
Introduction to Verilog Thursday, October 11, 2001 9:39 pm Peter M. Nyasulu

9

Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Lexical Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

White Space, Comments, Numbers, Identifiers, Operators, Verilog Keywords
3. Gate-Level Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Basic Gates, buf, not Gates, Three-State Gates; bufif1, bufif0, notif1, notif0
4. Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Value Set, Wire, Reg, Input, Output, Inout
Integer, Supply0, Supply1
Time, Parameter

5. Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Arithmetic Operators, Relational Operators, Bit-wise Operators, Logical Operators
Reduction Operators, Shift Operators, Concatenation Operator,
Conditional Operator: “?” Operator Precedence

6. Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Literals, Wires, Regs, and Parameters, Bit-Selects “x[3]” and Part-Selects “x[5:3]”
Function Calls

7. Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Module Declaration, Continuous Assignment, Module Instantiations,
Parameterized Modules

8. Behavioral Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Procedural Assignments, Delay in Assignment, Blocking and Nonblocking Assignments
begin ... end, for Loops, while Loops, forever Loops, repeat,
disable, if ... else if ... else
case, casex, casez

9. Timing Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Delay Control, Event Control, @, Wait Statement, Intra-Assignment Delay

10. Procedures: Always and Initial Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Always Block, Initial Block

11. Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Function Declaration, Function Return Value, Function Call, Function Rules, Example

12. Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
13. Component Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Registers, Latches, Flip-flops, Counters, Multiplexers, Adders/Subtracters, Tri-State Buffers
Other Component Inferences

14. Finite State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Counters, Shift Registers

15. Compiler Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Time Scale, Macro Definitions, Include Directive

16. System Tasks and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
$display, $strobe, $monitor; $time, $stime, $realtime; $reset, $stop, $finish; $deposit; $scope, $showscope;
$list; $random; $dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall; $shm_probe, $shm_open, $fopen,
$fdisplay, $fstrobe, $fmonitor.

17. Test Benches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Test Benches, Synchronous Test Benches

18. Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Two-dimensional arrays, Initializing memory from a file.

Introduction to Verilog



Introduction to Verilog

Thursday, October 11, 2001 9:39 pm 1 Peter M. Nyasulu

Verilog HDL is one of the two most common Hardware Description Languages (HDL) used by integrated circuit
(IC) designers. The other one is VHDL.

HDL’s allows the design to be simulated earlier in the design cycle in order to correct errors or experiment with
different architectures. Designs described in HDL are technology-independent, easy to design and debug, and are
usually more readable than schematics, particularly for large circuits.

Verilog can be used to describe designs at four levels of abstraction:
(i) Algorithmic level (much like c code with if, case and loop statements).
(ii) Register transfer level (RTL uses registers connected by Boolean equations).
(iii) Gate level (interconnected AND, NOR etc.).
(iv) Switch level (the switches are MOS transistors inside gates).
The language also defines constructs that can be used to control the input and output of simulation.

More recently Verilog is used as an input for synthesis programs which will generate a gate-level description (a
netlist) for the circuit. Some Verilog constructs are not synthesizable. Also the way the code is written will greatly
effect the size and speed of the synthesized circuit. Most readers will want to synthesize their circuits, so nonsynthe-
sizable constructs should be used only for test benches. These are program modules used to generate I/O needed to
simulate the rest of the design. The words “not synthesizable” will be used for examples and constructs as needed that
do not synthesize.

There are two types of code in most HDLs:

Structural, which is a verbal wiring diagram without storage.
assign a=b & c | d; /* “|” is a OR */
assign d = e & (~c);
Here the order of the statements does not matter. Changing e will change a.

Procedural which is used for circuits with storage, or as a convenient way to write conditional logic.
always @(posedge clk) // Execute the next statement on every rising clock edge.
count <= count+1;

Procedural code is written like c code and assumes every assignment is stored in memory until over written. For syn-
thesis, with flip-flop storage, this type of thinking generates too much storage. However people prefer procedural
code because it is usually much easier to write, for example, if and case statements are only allowed in procedural
code. As a result, the synthesizers have been constructed which can recognize certain styles of procedural code as
actually combinational. They generate a flip-flop only for left-hand variables which truly need to be stored. However
if you stray from this style, beware. Your synthesis will start to fill with superfluous latches.

This manual introduces the basic and most common Verilog behavioral and gate-level modelling constructs, as
well as Verilog compiler directives and system functions. Full description of the language can be found in Cadence
Verilog-XL Reference Manual and Synopsys HDL Compiler for Verilog Reference Manual. The latter emphasizes
only those Verilog constructs that are supported for synthesis by the Synopsys Design Compiler synthesis tool.

In all examples, Verilog keyword are shown in boldface. Comments are shown in italics.

1. Introduction
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Verilog source text files consists of the following lexical tokens:

2.1. White Space
White spaces separate words and can contain spaces, tabs, new-lines and form feeds. Thus a statement can extend
over multiple lines without special continuation characters.

2.2. Comments
Comments can be specified in two ways (exactly the same way as in C/C++):

- Begin the comment with double slashes (//). All text between these characters and the end of the line will be
ignored by the Verilog compiler.

- Enclose comments between the characters /* and */. Using this method allows you to continue comments on
more than one line. This is good for “commenting out” many lines code, or for very brief in-line comments.

2.3. Numbers
Number storage is defined as a number of bits, but values can be specified in binary, octal, decimal or hexadecimal
(See Sect. 6.1. for details on number notation).
Examples are 3’b001, a 3-bit number, 5’d30, (=5’b11110), and 16‘h5ED4, (=16’d24276)

2.4. Identifiers
Identifiers are user-defined words for variables, function names, module names, block names and instance names.
Identifiers begin with a letter or underscore (Not with a number or $) and can include any number of letters, digits and
underscores. Identifiers in Verilog are case-sensitive.

2.5. Operators
Operators are one, two and sometimes three characters used to perform operations on variables.
Examples include >, +, ~, &, !=. Operators are described in detail in “Operators” on p. 6.

2.6. Verilog Keywords
These are words that have special meaning in Verilog. Some examples are assign, case, while, wire, reg, and, or,
nand, and module. They should not be used as identifiers. Refer to Cadence Verilog-XL Reference Manual for a
complete listing of Verilog keywords. A number of them will be introduced in this manual. Verilog keywords also
includes Compiler Directives (Sect. 15. ) and System Tasks and Functions (Sect. 16. ).

2. Lexical Tokens

Example 2 .1

a = c + d; // this is a simple comment
/* however, this comment continues on more

than one line */
assign y = temp_reg;
assign x=ABC /* plus its compliment*/ + ABC_

Example 2 .2

adder // use underscores to make your
by_8_shifter // identifiers more meaningful
_ABC_ /* is not the same as */ _abc_
Read_ // is often used for NOT Read

Syntax

allowed symbols
ABCDE . . . abcdef. . . 1234567890 _$

not allowed: anything else especially
- & # @
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Primitive logic gates are part of the Verilog language. Two properties can be specified, drive_strength and delay.

Drive_strength specifies the strength at the gate outputs. The strongest output is a direct connection to a source, next
comes a connection through a conducting transistor, then a resistive pull-up/down. The drive strength is usually not
specified, in which case the strengths defaults to strong1 and strong0. Refer to Cadence Verilog-XL Reference Man-
ual for more details on strengths.

Delays: If no delay is specified, then the gate has no propagation delay; if two delays are specified, the first represent
the rise delay, the second the fall delay; if only one delay is specified, then rise and fall are equal. Delays are ignored
in synthesis. This method of specifying delay is a special case of “Parameterized Modules” on page 11. The parame-
ters for the primitive gates have been predefined as delays.

3.1. Basic Gates
These implement the basic logic gates. They have one output and one or more inputs. In the gate instantiation syntax
shown below, GATE stands for one of the keywords and, nand, or, nor, xor, xnor.

3.2. buf, not Gates
These implement buffers and inverters, respectively. They have one input and one or more outputs. In the gate instan-
tiation syntax shown below, GATE stands for either the keyword buf or not

3.3. Three-State Gates; bufif1, bufif0, notif1, notif0
These implement 3-state buffers and inverters. They propagate z (3-state or high-impedance) if their control signal is
deasserted. These can have three delay specifications: a rise time, a fall time, and a time to go into 3-state.

3. Gate-Level Modelling

Syntax
GATE (drive_strength) # (delays)
instance_name1(output, input_1,

input_2,..., input_N),
instance_name2(outp,in1, in2,..., inN);

Delays is
#(rise, fall) or

# rise_and_fall or
#(rise_and_fall)

Example 3 .1

and c1 (o, a, b, c, d); // 4-input AND called c1 and
c2 (p, f g); // a 2-input AND called c2.

or #(4, 3) ig (o, a, b); /* or gate called ig (instance name);
rise time = 4, fall time = 3 */

xor #(5) xor1 (a, b, c); // a = b XOR c after 5 time units
xor (pull1, strong0) #5 (a,b,c); /* Identical gate with pull-up

strength pull1 and pull-down strength strong0. */

Syntax

GATE (drive_strength) # (delays)
instance_name1(output_1, output_2,

..., output_n, input),
instance_name2(out1, out2, ..., outN, in);

Example 3 .2

not #(5) not_1 (a, c); // a = NOT c after 5 time units
buf c1 (o, p, q, r, in); // 5-output and 2-output buffers

c2 (p, f g);

Example 3 .3

bufif0 #(5) not_1 (BUS, A, CTRL); /* BUS = A
5 time units after CTRL goes low. */

notif1 #(3,4,6) c1 (bus, a, b, cntr); /* bus goes tri-state
6 time units after ctrl goes low. */

BUS = Z
En

A

CTRL=1

bufif0

En

notif1

En

notif0

En

bufif1
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4.1. Value Set
Verilog consists of only four basic values. Almost all Verilog data types store all these values:

0 (logic zero, or false condition)
1 (logic one, or true condition)
x (unknown logic value) x and z have limited use for synthesis.
z (high impedance state)

4.2. Wire
A wire represents a physical wire in a circuit and is used to connect gates or modules. The value of a wire can be
read, but not assigned to, in a function or block. See “Functions” on p. 19, and “Procedures: Always and Initial
Blocks” on p. 18. A wire does not store its value but must be driven by a continuous assignment statement or by con-
necting it to the output of a gate or module. Other specific types of wires include:

wand (wired-AND);:the value of a wand depend on logical AND of all the drivers connected to it.
wor (wired-OR);: the value of a wor depend on logical OR of all the drivers connected to it.
tri (three-state;): all drivers connected to a tri must be z, except one (which determines the value of the tri).

4.3. Reg
A reg (register) is a data object that holds its value from one procedural assignment to the next. They are used only in
functions and procedural blocks. See “Wire” on p. 4 above. A reg is a Verilog variable type and does not necessarily
imply a physical register. In multi-bit registers, data is stored as unsigned numbers and no sign extension is done for
what the user might have thought were two’s complement numbers.

4.4. Input, Output, Inout
These keywords declare input, output and bidirectional ports of a module or task. Input and inout ports are of type
wire. An output port can be configured to be of type wire, reg, wand, wor or tri. The default is wire.

4. Data Types

Syntax

wire [msb:lsb] wire_variable_list;
wand [msb:lsb] wand_variable_list;
wor [msb:lsb] wor_variable_list;
tri [msb:lsb] tri_variable_list;

Example 4 .1

wire c // simple wire
wand d;
assign d = a; // value of d is the logical AND of
assign d = b; // a and b
wire [9:0] A; // a cable (vector) of 10 wires.

Syntax

reg [msb:lsb] reg_variable_list;

Example 4 .2

reg a; // single 1-bit register variable
reg [7:0] tom; // an 8-bit vector; a bank of 8 registers.
reg [5:0] b, c; // two 6-bit variables

Syntax

input [msb:lsb] input_port_list;
output [msb:lsb] output_port_list;
inout [msb:lsb] inout_port_list;

Example 4 .3
module sample(b, e, c, a); //See “Module Instantiations” on p. 10

input a; // An input which defaults to wire.
output b, e; // Two outputs which default to wire
output [1:0] c; /* A two-it output. One must declare its

type in a separate statement. */
reg [1:0] c; // The above c port is declared as reg.
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4.5. Integer
Integers are general-purpose variables. For synthesois they are used mainly loops-indicies, parameters, and con-
stants. See“Parameter” on p. 5. They are of implicitly of type reg. However they store data as signed numbers
whereas explicitly declared reg types store them as unsigned. If they hold numbers which are not defined at compile
time, their size will default to 32-bits. If they hold constants, the synthesizer adjusts them to the minimum width
needed at compilation.

4.6. Supply0, Supply1
Supply0 and supply1 define wires tied to logic 0 (ground) and logic 1 (power), respectively.

4.7. Time
Time is a 64-bit quantity that can be used in conjunction with the $time system task to hold simulation time. Time is
not supported for synthesis and hence is used only for simulation purposes.

4.8. Parameter
A parameter defines a constant that can be set when you instantiate a module. This allows customization of a mod-
ule during instantiation. See also “Parameterized Modules” on page 11.

Syntax

integer integer_variable_list;
... integer_constant ... ;

Example 4 .4

integer a; // single 32-bit integer
assign b=63; // 63 defaults to a 7-bit variable.

Syntax

supply0 logic_0_wires;
supply1 logic_1_wires;

Example 4 .5

supply0 my_gnd; // equivalent to a wire assigned 0
supply1 a, b;

Syntax

time time_variable_list;

Example 4 .6

time c;
c = $time; // c = current simulation time

Syntax

parameter par_1 = value,
par_2 = value, .....;

parameter [range] parm_3 = value

Example 4 .7

parameter add = 2’b00, sub = 3’b111;
parameter n = 4;

parameter n = 4;
parameter [3:0] param2 = 4’b1010;
. . .
reg [n-1:0] harry; /* A 4-bit register whose length is

set by parameter n above. */
always @(x)

y = {{(add - sub){x}}; // The replication operator Sect. 5.8.
if (x) begin

state = param2[1]; else state = param2[2];
end
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5.1. Arithmetic Operators
These perform arithmetic operations. The + and - can be used as either unary (-z) or binary (x-y) operators.

5.2. Relational Operators
Relational operators compare two operands and return a single bit 1or 0. These operators synthesize into comparators.
Wire and reg variables are positive Thus (-3’b001) = = 3’b111 and (-3d001)>3d110. However for integers -1< 6.

5.3. Bit-wise Operators
Bit-wise operators do a bit-by-bit comparison between two operands. However see“Reduction Operators” on p. 7.

5.4. Logical Operators
Logical operators return a single bit 1 or 0. They are the same as bit-wise operators only for single bit operands. They
can work on expressions, integers or groups of bits, and treat all values that are nonzero as “1”. Logical operators are
typically used in conditional (if ... else) statements since they work with expressions.

5. Operators

Operators

+ (addition)
- (subtraction)
* (multiplication)
/ (division)
% (modulus)

Example 5 .1

parameter n = 4;
reg[3:0] a, c, f, g, count;
f = a + c;
g = c - n;
count = (count +1)%16; //Can count 0 thru 15.

Operators

< (less than)
<= (less than or equal to)
> (greater than)
>= (greater than or equal to)
== (equal to)
!= (not equal to)

Example 5 .2

if (x = = y) e = 1;
else e = 0;

// Compare in 2’s compliment; a>b
reg [3:0] a,b;
if (a[3]= = b[3]) a[2:0] > b[2:0];
else b[3];

Equivalent Statement

e = (x == y);

Operators

~ (bitwise NOT)
& (bitwise AND)
| (bitwise OR)
^ (bitwise XOR)
~^ or ^~(bitwise XNOR)

Example 5 .3

module and2 (a, b, c);
input [1:0] a, b;
output [1:0] c;
assign c = a & b;

endmodule
b(1)

a(1)

b(0)

a(0
c(0

c(1)

2

2

a

b

Operators

! (logical NOT)
&& (logical AND)
|| (logical OR)

Example 5 .4
wire[7:0] x, y, z; // x, y and z are multibit variables.
reg a;
. . .
if ((x == y) && (z)) a = 1; // a = 1 if x equals y, and z is nonzero.

else a = !x; // a =0 if x is anything but zero.
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5.5. Reduction Operators
Reduction operators operate on all the bits of an operand vector and return a single-bit value. These are the unary (one
argument) form of the bit-wise operators above.

5.6. Shift Operators
Shift operators shift the first operand by the number of bits specified by the second operand. Vacated positions are
filled with zeros for both left and right shifts (There is no sign extension).

5.7. Concatenation Operator
The concatenation operator combines two or more operands to form a larger vector.

5.8. Replication Operator
The replication operator makes multiple copies of an item.

For synthesis, Synopsis did not like a zero replication. For example:-
parameter n=5, m=5;
assign x= {(n-m){a}}

Operators

& (reduction AND)
| (reduction OR)
~& (reduction NAND)
~| (reduction NOR)
^ (reduction XOR)
~^ or ^~(reduction XNOR)

Example 5 .5

module chk_zero (a, z);
input [2:0] a;
output z;
assign z = ~| a; // Reduction NOR

endmodule

a(0)

a(1)

a(2)

za

3

Operators

<< (shift left)
>> (shift right)

Example 5 .6

assign c = a << 2; /* c = a shifted left 2 bits;
vacant positions are filled with 0’s */

Operators

{ }(concatenation)

Example 5 .7

wire [1:0] a, b; wire [2:0] x; wire [3;0] y, Z;
assign x = {1’b0, a}; // x[2]=0, x[1]=a[1], x[0]=a[0]
assign y = {a, b}; /* y[3]=a[1], y[2]=a[0], y[1]=b[1],

y[0]=b[0] */

assign {cout, y} = x + Z; // Concatenation of a result

Operators

{n{item}} (n fold replication of an item)

Example 5 .8
wire [1:0] a, b; wire [4:0] x;
assign x = {2{1’b0}, a}; // Equivalent to x = {0,0,a }
assign y = {2{a}, 3{b}}; //Equivalent to y = {a,a,b,b}
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5.9. Conditional Operator: “?”
Conditional operator is like those in C/C++. They evaluate one of the two expressions based on a condition. It will
synthesize to a multiplexer (MUX).

5.10. Operator Precedence
Table 6.1 shows the precedence of operators from highest to lowest. Operators on the same level evaluate from left to
right. It is strongly recommended to use parentheses to define order of precedence and improve the readability of
your code.

Table 5.1: Verilog Operators Precedence

Operator Name

[ ] bit-select or part-select

( ) parenthesis

!, ~ logical and bit-wise NOT

&, |, ~&, ~|, ^, ~^, ^~ reduction AND, OR, NAND, NOR, XOR, XNOR;
If X=3’B101 and Y=3’B110, then X&Y=3’B100, X^Y=3’B011;

+, - unary (sign) plus, minus; +17, -7

{ } concatenation; {3’B101, 3’B110} = 6’B101110;

{{ }} replication; {3{3'B110}} = 9'B110110110

*, /, % multiply, divide, modulus; / and % not be supported for synthesis

+, - binary add, subtract.

<<, >> shift left, shift right; X<<2 is multiply by 4

<, <=, >, >= comparisons. Reg and wire variables are taken as positive numbers.

= =, != logical equality, logical inequality

= = =, != = case equality, case inequality; not synthesizable

& bit-wise AND; AND together all the bits in a word

^, ~^, ^~ bit-wise XOR, bit-wise XNOR

| bit-wise OR; AND together all the bits in a word

&&, logical AND. Treat all variables as False (zero) or True (nonzero).
logical OR. (7||0) is (T||F) = 1, (2||-3) is (T||T) =1,

(3&&0) is (T&&F) = 0.
||

? : conditional. x=(cond)? T : F;

Operators

(cond) ? (result if cond true):
(result if cond false)

Example 5 .9
assign a = (g) ? x : y;

assign a = (inc = = 2) ? a+1 : a-1;
/* if (inc), a = a+1, else a = a-1 */

g
x y

1 1
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6.1. Literals
Literals are constant-valued operands that can be used in Verilog expressions. The two common Verilog literals are:
(a) String: A string literal is a one-dimensional array of characters enclosed in double quotes (“ “).
(b) Numeric: constant numbers specified in binary, octal, decimal or hexadecimal.

6.2. Wires, Regs, and Parameters
Wires, regs and parameters can also be used as operands in Verilog expressions. These data objects are described in
more detail in Sect. 4. .

6.3. Bit-Selects “x[3]” and Part-Selects “x[5:3]”
Bit-selects and part-selects are a selection of a single bit and a group of bits, respectively, from a wire, reg or parame-
ter vector using square brackets “[ ]”. Bit-selects and part-selects can be used as operands in expressions in much the
same way that their parent data objects are used.

6.4. Function Calls
The return value of a function can be used directly in an expression without first assigning it to a register or wire var-
iable. Simply place the function call as one of the operands. Make sure you know the bit width of the return value of
the function call. Construction of functions is described in “Functions” on page 19

6. Operands

Number Syntax

n’Fddd..., where
n - integer representing number of bits
F - one of four possible base formats:

b (binary), o (octal), d (decimal),
h (hexadecimal). Default is d.

dddd - legal digits for the base format

Example 6 .1

“time is”// string literal
267 // 32-bit decimal number
2’b01 // 2-bit binary
20’hB36F// 20-bit hexadecimal number
‘o62 // 32-bit octal number

Syntax

variable_name[index]
variable_name[msb:lsb]

Example 6 .2

reg [7:0] a, b;
reg [3:0] ls;
reg c;
c = a[7] & b[7]; // bit-selects
ls = a[7:4] + b[3:0]; // part-selects

Syntax

function_name (argument_list)

Example 6 .3

assign a = b & c & chk_bc(c, b);// chk_bc is a function
. . ./* Definition of the function */
function chk_bc;// function definition

input c,b;
chk_bc = b^c;

endfunction
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7.1. Module Declaration
A module is the principal design entity in Verilog. The first line of a module declaration specifies the name and port
list (arguments). The next few lines specifies the i/o type (input, output or inout, see Sect. 4.4. ) and width of each
port. The default port width is 1 bit.

Then the port variables must be declared wire, wand,. . ., reg (See Sect. 4. ). The default is wire. Typically inputs are
wire since their data is latched outside the module. Outputs are type reg if their signals were stored inside an always
or initial block (See Sect. 10. ).

7.2. Continuous Assignment
The continuous assignment is used to assign a value onto a wire in a module. It is the normal assignment outside of
always or initial blocks (See Sect. 10. ). Continuous assignment is done with an explicit assign statement or by
assigning a value to a wire during its declaration. Note that continuous assignment statements are concurrent and are
continuously executed during simulation. The order of assign statements does not matter. Any change in any of the
right-hand-side inputs will immediately change a left-hand-side output.

7.3. Module Instantiations
Module declarations are templates from which one creates actual objects (instantiations). Modules are instantiated
inside other modules, and each instantiation creates a unique object from the template. The exception is the top-level
module which is its own instantiation.

The instantiated module’s ports must be matched to those defined in the template. This is specified:
(i) by name, using a dot(.) “ .template_port_name (name_of_wire_connected_to_port)”.
or(ii) by position, placing the ports in exactly the same positions in the port lists of both the template and the instance.

7. Modules

Syntax

module module_name (port_list);
input [msb:lsb] input_port_list;
output [msb:lsb] output_port_list;
inout [msb:lsb] inout_port_list;

... statements ...
endmodule

Example 7 .1

module add_sub(add, in1, in2, oot);
input add; // defaults to wire
input [7:0] in1, in2; wire in1, in2;
output [7:0] oot; reg oot;

... statements ...
endmodule

oot

add

in1

in2
add_sub

8

8

8

Syntax

wire wire_variable = value;
assign wire_variable = expression;

Example 7 .2
wire [1:0] a = 2’b01; // assigned on declaration

assign b = c & d; // using assign statement
assign d = x | y;
/* The order of the assign statements
does not matter. */

c
dx b

y
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Modules may not be instantiated inside procedural blocks. See “Procedures: Always and Initial Blocks” on page 18.

7.4. Parameterized Modules
You can build modules that are parameterized and specify the value of the parameter at each instantiation of the mod-
ule. See “Parameter” on page 5 for the use of parameters inside a module. Primitive gates have parameters which
have been predefined as delays. See “Basic Gates” on page 3.

Synthesis does not support the defparam keyword which is an alternate way of changing parameters.

Syntax for Instantiation
module_name

instance_name_1 (port_connection_list),
instance_name_2 (port_connection_list),
......
instance_name_n (port_connection_list);

Example 7 .3

// MODULEDEFINITION

module and4(a, b, c);
input [3:0] a, b;
output [3:0] c;
assign c = a & b;

endmodule

// MODULE INSTANTIATIONS
wire [3:0] in1, in2;
wire [3:0] o1, o2;

/* C1 is an instance of module and4
C1 ports referenced by position */
and4 C1 (in1, in2, o1);

/* C2 is another instance of and4.
C2 ports are referenced to the
declaration by name. */

and4 C2 (.c(o2), .a(in1), .b(in2));

Syntax

module_name #(parameter_values)
instance_name(port_connection_list);

Example 7 .4
// MODULE DEFINITION

module shift_n (it, ot); // used in module test_shift.
input [7:0] it; output [7:0] ot;
parameter n = 2;‘ // default value of n is 2
assign ot = (it << n); // it shifted left n times

endmodule

// PARAMETERIZED INSTANTIATIONS
wire [7:0] in1, ot1, ot2, ot3;
shift_n shft2(in1, ot1), // shift by 2; default
shift_n #(3) shft3(in1, ot2); // shift by 3; override parameter 2.
shift_n #(5) shft5(in1, ot3); // shift by 5; override parameter 2.
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c

Verilog has four levels of modelling:
1) The switch level which includes MOS transistors modelled as switches. This is not discussed here.
2) The gate level. See “Gate-Level Modelling” on p. 3
3) The Data-Flow level. See Example 7 .4 on page 11
4) The Behavioral or procedural level described below.
Verilog procedural statements are used to model a design at a higher level of abstraction than the other levels. They
provide powerful ways of doing complex designs. However small changes n coding methods can cause large changes
in the hardware generated. Procedural statements can only be used in procedures. Verilog procedures are described
later in “Procedures: Always and Initial Blocks” on page 18,“Functions” on page 19, and “Tasks, Not Synthesizable”
on page 21.

8.1. Procedural Assignments
Procedural assignments are assignment statements used within Verilog procedures (always and initial blocks). Only
reg variables and integers (and their bit/part-selects and concatenations) can be placed left of the “=” in procedures.
The right hand side of the assignment is an expression which may use any of the operator types described in Sect. 5.

8.2. Delay in Assignment (not for synthesis)
In a delayed assignment ∆t time units pass before the statement is executed and the left-hand assignment is made.
With intra-assignment delay, the right side is evaluated immediately but there is a delay of ∆t before the result is
place in the left hand assignment. If another procedure changes a right-hand side signal during ∆t, it does not effect
the output. Delays are not supported by synthesis tools.

8.3. Blocking Assignments
Procedural (blocking) assignments (=) are done sequentially in the order the statements are written. A second

assignment is not started until the preceding one is complete. See also Sect. 9.4.

8. Behavioral Modeling

Syntax for Procedural Assignment
variable = expression

Delayed assignment
#∆t variable = expression;
Intra-assignment delay

variable = #∆t expression;

Example 8 .1

reg [6:0] sum; reg h, ziltch;
sum[7] = b[7] ^ c[7]; // execute now.
ziltch = #15 ckz&h; /* ckz&a evaluated now; ziltch changed

after 15 time units. */
#10 hat = b&c; /* 10 units after ziltch changes, b&c is

evaluated and hat changes. */

Syntax

Blocking
variable = expression;
variable = #∆t expression;
grab inputs now, deliver ans.

later.
#∆t variable = expression;

grab inputs later, deliver ans.
later

Example 8 .2. For simulation
initial

begin
a=1; b=2; c=3;

#5 a = b + c; // wait for 5 units, and execute a= b + c =5.
d = a; // Time continues from last line, d=5 = b+c at t=5.

Example 8 .2. For synthesis
always @( posedge clk)

begin
Z=Y; Y=X; // shift register
y=x; z=y; //parallel ff.

1D
C1

1D
C1

ZYX

1D
C1

zyx
1D
C1
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8.4. Nonblocking (RTL) Assignments (see below for synthesis)
RTL (nonblocking) assignments (<=), which follow each other in the code, are started in parallel. The right hand

side of nonblocking assignments is evaluated starting from the completion of the last blocking assignment or if none,
the start of the procedure. The transfer to the left hand side is made according to the delays. An intra-assignment
delay in a non-blocking statement will not delay the start of any subsequent statement blocking or non-blocking.
However a normal delays will are cummulative and will delay the output.

For synthesis

:

The following example shows interactions between blocking and non-blocking for simulation. Do not mix the two
types in one procedure for synthesis.

8.5. begin ... end
begin ... end block statements are used to group several statements for use where one statement is syntactically
allowed. Such places include functions, always and initial blocks, if, case and for statements. Blocks can optionally
be named. See “disable” on page 15) and can include register, integer and parameter declarations.

• One must not mix “<=” or “=” in the same procedure.
• “<=” best mimics what physical flip-flops do; use it for “always @ (posedge clk ..) type procedures.
• “=” best corresponds to what c/c++ code would do; use it for combinational procedures.

Syntax

Non-Blocking
variable <= expression;
variable <= #∆t expression;
#∆t variable <= expression;

Example 8 .3. For simulation
initial

begin
#3 b <= a; /* grab a at t=0 Deliver b at t=3.
#6 x <= b + c; // grab b+c at t=0, wait and assign x at t=6.

x is unaffected by b’s change. */

Example 8 .4. For synthesis
always @( posedge clk)

begin
Z<=Y; Y<=X; // shift register
y<=x; z<=y; //also a shift register.

1D
C1

1D
C1

ZYX

1D
C1

1D
C1

zyx

Example 8 .3. Use <= to transform a variable into itself.
reg G[7:0];
always @( posedge clk)

G <= { G[6:0], G[7]}; // End around rotate 8-bit register.

Syntax

Non-Blocking
variable <= expression;
variable <= #∆t expression;
#∆t variable <=expression;

Blocking
variable = expression;
variable = #∆t expression;
#∆t variable = expression;

Example 8 .4 for simulation only
initial begin

a=1; b=2; c=3; x=4;
#5 a = b + c; // wait for 5 units, then grab b,c and execute a=2+3.

d = a; // Time continues from last line, d=5 = b+c at t=5.
x <= #6 b + c;// grab b+c now at t=5, don’t stop, make x=5 at t=11.
b <= #2 a; /* grab a at t=5 (end of last blocking statement).

Deliver b=5 at t=7. previous x is unaffected by b change. */
y <= #1 b + c;// grab b+c at t=5, don’t stop, make x=5 at t=6.

#3 z = b + c; // grab b+c at t=8 (#5+#3), make z=5 at t=8.
w <= x // make w=4 at t=8. Starting at last blocking assignm.
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8.6. for Loops
Similar to for loops in C/C++, they are used to repeatedly execute a statement or block of statements. If the loop con-
tains only one statement, the begin ... end statements may be omitted.

8.7. while Loops
The while loop repeatedly executes a statement or block of statements until the expression in the while statement
evaluates to false. To avoid combinational feedback during synthesis, a while loop must be broken with an
@(posedge/negedge clock) statement (Section 9.2). For simulation a delay inside the loop will suffice. If the loop
contains only one statement, the begin ... end statements may be omitted.

8.8. forever Loops
The forever statement executes an infinite loop of a statement or block of statements. To avoid combinational feed-
back during synthesis, a forever loop must be broken with an @(posedge/negedge clock) statement (Section 9.2). For
simulation a delay inside the loop will suffice. If the loop contains only one statement, the begin ... end statements
may be omitted. It is

8.9. repeat Not synthesizable
The repeat statement executes a statement or block of statements a fixed number of times.

Syntax

begin : block_name
reg [msb:lsb] reg_variable_list;
integer [msb:lsb] integer_list;
parameter [msb:lsb] parameter_list;

... statements ...
end

Example 8 .5

function trivial_one; // The block name is “trivial_one.”
input a;
begin: adder_blk; // block named adder, with

integer i; // local integer i
... statements ...

end

Syntax

for (count = value1;
count </<=/>/>= value2;
count = count +/- step)

begin
... statements ...
end

Example 8 .6

for (j = 0; j <= 7; j = j + 1)
begin

c[j] = a[j] & b[j];
d[j] = a[j] | b[j];

end

Syntax

while (expression)
begin

... statements ...
end

Example 8 .7

while (!overflow) begin
@(posedge clk);
a = a + 1;

end

Syntax

forever
begin

... statements ...
end

Example 8 .8
forever begin

@(posedge clk); // or use a= #9 a+1;
a = a + 1;

end
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8.10. disable
Execution of a disable statement terminates a block and passes control to the next statement after the block. It is like
the C break statement except it can terminate any loop, not just the one in which it appears.
Disable statements can only be used with named blocks.

8.11. if ... else if ... else
The if ... else if ... else statements execute a statement or block of statements depending on the result of the expression
following the if. If the conditional expressions in all the if’s evaluate to false, then the statements in the else block, if
present, are executed.
There can be as many else if statements as required, but only one if block and one else block. If there is one statement
in a block, then the begin .. end statements may be omitted.
Both the else if and else statements are optional. However if all possibilities are not specifically covered, synthesis
will generated extra latches.

Syntax

repeat (number_of_times)
begin

... statements ...
end

Example 8 .9

repeat (2) begin // after 50, a = 00,
#50 a = 2’b00; // after 100, a = 01,
#50 a = 2’b01; // after 150, a = 00,

end// after 200, a = 01

Syntax

disable block_name;

Example 8 .10

begin: accumulate
forever

begin
@(posedge clk);
a = a + 1;
if (a == 2’b0111) disable accumulate;

end
end

Syntax

if (expression)
begin

... statements ...
end

else if (expression)
begin

... statements ...
end

... more else if blocks ...
else

begin
... statements ...

end

Example 8 .11

if (alu_func == 2’b00)
aluout = a + b;

else if (alu_func == 2’b01)
aluout = a - b;

else if (alu_func == 2’b10)
aluout = a & b;

else // alu_func == 2’b11
aluout = a | b;

if (a == b) // This if with no else will generate
begin // a latch for x and ot. This is so they

x = 1; // will hold there old value if (a != b).
ot = 4’b1111;

end
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8.12. case
The case statement allows a multipath branch based on comparing the expression with a list of case choices.

Statements in the default block executes when none of the case choice comparisons are true (similar to the else block
in the if ... else if ... else). If no comparisons , including delault, are true, synthesizers will generate unwanted latches.
Good practice says to make a habit of puting in a default whether you need it or not.
If the defaults are dont cares, define them as ‘x’ and the logic minimizer will treat them as don’t cares.
Case choices may be a simple constant or expression, or a comma-separated list of same.

8.13. casex
In casex(a) the case choices constant “a” may contain z, x or ? which are used as don’t cares for comparison. With
case the corresponding simulation variable would have to match a tri-state, unknown, or either signal. In short, case
uses x to compare with an unknown signal. Casex uses x as a don’t care which can be used to minimize logic.

8.14. casez
Casez is the same as casex except only ? and z (not x) are used in the case choice constants as don’t cares. Casez is
favored over casex since in simulation, an inadvertent x signal, will not be matched by a 0 or 1 in the case choice.

Syntax

case (expression)
case_choice1:

begin
... statements ...

end
case_choice2:

begin
... statements ...

end
... more case choices blocks ...

default:
begin

... statements ...
end

endcase

Example 8 .12

case (alu_ctr)
2’b00: aluout = a + b;
2’b01: aluout = a - b;
2’b10: aluout = a & b;
default: aluout = 1’bx; // Treated as don’t cares for

endcase // minimum logic generation.

Example 8 .13

case (x, y, z)
2’b00: aluout = a + b; //case if x or y or z is 2’b00.
2’b01: aluout = a - b;
2’b10: aluout = a & b;
default: aluout = a | b;

endcase

Syntax

same as for case statement
(Section 8.10)

Example 8 .12
casex (a)

2’b1x: msb = 1; // msb = 1 if a = 10 or a = 11
// If this were case(a) then only a=1x would match.

default: msb = 0;
endcase

Syntax

same as for case statement
(Section 8.10)

Example 8 .13

casez (d)
3’b1??: b = 2’b11; // b = 11 if d = 100 or greater
3’b01?: b = 2’b10; // b = 10 if d = 010 or 011
default: b = 2’b00;

endcase
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9.1. Delay Control, Not synthesizable
This specifies the delay time units before a statement is executed during simulation. A delay time of zero can also be
specified to force the statement to the end of the list of statements to be evaluated at the current simulation time. See
also “Intra-Assignment Delay, Not synthesizable” on p. 17

9.2. Event Control, @
This causes a statement or begin-end block to be executed only after specified events occur. An event is a change in
a variable. and the change may be: a positive edge, a negative edge, or either (a level change), and is specified by the
keyword posedge, negedge, or no keyword respectively. Several events can be combined with the or keyword. Event
specification begins with the character @and are usually used in always statements. See page 18.

For synthesis one cannot combine level and edge changes in the same list.
For flip-flop and register synthesis the standard list contains only a clock and an optional reset.
For synthesis to give combinational logic, the list must specify only level changes and must contain all the variables
appearing in the right-hand-side of statements in the block.

9.3. Wait Statement Not synthesizable
Delay executing the statement(s) following the wait until the specified condition evaluates to true.

9.4. Intra-Assignment Delay, Not synthesizable
This delay #∆ is placed after the equal sign. The left-hand assignment is delayed by the specified time units, but the
right-hand side of the assignment is evaluated before the delay instead of after the delay. This is important when a
variable may be changed in a concurrent procedure. See also “Delay in Assignment (not for synthesis)” on page 12.

9. Timing Controls

Syntax
#delay statement;

Example 9 .1
#5 a = b + c; // evaluated and assigned after 5 time units
#0 a = b + c; // very last statement to be evaluated

Syntax

@ (posedge variable or
negedge variable) statement;

@ (variable or variable . . .) statement;

Example 9 .2
always
@(posedge clk or negedge rst)

if (rst) Q=0; else Q=D; // Definition for a D flip-flop.

@(a or b or e); // re-evaluate if a or b or e changes.
sum = a + b + e; // Will synthesize to a combinational adder.

Syntax

wait (condition_expression) statement;
Example 9 .3

wait (!c) a = b; // wait until c=0, then assign b to a

Syntax

variable = #∆t expression;

Example 9 .4
assign a=1; assign b=0;

always @(posedge clk)
b = #5 a; // a = b after 5 time units.

always @(posedge clk)
c = #5 b; /* b was grabbed in this parallel proce-

dure before the first procedure changed it. */
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10.1. Always Block
The always block is the primary construct in RTL modeling. Like the continuous assignment, it is a concurrent

statement that is continuously executed during simulation. This also means that all always blocks in a module execute
simultaneously. This is very unlike conventional programming languages, in which all statements execute sequen-
tially. The always block can be used to imply latches, flip-flops or combinational logic. If the statements in the
always block are enclosed within begin ... end, the statements are executed sequentially. If enclosed within the fork
... join, they are executed concurrently (simulation only).

The always block is triggered to execute by the level, positive edge or negative edge of one or more signals (sepa-
rate signals by the keyword or). A double-edge trigger is implied if you include a signal in the event list of the always
statement. The single edge-triggers are specified by posedge and negedge keywords.

Procedures can be named. In simulation one can disable named blocks. For synthesis it is mainly used as a com-
ment.

10.2. Initial Block
The initial block is like the always block except that it is executed only once at the beginning of the simulation. It is
typically used to initialize variables and specify signal waveforms during simulation. Initial blocks are not supported
for synthesis.

10. Procedures: Always and Initial Blocks

Syntax 1

always @(event_1 or event_2 or ...)
begin

... statements ...
end

Example 10 .1

always @(a or b) // level-triggered; if a or b changes levels
always @(posedge clk); // edge-triggered: on +ve edge of clk

see previous sections for complete examples

Syntax 2

always @(event_1 or event_2 or ...)
begin: name_for_block

... statements ...
end

Syntax

initial
begin

... statements ...
end

Example 10 .2

inital
begin

clr = 0; // variables initialized at
clk = 1; // beginning of the simulation

end

inital // specify simulation waveforms
begin

a = 2’b00; // at time = 0, a = 00
#50 a = 2’b01; // at time = 50, a = 01
#50 a = 2’b10; // at time = 100, a = 10

end
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Functions are declared within a module, and can be called from continuous assignments, always blocks, or other
functions. In a continuous assignment, they are evaluated when any of its declared inputs change. In a procedure, they
are evaluated when invoked.
Functions describe combinational logic, and by do not generate latches. Thus an if without an else will simulate as
though it had a latch but synthesize without one. This is a particularly bad case of synthesis not following the simula-
tion. It is a good idea to code functions so they would not generate latches if the code were used in a procedure.
Functions are a good way to reuse procedural code, since modules cannot be invoked from within a procedure.

11.1. Function Declaration
A function declaration specifies the name of the function, the width of the function return value, the function input
arguments, the variables (reg) used within the function, and the function local parameters and integers.

11.2. Function Return Value
When you declare a function, a variable is also implicitly declared with the same name as the function name, and with
the width specified for the function name (The default width is 1-bit). This variable is “my_func” in Example 11 .1 on
page 19. At least one statement in the function must assign the function return value to this variable.

11.3. Function Call
As mentioned in Sect. 6.4. , a function call is an operand in an expression. A function call must specify in its terminal
list all the input parameters.

11.4. Function Rules
The following are some of the general rules for functions:

- Functions must contain at least one input argument.
- Functions cannot contain an inout or output declaration.
- Functions cannot contain time controlled statements (#, @, wait).
- Functions cannot enable tasks.
- Functions must contain a statement that assigns the return value to the implicit function name register.

11. Functions

Syntax, Function Declaration

function [msb:lsb] function_name;
input [msb:lsb] input_arguments;
reg [msb:lsb] reg_variable_list;
parameter [msb:lsb] parameter_list;
integer [msb:lsb] integer_list;

... statements ...
endfunction

Example 11 .1

function [7:0] my_func; // function return 8-bit value
input [7:0] i;
reg [4:0] temp;
integer n;
temp= i[7:4] | ( i[3:0]);
my_func = {temp, i[[1:0]};

endfunction
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11.5. Function Example
A Function has only one output. If more than one return value is required, the outputs should be concatenated into
one vector before assigning it to the function name. The calling module program can then extract (unbundle) the indi-
vidual outputs from the concatenated form. Example 11.2 shows how this is done, and also illustrates the general use
and syntax of functions in Verilog modeling.

Syntax

function_name = expression

Example 11 .2

module simple_processor (instruction, outp);
input [31:0] instruction;
output [7:0] outp;
reg [7:0] outp;; // so it can be assigned in always block
reg func;
reg [7:0] opr1, opr2;

function [16:0] decode_add (instr) // returns 1 1-bit plus 2 8-bits
input [31:0] instr;
reg add_func;
reg [7:0] opcode, opr1, opr2;
begin

opcode = instr[31:24];
opr1 = instr[7:0];
case (opcode)

8’b10001000: begin // add two operands
add_func = 1;
opr2 = instr[15:8];

end
8’b10001001: begin // subtract two operands

add_func = 0;
opr2 = instr[15:8];

end
8’b10001010: begin // increment operand

add_func = 1;
opr2 = 8’b00000001;

end
default: begin; // decrement operand

add_func = 0;
opr2 = 8’b00000001;

end
endcase
decode_add = {add_func, opr2, opr1}; // concatenated into 17-bits

end
endfunction

// ----------------------------------------- ---------------------------------
always @(instruction) begin

{func, op2, op1} = decode_add (instruction); // outputs unbundled
if (func == 1)

outp = op1 + op2;
else

outp = op1 - op2;
end
endmodule
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A task is similar to a function, but unlike a function it has both input and output ports. Therefore tasks do not return
values. Tasks are similar to procedures in most programming languages. The syntax and statements allowed in tasks
are those specified for functions (Sections 11).

12. Tasks, Not Synthesizable

Syntax

task task_name;
input [msb:lsb] input_port_list;
output [msb:lsb] output_port_list;
reg [msb:lsb] reg_variable_list;
parameter [msb:lsb] parameter_list;
integer [msb:lsb] integer_list;

... statements ...
endtask

Example 12 .1

module alu (func, a, b, c);
input [1:0] func;
input [3:0] a, b;
output [3:0] c;
reg [3:0] c; // so it can be assigned in always block

task my_and;
input[3:0] a, b;
output [3:0] andout;
integer i;
begin

for (i = 3; i >= 0; i = i - 1)
andout[i] = a[i] & b[i];

end
endtask

always @(func or a or b) begin
case (func)

2’b00: my_and (a, b, c);
2’b01: c = a | b;
2’b10: c = a - b;
default: c = a + b;

endcase
end
endmodule
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13.1. Latches
A latch is inferred (put into the synthesized circuit) if a variable, or one of its bits, is not assigned in all branch of an

if statement. A latch is also inferred in a case statement if a variable is assigned to in only some of the branches.
To improve code readability, use the if statement to synthesize a latch because it is difficult to explicitly specify

the latch enable signal using a case statement.
While in theory, a proper reset should be infered from the Verilog code shown, Synopsys will not do a proper job

without adding the //Synopsys comments shown.

13.2. Edge-Triggered Registers, Flip-flops, Counters
A register (flip-flop) is inferred by using posedge or negedge clause for the clock in the event list of an always

block. To add an asynchronous reset, include a second posedge/negedge for the reset and use the if (reset) ... else
statement. Note that when you use the negedge for the reset (active low reset), the if condition is (!reset).

13. Component Inference

Syntax
See Sect. 8.11. and Sect. 8.12. for
if ... else if ... else and case statements

//Synopsys statement
These are treated as comments by all sim-
ulators. For synthesis using Synopsys,
they direct the synthesizer as to what par-
ticular inference is wanted.

Example 13 .1
always @(clk,d); begin

if (clk)
q <=d;

end

D

EN

qd

clk

Example 13 .2
//Synopsys async_set_reset “rst”
always @(clk or rst or d); begin

if (rst) q<=0;
else if (clk) q<=d;

end

Q

D

EN

qd

clk

Q

R

rst

Syntax

always @(posedge clk or
posedge reset_1 or
negedge reset_2)

begin
if (reset_1) begin

... reset assignments
end

else if (!reset_2) begin
... reset assignments
end

else begin
...register assignments
end

end

Q

D
c
b

CLK

a

clk

rst

b

CLR

Q

D

CLK

a

clk

CLR

always @(posedge clk or
negedge rst);

begin;
if (! rst) a< = 0;
else a <= b;

end

Example 13 .4 An Enabled Counter

reg [7:0] count;
wire enable;

always @(posedge clk or posedge rst) // Do not include enable.
begin;

if (rst) count<=0;
else if (enable) count <= count+1;

end; // 8 flip-flops will be generated.

Example 13 .3
always @(posedge clk);

begin;
a <= b & c;

end
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13.3. Multiplexers
A multiplexer is inferred by assigning a variable to different variables/values in each branch of an if or case state-
ment. You can avoid specifying each and every possible branch by using the else and default branches. Note that a
latch will be inferred if a variable is not assigned to for all the possible branch conditions.
To improve readability of your code, use the case statement to model large multiplexers.

13.4. Adders/Subtracters
The +/- operators infer an adder/subtracter whose width depend on the width of the larger operand.

13.5. Tri-State Buffers
A tristate buffer is inferred if a variable is conditionally assigned a value of z using an if, case or conditional operator.

13.6. Other Component Inferences
Most logic gates are inferred by the use of their corresponding operators. Alternatively a gate or component may be
explicitly instantiated by using the primitive gates (and, or, nor, inv ...) provided in the Verilog language.

Syntax

See Sections 8.9 and 8.10 for
if ... else if ... else and case statements

Example 13 .5

if (sel == 1)
y = a;

else
y = b;

sel

case (sel)
2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
default: y = d;

endcase

y
b

a

sel[1:0]

a
b

c

d

y

Syntax

See Section 7 for operators

Example 13 .6

if (sel == 1)
y = a + b;

else
y = c + d;

+

sel

sel
b
d

a
c

y

Syntax

See Sections 8.9 and 8.10 for
if ... else if ... else and case statements

Example 13 .7

if (en == 1)
y = a;

else
y = 1’bz;

ya

en
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When modeling finite state machines, it is recommended to separate the sequential current-state logic from the com-
binational next-state and output logic.

14. Finite State Machines. For synthesis

State Diagram

for lack of space the outputs are not
shown on the state diagram, but are:

in state0: Zot = 000,
in state1: Zot = 101,
in state2: Zot = 111,
in state3: Zot = 001.

Example 14 .1

module my_fsm (clk, rst, start, skip3, wait3, Zot);
input clk, rst, start, skip3, wait3;
output [2:0] Zot; // Zot is declared reg so that it can
reg [2:0] Zot; // be assigned in an always block.
parameter state0=0, state1=1, state2=2, state3=3;
reg [1:0] state, nxt_st;

always @ (state or start or skip3 or wait3)
begin : next_state_logic //Name of always procedure.

case (state)
state0: begin

if (start) nxt_st = state1;
else nxt_st = state0;
end

state1: begin
nxt_st = state2;
end

state2: begin
if (skip3) nxt_st = state0;
else nxt_st = state3;
end

state3: begin
if (wait3) nxt_st = state3;
else nxt_st = state0;
end

default: nxt_st = state0;
endcase // default is optional since all 4 cases are

end // covered specifically. Good practice says uses it.

always @(posedge clk or posedge rst)
begin : register_generation

if (rst) state = state0;
else state = nxt_st;

end

always @(state) begin : output_logic
case (state)

state0: Zot = 3’b000;
state1: Zot = 3’b101;
state2: Zot = 3’b111;
state3: Zot = 3’b001;
default: Zot = 3’b000;// default avoids latches

endcase
end
endmodule

state0

state2

state3 state1

start=0

wait3=0

wait3=1

skip3=0

skip3=1

start=1

reset=1

Using Macros for state definition
As an alternative for-
parameter state0=0, state1=1,

state2=2, state3=3;
one can use macros. For example after the
definition below 2'd0 will be textually
substituted whenever `state0 is used.

d̀efine state0 2'd0
`define state1 2'd1
`define state2 2'd
`define state3 2'd3;

When using macro definitions one must
put a back quote in front. For example:
case (state)

`state0: Zot = 3’b000;
`state1: Zot = 3’b101;
`state2: Zot = 3’b111;
`state3: Zot = 3’b001;
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14.1.

14.2. Counters
Counters are a simple type of finite-state machine where separation of the flip-flop generation code and the next-state
generation code is not worth the effort. In such code, use the nonblocking “<=” assignment operator.

14.3. Shift Registers
Shift registers are also best done completely in the flip-flop generation code. Use the nonblocking “<=” assignment
operator so the operators “<< N” shifts left N bits. The operator “>>N” shifts right N bits. See also Example 8 .3 on
page 13.

Binary Counter
Using toggle flip-flops

Example 14 .2
reg [3:0] count; wire TC; // Terminal count (Carry out)

always @(posedge clk or posedge rset)
begin

if (rset) count <= 0;
else count <= count+1;

end
assign TC = & count; // See “Reduction Operators” on page 7

1T

C1

CLK

1T

C1

1T

C1

1T

C1

count[3]

TC

count[2] count[1] count[0]

Shift Register Example 14 .3
reg [3:0] Q;

always @(posedge clk or posedge rset)
begin

if (rset) Q <= 0;
else begin

Q <=Q << 1; // Left shift 1 position
Q[0] <= Q[3]; /* Nonblocking means the old Q[3] is sent

to Q[0]. Not the revised Q[3] from the previous line.
end

1D

C1

CLK

1D

C1

1D

C1

1D

C1

Q[0]Q[1]Q[2]Q[3]

Linear-Feedback Shift Register Example 14 .4
reg [3:0] Q;

always @(posedge clk or posedge rset)
begin

if (rset) Q <= 0;
else begin

Q <= {Q[2:1]: Q[3]^Q[2]; /* The concatenation operators
“{...}” form the new Q from elements of the old Q. */

end
end

1D

C1

CLK

1D

C1

1D

C1

1D

C1

Q[0]Q[1]Q[2]Q[3]
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Compiler directives are special commands, beginning with ‘, that affect the operation of the Verilog simulator. The
Synopsys Verilog HDL Compiler/Design Compiler and many other synthesis tools parse and ignore compiler direc-
tives, and hence can be included even in synthesizable models. Refer to Cadence Verilog-XL Reference Manual for a
complete listing of these directives. A few are briefly described here.

15.1. Time Scale
`timescale specifies the time unit and time precision. A time unit of 10 ns means a time expressed as say #2.3 will
have a delay of 23.0 ns. Time precision specifies how delay values are to be rounded off during simulation. Valid
time units include s, ms, us (µs), ns, ps, fs.
Only 1, 10 or 100 are valid integers for specifying time units or precision. It also determines the displayed time units
in display commands like $display

15.2. Macro Definitions
A macro is an identifier that represents a string of text. Macros are defined with the directive `define, and are invoked
with the quoted macro name as shown in the example.

15.3. Include Directive
Include is used to include the contents of a text file at the point in the current file where the include directive is. The
include directive is similar to the C/C++ include directive.

15. Compiler Directives

Example 15 .1
`timescale 1 ns/1 ps // unit =1ns, precision=1/1000ns
`timescale 1 ns /100 ps // time unit = 1ns; precision = 1/

10ns;

Syntax

`timescale time_unit / time_precision;

Example 15 .2

`define add_lsb a[7:0] + b[7:0]
assign 0 = 'add_lsb; // assign o = a[7:0] + b[7:0];

Syntax

`define macro_name text_string;
. . . `macro_name . . .

Example 15 .3

module x;
'include “dclr.v”; // contents of file “dclr,v” are put here

Syntax

`include file_name;
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These are tasks and functions that are used to generate input and output during simulation. Their names begin with a
dollar sign ($). The Synopsys Verilog HDL Compiler/Design Compiler and many other synthesis tools parse and
ignore system functions, and hence can be included even in synthesizable models. Refer to Cadence Verilog-XL Ref-
erence Manual for a complete listing of system functions. A few are briefly described here.
System tasks that extract data, like $monitor need to be in an initial or always block.

16.1. Display Selected Variables; $display, $strobe, $monitor
These commands have the same syntax, and display text on the screen during simulation. They are much less conven-
ient than waveform display tools like cwaves or Signalscan. $display and $strobe display once every time they
are executed, whereas $monitor displays every time one of its parameters changes. The difference between $display
and $strobe is that $strobe displays the parameters at the very end of the current simulation time unit rather than
exactly where it is executed. The format string is like that in C/C++, and may contain format characters. Format char-
acters include %d (decimal), %h (hexadecimal), %b (binary), %c (character), %s (string) and %t (time), %m (hierar-
chy level). %5d, %5b etc. would give exactly 5 spaces for the number instead of the space needed. Append b, h, o to
the task name to change default format to binary, octal or hexadecimal.

16.2. $time, $stime, $realtime
These return the current simulation time as a 64-bit integer, a 32-bit integer, and a real number, respectively. Their
use is illustrated in Examples 4.7. and 15 .1.

16.3. $reset, $stop, $finish
$reset resets the simulation back to time 0; $stop halts the simulator and puts it in the interactive mode where the
user can enter commands; $finish exits the simulator back to the operating system.

16.4. $deposit
$deposit sets a net to a particular value.

16.5. $scope, $showscope
$scope(hierarchy_name) sets the current hierarchical scope to hierarchy_name. $showscopes(n) lists all modules,
tasks and block names in (and below, if n is set to 1) the current scope.

16.6. $list
$list (hierarchical_name) lists line-numbered source code of the named module, task, function or named-block.

16. System Tasks and Functions

Syntax
$display (“format_string”, par_1, par_2, ... );
$strobe (“format_string”, par_1, par_2, ... );
$monitor (“format_string”, par_1, par_2, ... );
$displayb ( as above but defaults to binary..
$strobeh (as above but defaults to hex..
$monitoro (as above but defaults to octal..

Example 16 .1
initial begin // c below is in submodule submod1.
$displayh (b, d, submod1.c); //No format, display in hex.
$monitor (“time=%t, d=%h, c=%b”,

$time, a, submod1.c);
end

Syntax

$deposit (net_name, value);

Example 16 .2

$deposit (b, 1’b0);
$deposit (outp, 4’b001x);// outp is a 4-bit bus
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16.7. $random
$random generates a random integer every time it is called. If the sequence is to be repeatable, the first time one
invokes random give it a numerical argument (a seed). Otherwise the seed is derived from the computer clock.

16.8. $dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall
These can dump variable changes to a simulation viewer like cwaves. The dump files are capable of dumping all the
variables in a simulation. This is convenient for debugging, but can be very slow.

16.9. $shm_probe, $shm_open
These are special commands for the Simulation History Manager for Cadence cwaves only. They will save variable
changes for later display.

Syntax

xzz = $random[(integer)];

Example 16 .3
reg [3:0] xyz;
initial begin

xyz= $random (7); // Seed the generator so number
// sequence will repeat if simulation is restarted.

forever xyz = #20 $random;
// The 4 lsb bits of the random integers will transfer into the
// xyz. Thus xyz will be a random integer 0 ≤ xyz ≤ 15.

Syntax

$dumpfile(“filename.dmp”)
$dumpvar dumps all variables in the
design.
$dumpvar(1, top) dumps all the varia-
bles in module top and below, but not
modules instantiated in top.
$dumpvar(2, top) dumps all the varia-
bles in module top and 1 level below.
$dumpvar(n, top) dumps all the varia-
bles in module top and n-1 levels below.
$dumpvar(0, top) dumps all the varia-
bles in module top and all level below.
$dumpon initiates the dump.
$dumpoff stop dumping.

Example 16 .4

// Test Bench
module testbench:
reg a, b; wire c;
initial begin;

$dumpfile(“cwave_data.dmp”);
$dumpvar //Dump all the variables

// Alternately instead of $dumpvar, one could use
$dumpvar(1, top) //Dump variables in the top module.

// Ready to turn on the dump.
$dumpon

a=1; b=0;
topmodule top(a, b, c);

end

Syntax

$shm_open (“cwave_dump.dm”)
$shm_probe (var1,var2, var3);
/* Dump all changes in the above 3 varia-
bles. */
$shm_probe(a, b, inst1.var1, inst1.var2);
/* Use the qualifier inst1. to look inside
the hierarchy. Here inside module
instance “inst1” the variables var1 and
var2 will be dumped.*/

Example 16 .5

// Test Bench
module testbench:
reg a, b; wire c;
initial begin;

$shm_open(“cwave_data.dmp”);
$shm_probe(a, b, c)

/* See also the testbench example in “Test Benches” on p. 30
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16.10. Writing to a File; $fopen, $fdisplay, $fstrobe $fmonitor and $fwrite
These commands write more selectively to files.

$fopen opens an output file and gives the open file a handle for use by the other commands.
$fclose closes the file and lets other programs access it.
$fdisplay and $fwrite write formated data to a file whenever they are executed. They are the same except $fdisplay
inserts a new line after every execution and $write does not.
$strobe also writes to a file when executed, but it waits until all other operations in the timestep are complete before
writing. Thus initial #1 a=1; b=0; $fstrobe(hand1, a,b); b=1; will write write 1 1 for a and b.
$monitor writes to a file whenever any one of its arguments changes.
See “Display Selected Variables; $display, $strobe, $monitor” on page 27 for the meaning of %h, %b etc in the
example.

Syntax

handle1=$fopen(“filenam1.suffix”)
handle2=$fopen(“filenam2.suffix”)

$fstrobe(handle1, format, variable list)
//strobe data into filenam1.suffix

$fdisplay((handle2, format, variable list)
//write data into filenam2.suffix

$fwrite((handle2, format, variable list)
//write data into filenam2.suffix all on
// one line. Put \n in the format string
// where a new line is desired.

See Sect 16.1.for examples of format.

Example 16 .6 Output values every clock cycle

// Test Bench
module testbench:
reg [15:0]a; reg clk; integer hand1;
initial begin;

hand1=$fopen(“datastuff.txt”);
forever @(posedge clk) begin

$fstrobe (hand1, “time=%5t, a=%h, c=%b”,
$time, a, submod1.c);.

end // Never put statements after a forever block.
end

initial begin
clk=0; a=8’h2b;
forever #5 clk=~clk;

end // Never put statements after a forever block
initial begin

a=a+8;
#3000 $fclose (hand1); // Close the file

$finish;
end

submod submod1(a, clk); // with internal variable c.
endmodule
-------------------------------- Output ---------------------------
time= 5, a=2b, c=0
time= 10, a=2c, c=1
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A test bench supplies the signals and dumps the outputs to simulate a Verilog design (module(s)). It invokes the
design under test, generates the simulation input vectors, and implements the system tasks to view/format the results
of the simulation. It is never synthesized so it can use all Verilog commands.
To view the waveforms when using Cadence Verilog XL Simulator, use the Cadence-specific Simulation History
Manager (SHM) tasks of $shm_open to open the file to store the waveforms, and $shm_probe to specify the varia-
bles to be included in the waveforms list. You can then use the Cadence cwaves waveform viewer by typing cwaves
& at the UNIX prompt.

17. Test Benches

Syntax

$shm_open(filename);
$shm_probe(var1, var2, ...)

Note also
var=$random
wait(condition) statement

Example 17 .1
‘timescale 1 ns /100 ps // time unit = 1ns; precision = 1/10 ns;

module my_fsm_tb; // Test Bench of FSM Design of Example 14.1
/* ports of the design under test are variables in the test bench */
reg clk, rst, start, skip3, wait3;
wire Button;

/**** DESIGN TO SIMULATE (my_fsm) INSTANTIATION ****/
my_fsm dut1 (clk, rst, start, skip3, wait3, Button);

/**** SECTION TO DISPLAY VARIABLES ****/
initial begin

$shm_open(“sim.db”); //Open the SHM database file
/* Specify the variables to be included in the waveforms to be

viewed by Cadence cwaves */
$shm_probe(clk, reset, start);
// Use the qualifier dut1. to look at variables inside the instance dut1.

$shm_probe(skip3, wait3, Button, dut1.state, dut1.nxt_st);
end

/**** RESET AND CLOCK SECTION ****/
initial begin

clk = 0; rst=0;
#1 rst = 1; // The delay gives rst a posedge for sure.
#200 rst = 0; // Deactivate reset after two clock cycles +1 ns*/

end
always #50 clk = ~clk; // 10 MHz clock (50*1 ns*2) with 50% duty-cycle

/**** SPECIFY THE INPUT WAVEFORMS skip3 & wait3 ****/
initial begin

skip3 = 0; wait3 = 0; // at time 0, wait3=0, skip3=0
#1; // Delay to keep inputs from changing on clock edge.
#600 skip3 = 1; // at time 601, wait3=0, skip3=1
#400 wait3 = 1; // at time 1001, wait3=1, skip3=0

skip3= 0;
#400 skip3 = 1; // at time 1401, wait3=1, skip3=1
wait(Button) skip3 = 0; // Wait until Button=1, then make skip3 zero.

wait3 = $random; //Generate a random number, transfer lsb into wait3
$finish; // stop simulation. Without this it will not stop.

end
endmodule
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17.1. Synchronous Test Bench
In synchronous designs, one changes the data during certain clock cycles. In the previous test bench one had to keep
counting delays to be sure the data came in the right cycle. With a synchronous test bench the input data is stored in a
vector or array and one part injected in each clock cycle. The Verilog array is defined in Section 18.

The disable statement, Sect. 16.1. can be useful in synchronous test benches.
Synchronous test benches are essential for cycle based simulators which do not use any delays smaller than a clock
cycle.

Things to note:
data[8:1]=8'b1010_1101;
The underscore visually separates the
bits. It is ignored by the simulator.

if (I==9) $finish;
When the data is used up, finish

x<=data[I]; I<=I+1;
When synthesizing to flip-flops as in an In
an @(posedge... procedure,
always use nonblocking. Without that

you will be racing with the flip-flops in
the other modules.

Example 17 .2

// Synchronous test bench
module SynchTstBch:

reg [8:1] data;
reg x,clk;
integer I;

initial begin
data[8:1]=8'b1010_1101; // Underscore spaces bits.
I=1;
x=0;
clk=0;
forever #5 clk= ~clk;

// Any statements placed after forever will never be reached!
end

/*** Send in a new value of x every 3rd clock cycle***/
always

begin: data_in_proc
@(posedge clk)

if (I= =9) $finish; // End simulation
@(posedge clk) // Wait here for the 2nd clock edge.
@(posedge clk) // After the 3rd edge execute begin ...

begin
#1; // Keeps data from changing on clock edge.

x<=data[I];
I<=I+1;

end
end // data_in_proc

topmod top1(clk, x);

endmodule
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18.1. Two-Dimensional Arrays
Two dimensional arrays can be declared and accessed by word. To get at a bit(s) one must equate the output to a

register or wire and select the bits from this new variable. See Example 18 .1

18.1.1 Initializing Memory From a File
The command $readmemb will read a file of binary numbers into the array. The data file consists of addresses and

data. An address written in hex as @hhh...and indicates the address of the first word in a block of data. It is followed
by binary data words separated by blanks. Legal binary bits are “0 1 x X z Z _”. Data not included in the file will be
given xxx... values. The data may be given in noncontiguous blocks if an address proceeds each block. If no initial
address is given, @000 is assumed for the first data word. Comments are allowed in data files.

If start_addr is given the memory array will be filled starting at that address and continue until finish_addr (or the
end of the array) is reached. One must have start address ≤ @hhh..., the initial address in the file.

The command $readmemh is similar except the data must contain hexadecimal numbers.

18. Memorys

Syntax
reg [wordsize:0] array [0:arraysize]

readmemb(“file_name”, array_name);
readmemb(“file_name”, array_name,

start_addr);
readmemb(“file_name”, array_name,

start_addr, finish_addrs);

readmemh(“file_name”, array_name);
// start_addr and finish addr are optional

Example 18 .1
reg [7:0] memry [0:31]; // 32 byte memory.
wire [7:0] memwrd;
wire x;
initial begin

// Initialize memory contents from file.
$readmemb(“init.dat”, memry, 8);

// words 8 and 9 are not in the file and will default to x.
end

- - -
// Extract last word in memory.

assign memwrd= memry[31];
// Extract most sig bit in word 31

assign x= memwrd[7];

------------------------------- file init.dat-------------------------------
// Since start_addr =8 memry[0:9] will all be stored as xxxxxxxx.
@00A //
10101100 11110000 1x000x11 11110101 01011010 01001100
XxxxZzzz 00000000
@01E // 5'h1E = 5'd30. Underscore gives readability.
1100_1010 00011_0001


