
1

Digital Design and Synthesis

INTRODUCTION

The advances in digital design owe its progress to 3 factors. First the acceleration at which the

CMOS technology has advanced in last few decades and the way that information has been

stored and processed. Secondly, the driver for digital design has been the ability to treat all kinds

of media as digital data that is stored, processed and manipulated and finally combining and

storing all sorts of information and data in a single document and the third parameter is, the

transmission in high speed over long distances. These concepts increased the requirement for

digital design and ways to optimise its performance.

StructuralBehavioural

Physical

Algorithmic

Micro architecture

Logic

Circuit

Rectangles

Cells

Macro-cells

Modules

Chips, boards…

Processor

Hardware modules

ALU, registers

Gates, F/Fs

Transistors

Systems

Algorithms

Register transfer

Logic

Transfer function

Fig.1 Design description levels

2

Digital system and its design can be described in three domains namely: Behavioural,

Structural and Physical domains as shown in Fig.1. In each domain, the level of description

and decision to be taken and the complexity are different.

The behavioural description is usually language based and can be pure algorithmic or signal flow

graphs or even a transfer function and more likely a HDL Code. For example a multiplier can be

described by A * B = C. At the behavioural level we may decide in using a serial or a parallel

multiplier. So trade offs for speed, cost, chip area, power consumption etc. is made in this level.

Many high level details are decided upon while the lower level details are compromised.

Important design decisions such as what algorithm to be used for the system at hand are made at

this level. It is important to know that the reward for optimization at this level is many folds of

that of other levels as shown in Fig. 2. The digital designer starts the design at the conceptual

level working with high level behavioural blocks and proceeds to design of major functional

blocks that supports a given design specification. In order to manage complexity, the overall

design may be partitioned and each partition dealt with separately using detailed structural

constructs. In any case major decisions regarding algorithms, functional partitioning, structural

partitioning and data transmission methods are made at this level while for each individual item

optimising the speed, power consumption, area, and cost are identified. The benefit to the

designer is that it provides a fast and accurate way to verify whether the concept is correct and

design specification can be met and also provides means by which a compromise is reached

between several objectives by “WHAT IF ANALYSIS”.

The behavioural analysis is used usually for “PROOF OF CONCEPT”.

3

Level Transformation Expected Power Saving

Algorithmic Algorithm selection Orders of magnitude

Behavioural Concurrency Several times

Register Transfer Level Structural transformations ~10 - 15%

Clock control ~10 - 90%

Data/signal encoding ~20%

Technology independent Extraction/decomposition ~15%

Technology dependant Technology mapping ~20%

Gate sizing ~20%

Layout Placement 20%

Optimization Levels

Fig-2

The behavioural model is usually converted to RTL level in HDL or block diagram usually

manually. At the structural level, we are dealing with data paths, practical logic blocks and their

interconnection. We may want to decide upon Dynamic logic or Static logic, Serial or Parallel

input registers, what kind of adder to be used, what kind of multiplier will meet our speed and

area, what is our clocking strategy etc. Our project for this course this year will based on

Structural level, where you would design and code a multiplier in VHDL at structural level and

then synthesise it to an FPGA. At the Structural level we use the EDA tools fully. At this level,

The synthesis tools convert the blocks to gate level netlist and the logic synthesis tools optimize

logic level design and the timing tools verify operations in terms of spec. requirement of timing,

area and power.

At the physical level, we will try to design and implement the circuit on chip. (COEN 6511)

where our variables will be at silicon level. At this level the netlist is input to the EDA tools

such as place and route which produces a layout, The layout is extracted and fed again for

verification through an iterative process. Once a final satisfaction with the spec is acheived the

layout is ready for download for fabrication. For example, how the chip layout is arranged,

where the pads will be located, and how the Vdd and Vss are distributed and how the boards are

arranged, where are the components placed etc.

4

The Y chart of Fig. 1 shows that one can make a de-composition and a transition from

behavioural level to structural level. This can be achieved manually or through silicon

compilation. By the same token one can transform from structural level to gate and logic level

by creating FFs, gates, and higher blocks such as registers, counters, all kinds of modules. Also

one can transcend to the physical level to design the transistors that make up the gates and step

further to the polygons of different materials that make the transistors. So one can start

automatically or manually to transcend from behavioural to the physical level. Silicon compilers

do exist that accept behavioural level description and proceed to the physical chip, or chip

layout. In all cases HDL language ie VHDL/ Verilog or others high languages is a good starting

point to describe the system at hand.

Generalizing then, logical synthesis is a structural form where the physical synthesis leads to the

physical domain. Thus the design process includes the behavioural description followed by the

decomposition of high level constructs into more precise functional units which are then mapped

into the physical elements. The logical circuits that are commonly used are available as

integrated circuits and are referred to as standard chips (in our design they are referred to as

library cells). The advent of the very large scale integration (VLSI) has made the configuration

on chip possible where a complete system can be designed synthesized and placed on a single

chip.

As complexity of the chips is increased to billions of transistors on a chip, then design

automation becomes necessary. Designers now can design large chips verify it, automatically

place and route it, re-evaluate its characteristic, debug it and verify its final functions before

downloading the bitmap file on the actual chip as Shown in Fig. 4. One must always that these

tools depend on the input and the rule of garbage in garbage out still applies.

In general nowadays HDL is used extensively in digital design. The advantages are many

including the design at the HDL level does not depend on any fabrication technology. Synthesis

tools are available for converting the HDL to gate level netlist. The HDL is adaptable to new

technologies, eliminating need for redesign. The verification tools at any step insure that all

bugs are cleared and the design once goes to production is correct producing the exact

requirement first time. Finally HDL, VHDL/Verilog/or higher level languages are becoming the

5

only method being used by designers. Currently the trend is to use structural design at the RTL

level.

In general two basic types of methodologies can be defined namely top-down design and bottom-

up design methodology. In top-down design methodology the top block is defined and then the

sub-blocks necessary are identified in order to build a top level block. These are then further

divided in progression into smaller units till we reach the leaf cells that cannot be divided further.

The design is described in HDL and the HDL coding techniques will be applied to the design so

that the design is modelled effectively and efficiently. Design errors that are obvious are checked

through the preliminary synthesis of each HDL code and every block is verified before

integrating it into a larger unit.

Design process

A design starts always with a specification. The specification describes what the circuit must do,

but not how it is done. The specification is usually set by the customer who wants the final

product. Once the designer knows what the circuit must do, she/he can begin to determine how

it is done, for example, defining what are the inputs to the unit and the outputs that must be

generated is a good first step.

The designer then starts with translating the design specification into behavioural description,

then decomposing the high level constructs into functional units and finally, then mapping these

units into physical elements as shown in Fig.3.

6

Fig. 3

A simple example of word specification from a customer may be as follows:

Required an 8 bit microprocessor, no cache, simple addressing mode, 8 internal registers,

Instruction word 8 bits, 8 bit address bus multiplexed with data bus, 40 pin package, dual IP

package and consuming less than 1 Watt. A simple diagram of the system is shown in Fig.4

The designer then gets to work as first step starting with block diagram, decomposes the overall

system into components that are available in the library or to be designed. The block diagram

below

Design Process:	

	

It starts with behavioural 	

	

description, decomposing	

	

the high level of constructs 	

	

into more precise functional	

	

units, then mapping these 	

	

units into physical elements. 	

System Specification	

Architectural Design	

(behavioural)	

Analysis	

Design Implementation	

(structural)	

Analysis	

Design Implementation	

(Physical)	

Analysis	

7

Fig. 4

shows the behavioural description of the system. Now each item is broken down to smaller units,

for example, the CPU maybe broken into adder, multiplier, floating point unit etc. Now each unit

in tern is broken down further using identifiable structures. For example an eight bits multiplier

can be designed as shown in Fig.5

Fig. 5 An 8-bits multiplier

While each adder is designed as shown in Fig. 6 below:

 CPU

CONTROL

 MEMORY

 DMA

 O/P I/P

8

 Fig. 6 A 1-bit adder

This is a structured design where each unit is either designed specifically for this system or has

been selected from the already available library.

When the design of all the individual units have been completed then the overall design is

simulated and compared to the specification. When the design meets the spec, then it is targeted

to a physical implementation.

As complexity of the chips is increased to billions of transistors on a chip, then design

automation becomes necessary. Designers now can design large chips verify it, automatically

place and route it, re-evaluate its characteristic, debug it and verify its final functions before

downloading the bitmap file on the actual chip as Shown in Fig. 7

9

 Fig. 7

Design Strategies

Any system is comprised of many individual units such as boards, chips, power supply, routing

etc. The success of the overall system depends on how well it is optimized in terms of

performance, and at the end of the product cycle, what is the revenue that the newly designed

system generates. This in turn depends on how well each individual unit in the system was

designed through all its design levels from the algorithm down to the devices. For example how

well a chip is designed is measured by several criteria such as functionality, speed, power, size

etc. On the other hand other factors also play an important part such as time to design, time to

market and ease of testing. The final implementation has to conform to the original spec. or

better. During the design there are many factors that can be traded for the good design, therefore

the knowledge of all factors affecting the design and their interdependence are important.

Description

Behavioral

Verification Logic
Synthesis/

Gate-Level
Netlist

Verification Floor Planning/

Place & Route

Verification/

Final Timing

Implementation

specification

Proof of
Concept

HDL Description

10

Most designs nowadays are large and complex. A successful designer has to structure his design

and use design automation tools available. In general a successful designer uses the following 4

principals to achieve his design effectively and quickly.

1) Hierarchy

2) Regularity

3) Modularity

4) Locality

Hierarchy,

This is an extremely useful strategy when you have a complex system. It is the process of divide

and conquer. The overall system is repeatedly divided into subunits and in turn the subunits are

divided further until no further division is possible or the subunits are available in the library. At

this stage the design is more manageable since the smaller sub-modules can be designed easier.

The hierarchy can be in different domains in software or hardware modules. For example a

VHDL entity module can be written or structurally designed in a hierarchical fashion. Parallel

hierarchy is implemented in all domains. As an example a 4-bit adder can be designed by

dividing the adder into 4 single bit adder, and an adder cab be designed using 2 half adders and

so on as shown below:

11

Regularity

Regularity

Although hierarchy can reduce complexity, however by applying regularity we can reduce

complexity of the layout much further. This is because the method of simplify the work of the

software that automates the design and in turn the design and implementation tasks are reduced.

In this way, compact designs are obtained and finally verification of the design becomes simpler.

Half adder

Full

Adder

4-bit Adder

12

So at this stage we divide the hierarchy into smaller building blocks such that the small block can

interlock in each other.

For example an adder in a datapath design can be designed in a regular fashion in such a way

that by concatenating the 1 bit of the adder n time an n bit adder is designed and implemented in

layout directly.

Modularity,

 a

b

S

C

Vdd Cin Vss

Vdd Co Vss

Unit 1-bit Adder

Vdd Cin Vss

Vdd Cin Vss

ao

bo
so

co

a7

b7

s7

c7

S0-S7

C7

 ao-a7

bo-b7

Vdd Cin Vss

Vdd Co Vss

13

This is designing a module such that it is interface-able to other modules in the system. This

means taking into consideration all the electrical, mechanical and physical parameters into

account. The unit is verified and perfectly characterized. This is performed such that the module

is well defined and ready for integration into most designs and understood and can be used by

other members of the team or design community to be placed in the library. It basically gives

confidence to the average designer since the module is well characterized. In general modularity

makes implementation of design principal easy,

Design principals: 1) Concatenation......... physical abutments

 2) Iteration regular cells, arrays

 3) Conditional selectionPLA, Transistor selection

Locality

This is a strategy to ensure that only components or routs that are essential to the module stay in

the module, or by other definition optimization of internal components is very important because

this will be used in the overall system, any local parameter should be kept within the module and

close to where it is used to reduce for example resistance or capacitance.

 Design of a Cell

Additional buffers for easy interfacing to other

modules which have certain input and output

characteristic

14

VHDL,

Due to complexity and speed of the design, designers have opted for design at higher level of

abstraction. Designers follow functionality and let the Electronic Design Automation EDA, take

care of the rest. The EDA tools are complete packages that take care of A to Z of the design

translation, optimization and implementation.

Most designs nowadays are performed with the aid of high evel languages such as VHDL or

Verilog. This is so because these languages are design entry point, Specification language, as

well as design simulation design verification tools. Thus it is a complete package by which the

designer starts the specification to the end point by which the final VHDL code can be translated

and synthesized into an FPGA or semi custom design. The design once described can be

simulated and iterated through the design cycle until the final specification targeting a device for

implementation is met. The following figure shows that most of the design, specification,

simulation and verification can be done through VHDL.

15

4

Implementation is vendor

dependent

Design

Specification

Modeling the behavior

English Prose

Data Path

Transfer Function,

Boolean Equations,

Flow Graphs, Pseudo

Codes

Logic Design

Computational

Units,Registers,

Buses

Flip Flops, Gates,

Netlist

Transistors, Wires

Masks

Manufacturing

V

H

D

L

Netlist, ASCII text describing gates or library

modules and their interconnection

ASIC FPGA

At each point the Synthesis tools will provide you a report to check the design and its

performance in terms of Speed, Area and Power. At anytime also the designer can go back and

change its design thus repeating the design process. The following diagrams show the output

from the synthesis reports.

At the end of this course you will be doing your project. That requires design of a digital system,

coding its behaviour at the structural level, writing the test bench, simulating the design and

verifying its functionality as well as obtaining its performance.

16

Synthesis report

Timing Report

After Synthesis

17

Area report after Synthesis

Power report after Synthesis

18

The Design process

19

Appendix A

20

By: Harish Harish prepared for COEN 6501

The following Appendix, shows the design concept using VHDL in details.

VHDL DESIGN CONCEPT

The behaviour and structure of the digital circuits are described by Hardware description

language which is also used to simulate the circuit and check its response. VHDL language

which is a simulation and verification language is basically used as a modelling language for

digital systems for many tools it is used as an intermediate form of design entry. VHDL is not

case sensitive and should be saved with an extension of “.vhd”. In a VHDL language the basic

building blocks is known as module which describes the corresponding hardware module. A

basic module structure may include declarations, statements, tasks and functions among others.

VHDL uses the ASCII character set. The lexical elements for the language include identifier and

reserve words special symbols etc.

The general structure of VHDL module is an entity description which is followed by the

description of the architecture. In the entity description the input and the output signals are

declared and in the architecture description the internal operations of the module is specified.

 Figure 2: VHDL programme structure [1]

The name of the module is given by the entity declaration (here two gates with respect to the

figure).the entity description of the module represents the interconnections from this module to

 Entity Architecture

Entity

architecture

Module 1

Entity

architecture

Module 2

Entity

architecture

Module N

21

the external interface. The port declaration specifies the inputs and outputs to the module (here

A, B and D are inputs signals and E is the output signal). The name of the architecture

associated with module is given by the architecture (here it is gates). The beginning and the end

of the module is represented by the concurrent statements begin and end.

 D E

 Figure 3: VHDL module with two gates [1]

entity two_gates is

port (A, B, D: in bit; E: out bit);

end two_gates

architecture gates of two_gates is

signal C: bit;

begin

C<= A and B;

E<=C or D; ?1?

end gates;

In addition to the in and out modes two other modes are being used buffer and linkage. The inout

mode and the buffer mode are similar and it is useful if the signal is really an output signal.

When we want to connect a VHDL entity to a non-VHDL entity a linkage port is useful. As both

of these modes involve strict restrictions these are used at a restricted level. In VHDL there are

A

B

22

two types of delays which can be found-transport delays and inertial delays. Inertial delay

which is default delay is intended to model gats and to those devices which do not propagate

short pulses from input to output. The other VHDL delay which is the transport delay is intended

to model the delay introduced by the wiring, in other words it simply delays an input signal by a

specified delay time. Modelling this delay can be done by simply using the keyword transport

in the code. This simulation related delays like inertial delay can inhibit many output change.

 Compilation and simulation of VHDL code

 In order to verify the implement the intended design

correctly and also to verify if the design meets the specification simulation of the VHDL code is

necessary. Accordingly there are three phases in the simulation of the VHDL code: compilation,

elaboration and simulation.

 Simulator commands

 Intermediate simulation

 Code data structure

 Simulator output

 Figure 4: Compilation and Simulation of VHDL code [1]

The syntax of the typed VHDL source code is verified to check if it adheres to the syntax and the

semantic rules by the compiler also called as the analyser. On a positive result the compiler

generates an intermediate code used by the simulator. In the elaboration process the VHDL

intermediate code is converted to a form used by the simulator. The simulator process consists

Compiler

Resource

library

Elaborator
Simulator

Working library

23

of an initialisation phase and actual simulation. The simulator produces the desired simulation

outputs upon accepting the simulation commands. The initial value to the signal is given and the

corresponding actions are scheduled by the process of scheduling a transaction. In order to

facilitate the correct initialisation process an initial value can be assigned in the VHDL module.

Depending upon the type of the signal some initial value is assigned in the absence of an initial

value. Simulation time is set to zero and the process is executed for corresponding transactions.

Basically in a simulator whenever a component changes the output is scheduled to change after

specified delay. The output change is specified when the simulated time is advanced to the next

time when all the input changes have been processed.

entity simulation_example is

end simulation_example;

architecture test1 of simulation_example is

signal A, B: bit;

begin

 P1: process (B)

 begin

 A<= ‘1’;

 A<=transport ‘0’ after 5 ns;

end process P1;

P2: process (A)

begin

 if A=’1’ then B<=not B after 10ns; end if;

 end process P2;

end test1; ?1?

24

 VHDL data types and operators

 In VHDL there are several predefined data types

which are used by the signals or they can also be user defined data type. Some of the data types

are bit (0 or 1), Boolean (FALSE or TRUE), integer (in the range of – (231-1) to + (231-1)), real

(floating point number), character (any legal VHDL character), time (any integer with the units if

fs, ps, ns, us, ms, sec, min, or hr). A common example of the user defined data type that is the

data type created by the user is the enumeration type. In VHDL signals and variables cannot be

mixed in the same assignment statement. Predefined VHDL operators are available and are

grouped into seven classes- Binary logical operators, relational operators, shift operators, adding

operators, unary operators, multiplying operators, miscellaneous operators. The operators in class

seven gets the highest precedence when the parenthesis are not used and are applied first which

is then followed by class six and then class five and so on. When operators of the same class are

used they get precedence from left to right and the order of the precedence can be changed by the

application of parenthesis. In the following expression

(A & not B or C ror 2 and D) = 110010

In the above relative expression, the operators are applied in the order

Not, &, ror, or, and, =

Lexical description

The VHDL text file is consisted of one or more text design files which must be prepared only

from the prescribed ASCII character set.

Character set

There are various character set which are allowed in the design file. Furthermore there lot of

characters which are included in the ASCII code representation to express like hexadecimal.

Lexical elements

25

A sequence of characters that makes up a fundamental element which cannot be divided into

smaller elements is called as lexical elements. The types of lexical elements: delimiter, identifier,

comment, character literal, string literal, bit string literal, abstract literal. The separators are those

which are used in between first lexical elements and after the last lexical elements. Many

separators can be used in between the lexical elements.

Delimiters

The character that is used in order to separate the lexical elements is called as delimiter. All

statements in VHDL are terminated using a “; “character. The sequence of two delimiters is

referred to as compound delimiter- =>, **,:=, /=, >=, <>, --. The use of delimiters reduces the

use of specific separators in between the lexical characters.

Character literal

When a lexical element is formed by inserting one character between two apostrophe delimiter, it

is known as character literal.

String literal

The lexical element formed by the insertion of sequence of graphical characters between two

quotation delimiters is called a string literal. Since it is a lexical element the string literal is typed

in one line. The number of characters in the sequence gives the length of the string literal.

Bit string literal

A lexical element which consists of a string of digits enclosed by the quotation character

delimiters and preceded by base specifier is called as bit string literal. The base specifier is one

of the letters like B-binary, O-octal, X-hexadecimal. The string of bits gives the value of a bit

string literal. The association of this to a numerical value is dependent on the user.

Decimal literal

26

An abstract literal which is used in many high level computer languages, expressed in standard

decimal notation is called as a decimal literal. The exponential part of the literal is proceeded by

letter E and only real literal accept the negative exponents value.

Data types

The specifications of values the object might have and the limitation of the types of operation the

object of that type needs to perform is indicated by the data type. It is named set of values. A

subtype is a type along with a constraint. If it is a legitimate value for the type and if the

constraint is satisfied, the value belongs to the subtype. The type from which it was constructed

is called the base type of the subtype. There are two classifications- scalar and composite.

SCALAR DATA TYPES

In scalar data types, the data types have single, simple values. An integer data type may have

value of 15. This includes enumeration data types, numeric data types and physical data types.

Enumeration types

An enumeration type is a scalar type in which the values are defined by simply ordering them in

a list. The elements may be identifiers or character literals. The two values for type bit are 0 and

1. Built in type for Boolean includes values TRUE or FALSE and for logical operators it is not,

or, and and xor. A pre-defined attribute is the one which the value function in the range is

associated with. The user-defined attribute is the one in which the attribute value is defined by

the user. Its general form is “attribute ATTRIBUTE_NAME:ATTRIBUTE_SUBTYPE;”

 Numeric data types

Built-in numeric data types Integer and Real with its associated performance of addition,

subtraction, multiplication and division are present in VHDL language. The example for pre-

defined numeric data-types

Type Integer is range ---------;

Type Real is range ------------; ?2?

27

The ranges of the real and integer data types are implementation dependent which is in the range

of -2147483647 to +2147483647. The user-defined data types are constrained numeric data types

as the declaration constraints the range. The examples of user defined data types-

Type COUNTER is range 0 to 100 ?2?

Physical data types

A scalar numeric data type which is associated to a system of units and is used to represent

entities subject to physical measurements such as time, length, voltage, current is called as

physical data type. The only pre-defined data type is time which is represented as

Type TIME is range --------------;

The ranges of physical data types are restricted by implementations. The declaration of any

physical data type is allowed by an implementation which is in the range of -2147483647 to

+2147483647. When the range is within these limits any user-defined data type may have three

units as multiples of the next lower unit. Examples—

Type RESISTANCE is range 0 to Integer’ high

Type POWER is range 0 to le19 ?2?

COMPOSITE DATA TYPES

 The composite data types have complex values and have several components associated with it

and it also represents an array of values with some relationship to one another.

Arrays

 The data type in which each element has the same subtype i.e. homogeneous elements is called

as an array. There are generally two predefined array types namely string and Bit_Vector. The

former is used to define a character of elements and the latter is used to define an array of bits.

They are-

Type string is array (positive range <>) of character;

Type Bit_Vector is array (natural range <>) of bit; ?2?

28

Here the notation <> means the range is unconstrained, which indicates the user must specify the

range when declaring the object. Both string and Bit_Vector are unconstrained and the user has

to specify a range n positive for sting and in natural numbers for Bit_Vector. Some of the user

defined array data types

Type REGISTER_32_Bit is array (31 downto 0) of Bit;

Subtype BITVECT3 is Bit_Vector (0 to 2);

The REGISTER_32_Bit is a constrained array type which is descending in value. As the Bit

vector is an unconstrained data type, subtypes with specific index ranges can be declared.

BITVECT3 is a subtype of type Bit_Vector with an ascending index range 0 to 2.

Declaration of data objects

Before the referencing of the data types in assignment statement they must be declared. These

declared objects are subsequently used in the further section for various other statements.

Declaration of constants

In declaration of the constants it is imperial that their values are specified. The constant name is

separated from the type name by : delimiter and the type name is separated from a constant value

by := delimiter. Some examples are-

Constant ALPHA_LEVEL : PROBABILITY := 0.75;

Constant INITIAL_STATE : STATE := S0;

Constant END_MARKER : Character := DEL; ?2?

Declaration of variables

 In declaration of variable it must be seen that they are declared within a process or sub

programme. The data type of the variable is specified by the variable declaration. In the

declaration the values of the variables are specified if not the default value which is the left

element in the type range specified in the declaration. Some examples are —

Variable STAR_COLOR, HAT_COLOR : COLOR;

29

Variable BETA_LEVEL : PROBABILITY := 0.0;

Variable A, B, C, D : Bit;

Variable R1, R2, R3, R4 : REG; ?2?

A , delimiter is used to in order to declare more than one variable of the same type. A : is used to

separate the list of variable name from the data type and := is used to separate the initial value

from the data type.

Declaration of signals

The signal declaration is similar to variable declaration. The signals are not be declared in

processes or in sub programmes but it can be declared as ports in entity declaration or in the

declarative region of architecture declarations. Some examples are ---

Signal X1, X2, X3, X4, X5: Bit;

Signal SR1, SR2, SR3, SR4: REG;

Signal DOWN_COUNT: COUNTER := COUNTER ‘right; ?2?

VHDL libraries

 The functionality of the VHDL is extended by the

use of VHDL libraries and packages in defining types, functions, components and overloaded

operators. Overloaded functions are generally created to handle operations involving

heterogeneous data types. The package IEEE.std_logic_1164 defines a standard logic type which

has nine values likewise std_logic_vectors defines logic vectors. Both the packages define

overloaded arithmetic and logic operators for signed and unsigned numbers.

VHDL IMPLEMENTATION

Multiple forms of abstraction are possible. The same circuit can be implemented in different

ways namely Structural model, Behavioral model and Mixed model. In the behavioral VHDL

30

description, the circuit or the system is defined at a high level of abstraction without implying

any structure or technology specifying only the overall behaviour. The behavioral VHDL can

also be implemented as dataflow or algorithmic level. In the data flow model data flow and

control signals are specified. System working is specified in terms of data transfer between

registers.

DATA FLOW IMPLEMENTATION OF FULL ADDER

architecture DATA_FLOW_IMPLEMENTATION of FULL_ADDER is

block

signal S1, S2, S3: BIT;

begin

S1 <= A xor B;

SUM <= S1 xor CIN;

S2 <= A and B;

S3 <= S1 and CIN;

COUT <= S2 or S3;

end block;

end DATA_FLOW_IMPLEMENTATION; ?3?

ALGORITHMIC IMPLEMENTATION OF FULL ADDER

architecture ALGORITHMIC_IMPLEMENTATION of FULL_ADDER is

block

begin

31

process (A,B,CIN)

variable S: BIT_VECTOR (1 to 3) := A & B & CIN;

variable COUNT: INTEGER range 0 to 3 :=0;

begin

for i:= 1 to 3 loop

if S(i) = ‘1’ then

COUNT := COUNT +1;

end if ;

end loop;

case COUNT is

when 0 => COUT <= ‘0’; SUM <= ‘0’;

when 1 => COUT <= ‘0’; SUM <= ‘1’;

when 2 => COUT <= ‘1’; SUM <= ‘0’;

when 3 => COUT <= ‘1’; SUM <= ‘1’;

end case;

end process;

end block;

end ALGORITHIC-IMPLEMENTATION; ?3?

On the other hand in the implementation of the structural model which has a low level of

abstraction the components used and the interconnection between the components are clearly

specified. The structural model implementations are detailed enough to specify the use of

particular gates and flip-flops from specific libraries/packages.

32

STRUCTURAL IMPLEMENTATION OF FULL ADDER

architecture GATE_IMPLEMENTATION of FULL_ADDER is

Block

component or_gate port (A,B : in BIT; C: out BIT);

end component;

component and_gate port (A,B : in BIT; C: out BIT);

end component;

component xor_gate port (A,B : in BIT; C: out BIT);

end component;

signal S1, S2, S3: BIT;

begin

X1: xor_gate port map (A, B, S1);

X2: xor_gate port map (S1, CIN, SUM);

A1: and_gate port map (CIN, S1, S2);

A2: and_2 port map (A, B, S3);

O1: or_gate port map (S2, S3, COUT);

end Block;

end GATE_IMPLEMENTATION ; ?3?

Behavioral and structural design techniques are often combined giving rise to mixed VHDL

implementation. Here different techniques are used to design different parts of the module. The

automation tools generate efficient hardware hence they designed using behavioral level. Manual

33

optimisation needed by the memory structures are done through structural design as opposed to

the behavioral modelling.

MIXED IMPLEMENTATION OF FULL ADDER

architecture MIXED_IMPLEMENTATION of FULL_ADDER is

signal WIRE: BIT;

component XOR_G

port (X1, X2: in BIT; XO1: out BIT);

end component;

for all: XOR_G use XOR_GATE(BEHAVIORAL);

begin

XOR1: XOR_G port map (X,Y,WIRE);

XOR2: XOR_G port map (WIRE,CIN,SUM);

COUT <= (WIRE and CIN) or (X and Y);

end MIXED_IMPLEMENTATION ?3?

SEQUENTIAL CIRCUITS AND VHDL IMPLEMENTATION

A combinational circuit is the one which produces its output based on the current inputs while a

sequential circuit generates the outputs based on the current inputs and the previous states, which

imply that memory, latches and flip-flops are common sequential circuits. The sequential logic

responds to changes dependent on the clock. The primitives are required to model selective

activity conditional on clock, edge triggered devices, sequences of operation in the process of

modelling sequential circuits.

34

Shift register

A shift register shifts the data either to the left or to the right through a number of cascaded flip-

flops. The VHDL code shows the shift register with a shift right function through eight flip-

flops. In the code the lines 13 and 14 asynchronously resets the flip-flops while lines 15 and 16

shift right the flip-flop when rising edge of the clock CLK occurs. Line 19 gives the SO output

directly to FF8.

library IEEE;

use IEEE.std_logic_1164.all;

entity SHIFTR is

port (CLK, RSTn, SI: in std_logic; SO: out std_logic);

end SHIFTR;

architecture RTL of SHIFTR is

signal FF8: std_logic_vector (7 downto 0);

begin

posedge: process (RSTn, CLK)

begin

if (RSTn, CLK)

begin

if (RSTn =’0’) then

FF8<= (FF8 ‘range =>’0’);

elseif (CLK’event and CLK =’1’) then

FF8 <=SI&FF8 (FF8’length-1 downto 1);

35

end if;

end process;

SO <=FF8 (0);

end RTL; ?4?

 SI SO

 Figure 5: Synthesised schematic for shifter [2]

COMBINATIONAL CIRCUITS AND VHDL IMPLEMENTATION

The combinational circuits can be modelled by the VHDL by the use of concurrent statements.

These concurrent statements are those which are ready to be executed and which get evaluated

any time and also every time when the signal on the right side of the statement changes. VHDL

assignment statements can be given as an example for concurrent statements. The right side of

the concurrent statement is monitored by the VHDL simulator and when the signal changes the

right side expression is immediately re-evaluated. After an appropriate delay the new value is

assigned to the left side of the signal. The location of this concurrent statement in the programme

is not important.

Encoder

An encoder converts one form of input pattern to a required form of output pattern. Here the

encoder has a 4-bit input SEL and a 16-bit output Y. All the bits in the output will be 1, except

the value represented by SEL. In the first VHDL code the programme uses if statement inside the

process statement with the input SEL as process sensitivity list.

FD2

FD2

FD2

FD2

FD2

FD2

FD2

FD2

36

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ENCODER is

port (SEL: in std_logic_vector (0 downto 0) ;Y: out std_logic_vector (15 downto 0)) ;

end ENCODER;

architecture RTL of ENCODER is

begin

P0: process (SEL)

begin

Y <= (Y’range =>’1’);

if (SEL=”0000”) then

Y (0) <= ‘0’;

elseif (SEL=”0001”) then

Y (1) <=’0’;

elseif (SEL=”0010”) then

Y (2) <=’0’;

elseif (SEL=”0011”) then

Y (3) <=’0’;

elseif (SEL=”0100”) then

Y (4) <=’0’;

37

elseif (SEL=”0101”) then

Y (5) <=’0’;

elseif (SEL=”0110”) then

Y (6) <=’0’;

elseif (SEL=”0111”) then

Y (7) <=’0’;

elseif (SEL=”1000”) then

Y (8) <=’0’;

elseif (SEL=”1001”) then

Y (9) <=’0’;

elseif (SEL=”1010”) then

Y (10) <=’0’;

elseif (SEL=”1011”) then

Y (11) <=’0’;

elseif (SEL=”1100”) then

Y (12) <=’0’;

elseif (SEL=”1101”) then

Y (13) <=’0’;

elseif (SEL=”1110”) then

Y (14) <=’0’;

else

38

Y (51) <=’0’;

end if;

end process;

end RTL;

This coding uses a process statement and it includes conv_integer from the package IEEE

std_logic_unsigned.

architecture RTL of ENCODER is

begin

P3: process (SEL)

begin

Y <= (Y’range => ‘1’);

Y (conv_integer (SEL)) <= ‘0’;

end process;

end RTL; ?4?

PROGRAMMABLE LOGIC DEVICES

Programmable logic devices helps in the removal of multiple off-the shelf devices and the

inconvenience associated external wires. These devices allow an easy reprogramming and it is

easier to change the design in case of error. They basically contain an array of basic building

blocks that can be used to implement whatever functionality one desires. They differ in the

building blocks or the amount of programmability they provide.

39

 Figure 6: Major programmable logic devices [1]

The field programmable logic devices are used in the programmer’s user’s field rather than a

semi-conductor fab while the field programmable devices are programmed in a factory to meet

the customers’ requirements. PAL’s and PLA’s contain arrays of gates allowing users to

implement combinational function in two levels of gates. The special case of PLA is PAL

wherein OR array is fixed and only AND array is programmable. They also may contain flip-

flops. The use of random access memory in Xilinx led to the creation of FPGA that integrate

fairly a large amount of logic.

Programmable logic

Factory programmable

devices

Field programmable devices

ROM

Read Only

Memory

MPGA

Mask

Programmable

Gate Array

CPLD

Complex

Programmable

Logic Device

FPGA

Field

Programmable

Gate Array

SPLD

Simple

Programmable

Logic Device

PROM

Programmable

Read-Only

Memory

PLA

Programmable

Logic Array

PAL

Programmable

Array Logic

GAL

Generic Array

Logic

40

 Simple programmable logic devices

 The early generation of programmable logic devices is collectively called simple

programmable logic device.

Read-Only Memory

The read-only memory is built up of an array of semiconductor devices that are interconnected

enabling it to store a binary data. The data that is stored in ROM is permanent and can be read

out whenever wanted, but it cannot be changed under normal operating conditions. A ROM

consists of a decoder and a memory array. When a pattern of n 1’s and 0’s are applied to the

input the output obtained is exactly 2n decoder output which is 1. In the memory the decoder

output line selects one of the words and the bit pattern stored in the word is transferred to the

memory output lines. Basically there many types of ROM namely- user programmable ROM’s,

erasable programmable ROM’s, electrically erasable and programmable ROM’s and flash

memory.

Programmable Logic Array

A programmable logic array performs the same basic function as a ROM. An n input and n

output PLA can realise m functions of n-variables. Basically the internal organisation of a PLA is

different from that of ROM. In PLA the decoder is replaced with an AND array which is used to

realise the selected product terms of the input variables. Meanwhile the OR array OR’s the

product terms together which is needed to form the output functions. The PLA may use NOR-

NOR logic instead of AND-OR logic.

Programmable Array Logic

The PAL is a special case of programmable logic array in which the AND array is programmable

and OR array is fixed. Structurally the PLA and the PAL resemble one another but PAL is less

expensive than PLA as only the AND gate is programmable. In a PAL a buffer is used as each

input has to drive many AND gate inputs. In order to make the desired connections to the AND

gate inputs some of the interconnection points are programmed while programming the PAL.

Unlike the general PLA each function must be realised and simplified by itself without regard to

common terms as the AND gates cannot be shared with two or more OR gates.

41

Programmable Logic Devices

With the improvement in the integrated technology the PAL’s are enabled to be reprogrammable

now called as PLD’s. In addition to the AND –OR arrays that the PAL’s have the PLD’s

contains some multiplexers and some additional programmability and these are named with

respect to their input and output capability. Typically the PLD’s have some 8 to 12I/O pins.

Further each output pin is connected to an output macrocell which has a D-flip flop connected to

it. The programmable I/O pins can act as inputs or combinational or flip-flop outputs. One can

find dedicated output clocks in some PLD’s while others have a dual-purpose pin which can be

used either as a clock or as an input. Tristate buffers are present in all the PLD’s at the output.

PALASM and ABEL are the two programming languages used in PAL’s and PLD’s.

 Complex programmable logic devices

The developments in the IC technology have made it possible to create programmable

ICs equal to several PLDs in the same chip referred to as complex programmable logic devices

(CPLDs). When these are incorporated with storage elements digital systems are created in the

IC. Basically a CPLD is an IC consisting of a number of PAL- like logic blocks together with a

programmable interconnect matrix. The PLD are necessarily interconnected using a crossbar-like

switch typically consisting of 500 to 10,000 logic gates. These CPLDs are electronically erasable

and reprogrammable and hence called as EPLDs. There are number of macrocells that are

present in a typical CPLD. An interconnection array is used to establish the connection between

the function blocks. Each macrocell consists of a flip-flop and an OR gate that has its input

connected to an AND gate array. Those CPLDs which are based on PALs has each OR gate

which is associated with fixed set of AND gates and those CPLDs based on PLAs has AND gate

output connected to any OR gate input in that block.

The signal generated in functional block (PLA) is routed through a macrocell to an I/O pin. Any

of the 36 inputs of the IA can be connected to any of the inputs of the 48 AND gates. Each OR

gate has to accept upto 48 product term input from the AND array. The mux1 is programmed to

select the OR gate output while the mux2 can be programmed to select their combinational

output or flip-flop output. The output is fed to the interconnect array and to output cell which

42

includes the three-state buffer to drive the I/O pin. When the I/O is used as an input, the buffer

must be disabled.

 Field programmable gate arrays

FPGAs are ICs which contain an array of identical logic blocks that are provided with

programmable interconnections. There are number of FPGA products available namely Xilinx,

Altera, lattice, actel, cypress. Arrays of programmable logic blocks are distributed within the

FPGA surrounded by input/output interface blocks. Basically there many types of programming

blocks like multiplexers and logic gates on one hand while some use only transistors. The

architecture also differs according to the use and purpose. The programmable blocks like logic

block, interconnect help to re-programme FPGA. In FPGA them interconnect can be

programmed to make or break connection. There might be different interconnects used

depending upon the FPGA company like general purpose interconnect, direct interconnect,

global lines and so on. StaticRAM programming technology, EPROM/EEPROM/flash

programming technology, Antifuse programming technology are the programming technologies

used to programme FPGA. In more recent times the vendors have incorporated embedded

processors, dedicated multipliers, analog-to-digital converters and so on in FPGAs.

VHDL SYNTHESIS ENVIRONMENT

Designer analyser. The design analyser is a user interface tool which has a command window

for the users in order to supply synthesis commands.

VHDL compiler. The compiler parses VHDL code, checks for syntax errors and checks for

VHDL construct in the code that are synthesizable. It also generates a summary report on the

components used.

Design compiler. The design is optimised by the design compiler based on the synthesis

constraints such as speed and area requirements.

43

Design time. The design time is a timing analyser which is used to find the critical path and to

perform timing checks.

 Place and route tools

 Figure 7: Synopsis synthesis tools [2]

There are many commands in the directory for synthesis. Directory syn is used to run the

synthesis, unix command design_analyser is used to bring synopsis design analyser. This also

executes commands specified in the file .synopsys_dc.setup, and brings up the design window.

The synthesis script file compile.report generates synthesis results to be placed in the REPORT

directory. When both synopsis VHDL and synthesis tools use the same library there would be a

time stamp delay so it is better to separate both the libraries.

Design analyser

VHDL Compiler
Design compiler

Test compiler

Design Time

Timing Analysis

Synthesis

technology

gate limited Netlist

VHDL

code

44

A synthesis technology library consists of definitions of basic components, operating conditions

and wire load models. Each component consists of its own logical function, timing, input pin

loading and output pin drive information. The synthesis usually uses library_name.sdb. The

command read/acct/synlib/Isi/lca300k.db can be used to read the synthesis technology inside the

designer analyser. It is important that we select a good synthesis library to match design

objectives such as speed requirements, cost, production schedule, and design tools.

REFERENCES

1. INTRODUCTION TO DIGITAL SYSTEMS: Modeling, Synthesis, and Simulation

Using VHDL Mohammed Ferdjallah

2. Digital systems design using VHDL Charles H.Roth, Lizy Kurian John

3. Digital systems design and VHDL synthesis K.C.Chang

4. Prof. A.Alkhalili Notes

5. Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition Samir Palnitkar

6. VHDL Design Representation and Synthesis, Second Edition James R. Armstrong,

F. Gail Grey

Figures

[1] Digital systems design using VHDL Charles H.Roth, Lizy Kurian John

[2] Digital systems design and VHDL synthesis K.C.Chang

Examples and VHDL codes

?1? Digital systems design using VHDL Charles H.Roth, Lizy Kurian John

?2? VHDL Design Representation and Synthesis, Second Edition James R. Armstrong, F. Gail

?3? Prof. A.Alkhalili Notes

?4? Digital systems design and VHDL synthesis K.C.Chang

http://www.informit.com/authors/author_bio.aspx?ISBN=9780130449115

45

Fig. 1 Design Concept using VHDL

Design

 VHDL coding

Synthesis

Target

layout

simulation

Test bench

ASIC vendor for
fabrication

