
Parallel Adders

2

Introduction

Binary addition is a fundamental
operation in most digital circuits

There are a variety of adders, each has
certain performance.

Each type of adder is selected
depending on where the adder is to be
used.

3

Adders

Basic Adder Unit

Ripple Carry Adder

Carry Skip Adders

Carry Look Ahead Adder

Carry Select Adder

Pipelined Adder

Manchester carry chain adder

Multi-operand Adders

Pipelined and Carry save adders

4

Basic Adder Unit

A combinational circuit that adds two
bits is called a half adder

A full adder is one that adds three bits,
the third produced from a previous
addition operation

P

G

5

•Reuse carry term to implement
full adder

2. A brief introduction to

Ripple Carry Adder

Figure 2.2 1bit full adder CMOS complementary implementation

6

Ripple Carry Adder

The ripple carry adder is constructed by
cascading full adder blocks in series

The carryout of one stage is fed directly
to the carry-in of the next stage

For an n-bit parallel adder, it requires n
full adders

7

Ripple Carry Drawbacks

Not very efficient when large bit numbers are
used

Delay increases linearly with the bit length

8

•Delay

Critical path in a 4-bit ripple-carry adder

Note: delay from carry-in to carry-out is more important than from A to carry-out or

from carry-in to SUM, because the carry-propagation chain will determine the latency

of the whole circuit for a Ripple-Carry adder.

9

•Delay

The latency of a 4-bit ripple carry adder can be

derived by considering the above worst-case signal

propagation path. We can thus write the following

expression:

TRCA-4bit = TFA(A0,B0→Co)+T FA (C in→C1)+
TFA (Cin→C2)+ TFA (Cin→S3)

And, it is easy to extend to k-bit RCA:

TRCA-4bit = TFA(A0,B0→Co)+(K-2)* TFA (Cin→Ci)+
TFA (Cin→Sk-1)

10

Comparison of CMOS and TG Logic

•Simulation result

4-bit RCA performance comparison of CMOS and TG logic

(min size)

11

Comparison of CMOS and TG Logic

•Simulation result

4-bit RCA performance comparison of CMOS and TG logic

(Wp/Wn=2/1)

12

Carry Look-Ahead Adder

Calculates the carry signals in advance, based
on the input signals

Boolean Equations

Pi = Ai  Bi Carry propagate

Gi = AiBi Carry generate

Si = Pi  Ci Sum

Ci+1= Gi + PiC Carry out

Signals P and G only depend on the input bits

13

Carry Look-Ahead Adder

Applying these equations for a 4-bit
adder:

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1(G0 + P0C0) = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

14

Carry Look-Ahead Structure

Propagate/Generate Generator

Look-Ahead Carry generator

Sum generator

Ai

Bi

Gi

Pi

Ci

Si

Pi

15

Example Design of a large Carry Look-ahead Adder

Equations are in the Notes

Carry Propagate/Generate unit

8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA6-Bit BCLA

A53-----------------------------A0 B53-----------------------------B0

P53-----------------------------P0 G53-----------------------------G0

7-Bit BCLA

P53-P48

G53-G48

P47-P40

G47-G40

P39-P32

G39-G32

P31-P24

G31-G24

P23-P16

G23-G16

P15-P8

G15-G8

P7-P0

G7-G0

C53-C48 C47-C40 C39-C32 C31-C24 C23-C16 C15-C8 C7-C0

P0*-G0*
P1*-G1*

P2*-G2* P3*-G3*
P4*

G4*

P5*

G5*P6*G6*

C7
C15C23C31C39

C47

C53

54-Bit Summation Unit

P53-----------------------------P0 C53-----------------------------C0

16

Carry Skip Adders

Are composed of ripple carry adder blocks of
fixed size* and a carry skip chain

The size of the blocks are chosen so as to
minimize the longest life of a carry

17

Carry Skip Mechanics

Boolean Equations

Carry Propagate: Pi = Ai  Bi

Sum: Si = Pi  Ci

Carry Out: Ci+1= Ai Bi + Pi Ci

Worthwhile to note:

If Ai = Bi then Pi = 0, making the carry out, Ci+1, depend
only on Ai and Bi  Ci+1= Ai Bi

•Ci+1 = 0 if Ai = Bi = 0

•Ci+1 = 1 if Ai = Bi = 1

Alternatively if Ai  Bi then Pi = 1  Ci+1= Ci

18

Carry Skip (example)
Two Random Bit Strings:

A 10100 01011 10100 01011

B 01101 10100 01010 01100

block 3 block 2 block 1 block 0

•compare the two binary strings inside each block

•If all the bits inside are unequal, block 2, then the carry
in from block 1 is propagated to block 3

•Carry-ins from block 2 receive the carry in from block 1

•If there exists a pair of bits that is equal carry skip
mechanism fails

19

Carry Skip Chain

20

Boolean Equations:

1) Gi = Ai Bi --carry generate of ith stage

2) Pi = Ai  Bi --carry propagate of ith stage

3) Si = Pi  Ci --sum of ith stage

4) Ci+1 = Gi + PiCi --carry out of ith stage

MUXD1
D2

C

MUX

MUX with
Ci and Gi MUX,

Implementation

MUX
Implementation

Various Implementations of Multiplexer (MUX)

21

Manchester Carry Adder

Boolean Equations:

1) Gi = Ai Bi --carry generate of ith stage

2) Pi = Ai  Bi --carry propagate of ith stage

3) Si = Pi  Ci --sum of ith stage

4) Ci+1 = Gi + PiCi --carry out of ith stage

22

Manchester Carry Adder with Skip Mechanism

Carry Select Adder Example 8-bit Adder

It is composed of 3 sections of one 4-bit and two four-bit ripple carry
adders.

Both sum and carry bits are calculated for the two alternatives of the
input carry, “0” and “1”

MUX

MUX

24

FA

B7A7

FA

B6A6

FA

B5A5

FA 0

B4A4

FA

B7A7

FA

B6A6

FA

B5A5

FA 1

B4A4
FA

B3A3

FA

B2A2

FA

B1A1

FA

B0A0

C7

S6 S5 S4

S3 S2 S1 S0
S7

8-Bit Carry Select Adder

S4 –S7

S4 –S7

25

32 bit Carry Select (Mechanics)

The carry out of each section determines the carry in of the next section, which then
selects the appropriate ripple carry adder

The very first section has a carry in of zero

Time delay: time to compute first section + time to select sum from subsequent sections

MUX

MUX

MUX

MUX MUX

26

Carry Select Adder Design

Linear Carry Select and Non_Linear Adders

The linear carry-select adder is constructed by chaining a
number of equal-length adder stages

The Non-Linear Adder is constructed according to the
delay of the MUX and the Adder.

27

Multi-Operand and Pipelining

28

A B C A B C A B CA B C

A B C A B C A B CA B C

Signal propagation in serial blocks

Signal Propagation in Pipelined serial Blocks

29

Pipelined Adder

The added complexity
of such a pipelined adder
pays off if long sequences
of numbers are being
added.

30

Pipelined Adder

Pipelining a design will increase its
throughput

The trade-off is the use of registers

If pipelining is to be useful these three points has
to be present:

-It repeatedly executes a basic function.

-The basic function must be divisible into
independent stages having minimal
overlap with each other.

-The stages must be of similar complexity

31

Carry Save adder

The rest of these slides are for
information only

32

33

Parallel Prefix Adder[13,15,2]

The parallel prefix adder is a kind of carry look-ahead adders that accelerates a n-bit addition by means

of a parallel prefix carry tree.

A block diagram of a prefix adder

Input bit propagate, generate, and not kill cells

Output sum cells

The prefix carry tree

z toup x from bits theacross signal generate" group" x

zG

z toup x from bits theacross signal kill"not group" x

zK

16-bit Ladner-Fiacher parallel prefix tree

black cell grey cell

16

34

Flagged Prefix Adder[13,15]

Block diagram of a flagged prefix adder The parallel prefix adder may be modified slightly to

support late increment operations. If the output grey

cells are replaced by black cells so that both and

signals are returned, a sum may be incremented

readily.

17

35

Reference List
[1] Reduced latency IEEE floating-point standard adder architectures. Beaumont-Smith, A.; Burgess, N.; Lefrere, S.; Lim, C.C.; Computer Arithmetic,

1999. Proceedings. 14th IEEE Symposium on , 14-16 April 1999

[2] M.D. Ercegovac and T. Lang, “Digital Arithmetic.” San Francisco: Morgan Daufmann, 2004.

[3] Using the reverse-carry approach for double datapath floating-point addition. J.D. Bruguera and T. Lang. In Proceedings of the 15th IEEE

Symposium on Computer Arithmetic, pages 203-10.

[4] A low power approach to floating point adder design. Pillai, R.V.K.; Al-Khalili, D.; Al-Khalili, A.J.; Computer Design: VLSI in Computers and

Processors, 1997. ICCD '97. Proceedings. 1997 IEEE International Conference on, 12-15 Oct. 1997 Pages:178 – 185

[5] An IEEE compliant floating-point adder that conforms with the pipeline packet-forwarding paradigm. Nielsen, A.M.; Matula, D.W.; Lyu, C.N.;

Even, G.; Computers, IEEE Transactions on, Volume: 49 , Issue: 1, Jan. 2000 Pages:33 - 47

[6] Design and implementation of the snap floating-point adder. N. Quach and M. Flynn. Technical Report CSL-TR-91-501, Stanford University, Dec.

1991.

[7] On the design of fast IEEE floating-point adders. Seidel, P.-M.; Even, G. Computer Arithmetic, 2001. Proceedings. 15th IEEE Symposium on , 11-13

June 2001 Pages:184 – 194

[8] Low cost floating point arithmetic unit design. Seungchul Kim; Yongjoo Lee; Wookyeong Jeong; Yongsurk Lee; ASIC, 2002. Proceedings. 2002

IEEE Asia-Pacific Conference on, 6-8 Aug. 2002 Pages:217 - 220

[9] Rounding in Floating-Point Addition using a Compound Adder. J.D. Bruguera and T. Lang. Technical Report. University of Santiago de

Compostela. (2000)

[10] Floating point adder/subtractor performing ieee rounding and addition/subtraction in parallel. W.-C. Park, S.-W. Lee, O.-Y. Kown, T.-D. Han,

and S.-D. Kim. IEICE Transactions on Information and Systems, E79-D(4):297–305, Apr. 1996.

[11] Efficient simultaneous rounding method removing sticky-bit from critical path for floating point addition. Woo-Chan Park; Tack-Don Han;

Shin-Dug Kim; ASICs, 2000. AP-ASIC 2000. Proceedings of the Second IEEE Asia Pacific Conference on , 28-30 Aug. 2000 Pages:223 – 226

[12] Efficient implementation of rounding units Burgess. N.; Knowles, S.; Signals, Systems, and Computers, 1999. Conference Record of the Thirty-

Third Asilomar Conference on, Volume: 2, 24-27 Oct. 1999 Pages: 1489 - 1493 vol.2

[13] The Flagged Prefix Adder and its Applications in Integer Arithmetic. Neil Burgess. Journal of VLSI Signal Processing 31, 263–271, 2002

[14] A family of adders. Knowles, S.; Computer Arithmetic, 2001. Proceedings. 15th IEEE Symposium on , 11-13 June 2001 Pages:277 – 281

[15] PAPA - packed arithmetic on a prefix adder for multimedia applications. Burgess, N.; Application-Specific Systems, Architectures and Processors,

2002. Proceedings. The IEEE International Conference on, 17-19 July 2002 Pages:197 – 207

[16] Nonheuristic optimization and synthesis of parallelprefix adders. R. Zimmermann, in Proc. Int.Workshop on Logic and Architecture Synthesis,

Grenoble, France, Dec. 1996, pp. 123–132.

[17] Leading-One Prediction with Concurrent Position Correction. J.D. Bruguera and T. Lang. IEEE Transactions on Computers. Vol. 48. No. 10. pp.

1083-1097. (1999)

[18] Leading-zero anticipatory logic for high-speed floating point addition. Suzuki, H.; Morinaka, H.; Makino, H.; Nakase, Y.; Mashiko, K.; Sumi, T.;

Solid-State Circuits, IEEE Journal of , Volume: 31 , Issue: 8 , Aug. 1996 Pages:1157 – 1164

[19] An algorithmic and novel design of a leading zero detector circuit: comparison with logic synthesis. Oklobdzija, V.G.; Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, Volume: 2 , Issue: 1 , March 1994 Pages:124 – 128

[20] Design and Comparison of Standard Adder Schemes. Haru Yamamoto, Shane Erickson, CS252A, Winter 2004, UCLA

36

Comparisons

Adder Number of

CLBs

Delay

(ns)

Area Power Consumption

(W)
Ripple-Carry 16 212.79 40.00 1.7318

Carry Look-Ahead 34 143.69 51.00 1.9668

Carry-Select 44 102.74 108.00 3.3595

Which one should we choose?

37

For this comparison Synopsys tools were used to
perform logic synthesis.

• The implemented VHDL codes for all the 64-bit
adders are translated into net list files.

• The virtex2 series library, XC2V250-4_avg, is used
in those 64-bit adders synthesis and targeting

•After synthesizing, the related power consumption,
area, and propagation delay are reported.

Comparison of 64 bit Adders Using FPGA

38

Synthesis result parameter comparison listings:

Primitive Component Delay (ns) Area Power (W) AT AT2 PD

4-bit carry ripple adder 72.1 160 0.8745784 11536 831745.6 63.058

8-bit carry ripple adder 72.1 160 0.8745784 11536 831745.6 63.058

16-bit carry ripple adder 72.1 160 0.8745784 11536 831745.6 63.058

4-bit carry look-ahead adder 93.54 288 1.049 26939.52 2519922 98.12346

8-bit carry look-ahead adder 118.9 302 1.1627 35907.8 4269437 138.25

16-bit carry look-ahead adder 124.3 310 1.1757 38533 4789651 146.14

two-level 8-bit carry look-ahead

adder 31.57 434 1.348 13701.38 432552 42.56

4-bit carry select adder 24.72 422.5 1.6351 10444.2 258180 40.42

8-bit carry select adder 20.48 394.5 1.5757 8079.36 165465 32.27

16-bit carry select adder 26 356.5 1.4792 9269 240994 38.4592

Nonlinear Carry select adder 17.94 412 1.6267 7391.28 132599 29.183

4-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436

8-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436

16-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436

16-bit Ladner-Fischer prefix

adder 24.79 326 1.23 8081.54 200341 30.4917

16-bit Brent-Kung prefix adder 26.94 290 1.15 7812.6 210471 30.981

16-bit Han-Carlson prefix adder 25.43 326 1.2758 8290.18 210819 32.4436

16-bit Kogge-Stone prefix adder 25.59 428 1.5546 10952.52 280274 39.78

64-bit Kogge-Stone adder 11.97 611 1.919 7313.67 87544 22.97

39

Compound Adder Design[2,13-16,20]

The Prefix Adder Scheme is chosen.

Advantages:
Simple and regular structure

Well-performance

A wide range of area-delay trade-offs

Moreover, the Flagged Prefix Adder is

particular useful in compound adder

implementation because, unlike other adder

schemes which need a pair of adders to

obtain sum and sum+1 simultaneously, it

only use one adder.

15

40

synthesis and targeting

Synopsys tools are used to perform logic synthesis.

the implemented VHDL codes for all the 64-bit adders
are translated into net list files.

The virtex2 series library, XC2V250-4_avg, is used in
those 64-bit adders synthesis and targeting because
the area and the propagation delay is suitable for
these adders.

After synthesizing, the related power consumption,
area, and propagation delay are reported.

From the synthesis, the related FPGA layout
schematic is reported.

41

64-bit adders comparison

42

43

44

The power is not in scale(*100).

45

64-bit adders conclusion

Adders can be implemented in different methods
according to the different requirements.

Each kind of adder has different properties in area,
propagation delay, and power consumption.

There is no absolute advantages or disadvantages for
an adder, and usually, one advantage compensates
with another disadvantage.

A ripple carry adder is easy to implemented, and for
short bit length, the performances are good.

For long bit length, a carry look-ahead adder is not
practical, but a hierarchical structure one can
improve much.

46

A carry select adder has good performance in
propagation delay especially the nonlinear one;
however, it compensates with large area.

In these 64-bit adders, the Manchester carry adder
has the best performance when considered all of the
propagation delay, area, and power consumption.

The parallel prefix adder has good performance in
propagation delay, but the area becomes large.

The 64-bit Kogge-Stone prefix adder has the shortest
propagation delay, but it has the largest area and
power consumption as well.

47

Adders Using Tables (FPGAs)

LOOK UP
Table
with
MUXes

A

B
SUM

48

Ripple Carry’s VHDL

library IEEE;

use ieee.std_logic_1164.all;

entity ripple_carry is

port(A, B : in std_logic_vector(15 downto 0);

C_in : in std_logic;

S : out std_logic_vector(15 downto 0);

C_out : out std_logic);

end ripple_carry;

architecture RTL of ripple_carry is

begin

process(A, B, C_in)

variable tempC : std_logic_vector(16 downto 0);

variable P : std_logic_vector(15 downto 0);

variable G : std_logic_vector(15 downto 0);

begin

49

Ripple Carry’s VHDL

tempC(0) := C_in;

for i in 0 to 15 loop

P(i):=A(i) xor B(i);

G(i):=A(i) and B(i);

S(i)<= P(i) xor tempC(i);

tempC(i+1):=G(i) or (tempC(i) and P(i));

end loop;

C_out <= tempC(16);

end process;

end;

P

G

50

Carry Select’s VHDL (ripple4)

Two four-bit ripple carry adders were used to
build a carry select section of the same size

Four 4-bit carry select sections were used as
components in building our 16 bit adders

ripple_carry4

library IEEE;

use ieee.std_logic_1164.all;

entity ripple_carry4 is

 port(e, f : in std_logic_vector(3 downto 0);

 carry_in : in std_logic;

 S : out std_logic_vector(3 downto 0);

 carry_out : out std_logic);

end ripple_carry4;

51

Carry Select’s VHDL (ripple4)
architecture RTL of ripple_carry4 is

begin

process(e, f, carry_in)

 variable tempC : std_logic_vector(4 downto 0);

 variable P : std_logic_vector(3 downto 0);

 variable G : std_logic_vector(3 downto 0);

 begin

 tempC(0) := carry_in;

 for i in 0 to 3 loop

 P(i):=e(i) xor f(i);

 G(i):=e(i) and f(i);

 S(i)<= P(i) xor tempC(i);

 tempC(i+1):=G(i) or (tempC(i) and P(i));

 end loop;

 carry_out <= tempC(4);

end process;

end;

52

Carry Select’s VHDL (select4)

carry_select4

library IEEE;

use ieee.std_logic_1164.all;

entity carry_select4 is

 port(c, d : in std_logic_vector(3 downto 0);

 C_input : in std_logic;

 Result : out std_logic_vector(3 downto 0);

 C_output : out std_logic);

end carry_select4;

architecture RTL of carry_select4 is

component ripple_carry4

port(e, f : in std_logic_vector(3 downto 0);

 carry_in : in std_logic;

 S : out std_logic_vector(3 downto 0);

 carry_out : out std_logic);

end component;

53

Carry Select’s VHDL (select4)

For S0: ripple_carry4 Use entity work.ripple_carry4(RTL);

For S1: ripple_carry4 Use entity work.ripple_carry4(RTL);

signal SUM0, SUM1 : std_logic_vector(3 downto 0);

signal carry0, carry1 : std_logic;

signal zero, one : std_logic;

begin

zero<='0';

one<='1';

S0: ripple_carry4 port map(e=>c, f=>d, carry_in=>zero, S=>SUM0,

carry_out=>carry0);

S1: ripple_carry4 port map(e=>c, f=>d, carry_in=>one, S=>SUM1,

carry_out=>carry1);

Result<=SUM0 when C_input='0' else

 SUM1 when C_input='1' else

 "ZZZZ";

C_output<= (C_input and carry1) or carry0;

end;

54

Carry Select’s VHDL (select16)

carry_select16

library IEEE;

use ieee.std_logic_1164.all;

entity carry_select16 is

 port(A, B : in std_logic_vector(15 downto 0);

 C_in : in std_logic;

 SUM : out std_logic_vector(15 downto 0);

 C_out : out std_logic);

end carry_select16;

architecture RTL of carry_select16 is

component carry_select4

port(c, d : in std_logic_vector(3 downto 0);

 C_input : in std_logic;

 Result : out std_logic_vector(3 downto 0);

 C_output : out std_logic);

end component;

55

Carry Select’s VHDL (select16)

For S0: carry_select4 Use entity work.carry_select4(RTL);

For S1: carry_select4 Use entity work.carry_select4(RTL);

For S2: carry_select4 Use entity work.carry_select4(RTL);

For S3: carry_select4 Use entity work.carry_select4(RTL);

signal tempc1, tempc2, tempc3 : std_logic;

begin

S0: carry_select4 port map(c=>A (3 downto 0), d =>B (3 downto 0),

C_input=>C_in, Result=>SUM (3 downto 0), C_output=>tempc1);

S1: carry_select4 port map(c=>A (7 downto 4), d =>B (7 downto 4),

C_input=>tempc1, Result=>SUM (7 downto 4), C_output=>tempc2);

S2: carry_select4 port map(c=>A (11 downto 8), d =>B (11 downto 8),

C_input=>tempc2, Result=>SUM (11 downto 8), C_output=>tempc3);

S3: carry_select4 port map(c=>A (15 downto 12), d =>B (15 downto 12

), C_input=>tempc3, Result=>SUM (15 downto 12), C_output=>C_out);

end;

56

Carry Look-Ahead’s VHDL

half_adder

library IEEE;

use ieee.std_logic_1164.all;

entity half_adder is

port(A, B : in std_logic_vector(16 downto 1);

P, G : out std_logic_vector(16 downto 1));

end half_adder;

architecture RTL of half_adder is

begin

P <= A xor B;

G <= A and B;

end;

57

Carry Look-Ahead’s VHDL
carry_generator

library IEEE;

use ieee.std_logic_1164.all;

entity carry_generator is

port(P , G : in std_logic_vector(16 downto 1);

C1 : in std_logic;

C : out std_logic_vector(17 downto 1));

end carry_generator;

architecture RTL of carry_generator is

begin

process(P, G, C1)

variable tempC : std_logic_vector(17 downto 1);

begin

tempC(1) := C1;

for i in 1 to 16 loop

tempC(i+1) := G(i) or (P(i) and tempC(i));

end loop;

C <= tempC;

end process;

end;

58

Carry Look-Ahead’s VHDL
Look_Ahead_Adder

library IEEE;

use ieee.std_logic_1164.all;

entity Look_Ahead_Adder is

port(A, B : in std_logic_vector(16 downto 1);

carry_in : in std_logic;

carry_out : out std_logic;

S : out std_logic_vector(16 downto 1));

end Look_Ahead_Adder;

architecture RTL of Look_Ahead_Adder is

component carry_generator

port(P , G : in std_logic_vector(16 downto 1);

C1 : in std_logic;

C : out std_logic_vector(17 downto 1));

end component;

59

Carry Look-Ahead’s VHDL

component half_adder

port(A, B : in std_logic_vector(16 downto 1);

P, G : out std_logic_vector(16 downto 1));

end component;

For CG: carry_generator Use entity work.carry_generator(RTL);

For HA: half_adder Use entity work.half_adder(RTL);

signal tempG, tempP : std_logic_vector(16 downto 1);

signal tempC : std_logic_vector(17 downto 1);

begin

HA: half_adder port map(A=>A, B=>B, P =>tempP, G=>tempG);

CG: carry_generator port map(P=>tempP, G=>tempG, C1=>carry_in, C=>tempC);

S <= tempC(16 downto 1) xor tempP;

carry_out <= tempC(17);

end;

60

Ripple carry adder

Block diagram:

Critical path:

61

Carry look-ahead adder
Pi = Ai ⊕ Bi Carry propagate
Gi= Ai．Bi Carry generate
Si = Pi ⊕ Ci Summation

Ci+1 = Gi + PiCi Carryout

C0 = Cin;
C1 = G (0) + (P(0)C0);
C2 = G (1) + (P (1)G (0)) + (P(1) P(0)C0);
C3 = G (2) + (P(2) G(1)) + (P(2)P(1)G(0)) + (P(2)P(1)P(0) C0);
C4 = G(3) + (P(3) G(2)) + (P(3) P(2) G(1)) + (P(3) P(2) P(1)

G(0)) + (P(3)P(2) P(1) P(0)C0);
…………………………………………………
Ci+1= Gi + PiGi-1 + PiPi-1Gi-2 + …PiPi-1….P2P1G0 + PiPi-

….P1P0C0.

62

Carry look-ahead adder

Block diagram

When n increases, it is not practical to use standard carry
look-ahead adder since the fan-out of carry calculation
becomes very large.

A hierarchical carry look-ahead adder structure could be
implemented.

63

Hierarchical 2- level 8-bit carry look-ahead adder

64

Carry select adder

compute alternative results in parallel and
subsequently select the carry input which is
calculated from the previous stage.

compensate with an extra circuit to calculate the
alternative carry input and summation result.

need multiplexer to select the carry input for the next
stage and the summation result.

the drawback is that the area increases.

time delay=time to compute the first section + time
to select sum from subsequent section.

The summation part could be implemented by ripple
carry adder, Manchester adder, carry look-ahead
adder as well as prefix adder…...

65

Carry select adder

block diagram

66

Carry select adder

For an n bit adder, it could be implemented with
equal length of carry select adder, and this is called
linear carry select adder.

However. the linear carry select adder does not
always have the best performance.

A carry select adder can be implemented in different
length, and this is called nonlinear carry select adder.

A 64-bit adder can be implemented in 4, 4, 5, 6, 7, 8,
9, 10,11 bit nonlinear structure.

The performance of 64-bit nonlinear carry select
adder is better than linear one in propagation delay.

67

64-bit nonlinear carry select adder

Block diagram

68

Manchester carry adder

A Manchester adder could be constructed in dynamic
stage, static stage, and multiplexer stage structure.

A Manchester adder, based on multiplexer, is called a
conflict free Manchester Adder.

Block diagram:

69

64-bit adders implemented in Manchester carry adder

70

Parallel prefix adder
like a carry look-ahead adder, the prefix adder
accelerates addition by the parallel prefix carry tree.
the production of the carries in the prefix adder can
be designed in many different ways based on the
different requirements.
the main disadvantage of prefix adder is the large
fan-out of some cells as well as the long
interconnection wires.
the large fan-out can be eliminated by increasing the
number of levels or cells; as a result, there are
different structure.
the long inter-connections produce an increase in
delay which can be reduced by including buffers.

71

Ladner-Fischer parallel prefix adder

Carry stages:

The number of cells: (n/2) *

Maximum fan-out: n/2.

Block diagram(16 bits):

n2log

n2log

72

Kogge-Stone parallel prefix adder

Carry stages:

The number of cells: n (-1) +1.

Maximum fan-out: 2

Block diagram(64 bits):

n2log
n2log

73

Brent-kung parallel prefix adder

Carry stages: 2 -1;

The number of cells: 2(n-1) - ;

Maximum fan-out: 2

Block diagram(16 bits):

n2log
n2log

74

Han-Carlson parallel prefix adder

It is a hybrid structure combining from the Brent-Kung

and Kogge-Stone prefix adder.

Carry stages: +1.

Maximum fan-out: 2.

n2log

75

64-bit adders implementations and simulations

18 kinds of adders are implemented, including ripple
carry adders, carry look-ahead adders, carry select
adders, Manchester carry adders, and parallel prefix
adders.

Each 64 bits adder might be consisted of 4 bits, 8
bits, and 16 bits adder component as well as
different prefix adder component.

Hierarchical carry look-ahead adder and nonlinear
carry select adder are also implemented.

A test bench is written to test the simulation result.

In the test bench, each bit of the 64-bit adder should
be verified in carry propagation and summation.

76

Test bench simulation result
carry ripple adder, carry look-head adder, hierarchical carry look-ahead adder.

77

Test bench simulation result- continued
carry select adder, nonlinear carry select adder, Manchester carry adder.

78

Test bench simulation result- continued
Ladner-Fischer, Brent-Kung , Han-Carlson . Kogge-Stone prefix adders

