as a test bench can make full use of the language. Test benches can
be quite simple, applying a sequence of inputs to the circuit over time. They
can also be quite complex, perhaps even reading test data from a disk file
and writing test results to the screen and to a report file. A comprehensive
test bench can be more complex and lengthy (and can take longer to develop)
than the synthesizable circuit being tested.

The simplest test benches are those that apply some sequence of inputs to
the circuit being tested, so that it’s operation can be observed in simulation.
Waveforms are typically used to represent the values of signals in the design
at various points in time. Such a test bench must consist of a component
declaration corresponding to the unit under test, and a description of the
input stimulus being applied.

The following example demonstrates the simplest form of a test bench,
and tests the operation of a NAND gate:

library ieee;

use ieee.std_logic_1164.all;

use work.nandgate;

entity testnand is

end testnand;

architecture stimulus of testnand is

45



46

component nand

port(a,b : in std_logic;

z : out std_logic);

end component;

signal a,b,z : std_logic;

begin

nand1 : nandgate port map(a=>a, b=>b, z=>z);

process

constant period : time := 50ns;

begin

a <= ’1’;

b <= ’1’;

wait for period;

assert(z = ’0’)

report "Test failed" severity ERROR;

a <= ’1’;

b <= ’0’;

wait for period;

assert(z = ’1’)

report "Test failed" severity ERROR;

a <= ’0’;

b <= ’1’;

wait for period;

assert(z = ’1’)

report "Test failed" severity ERROR;

a <= ’0’;

b <= ’0’;

wait for period;

assert(z = ’1’)

report "Test failed" severity ERROR;

wait;

end process;

end stimulus;

Note that the entity clause does not include any port declarations, as it
is the highest-level design unit when simulated. Also note that the process
statement does not have a sensitivity list. It uses wait statements to provide
a specific amount of delay (defined using period) between each new com-
bination of inputs. Assert statements are used to verify that the circuit is
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operating correctly for each combination of inputs. Finally, a wait statement
without any condition expression is used to suspend simulation indefinitely
after the desired inputs have been applied. In the absence of the final wait
statement, the process would repeat forever, or as long as the simulator has
been instructed to run.

7.1 Using Assert Statements

The assert statement provides a quick and easy way to check expected values
and display messages from your test bench. When analyzed (either during
execution as a sequential statement, or during simulator initialization in the
case of a concurrent assert statement), the condition expression is evaluated.
As in an if statement, the condition expression of an assert statement must
evaluate to a boolean value. If the condition expression is false - indicating
that the assertion failed - the text specified in the report statement clause
is displayed. The severity statement clause then indicates to the simulator
what action (if any) should be taken. The severity level can be specified
using one of the following predefined severity levels: NOTE, WARNING, ERROR

or FAILURE.

7.2 Loops and Multiple Processes

Test benches can be dramatically simplified through the use of loops, con-
stants and other more advanced features of VHDL. Using multiple concurrent
processes in combination with loops can result in very concise descriptions
of complex input and expected output conditions.

The following example demonstrates how a loop (in this case a while

loop might be used to create a background clock in one process, while other
loops (in this case for loops are used to apply inputs and monitor outputs
over potentially long periods of time:

clock1: process

variable clktmp : std_logic := ’1’;

begin

while done /= true loop

wait for period/2;

clktmp := not clktmp;

Clk <= clktmp;

end loop;

end process;

La Trobe University Introduction to VHDL



7.2. LOOPS AND MULTIPLE PROCESSES 48

stimulus1: process

begin

reset <= ’1’;

wait for period;

reset <= ’0’;

mode <= ’0’;

wait for period;

mode <= ’1’;

for i in 0 to 127 loop

wait for period;

assert(VS = ’1’)

report"VS went high at the wrong place" severity ERROR;

end loop;

assert(VS = ’1’)

report"VS was not detected" severity ERROR;

wait for period;

TestLoad <= ’0’;

for i in 0 to 300 loop

Data <= RandomData();

wait for period;

end loop;

assert(EOF = ’1’)

report"EOF was not detected" severity ERROR;

done <= true;

wait;

end process;

In this example, the process clock1 uses a local variable, clktmp to
describe a repeating clock with a period defined by the constant period.
This clock is defined with a while loop, and it runs independently of all
other processes in the test bench until the done signal is asserted true. The
second process stimulus1, describes a sequence of inputs to be applied to
the unit under test. It also makes use of loops - in this case for loops - to
describe lengthy repeating stimuli and expected value checks.
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