

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1997 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1997. Printed in the United States of America.

ISBN 1-55937-923-5

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1076.3-1997

IEEE Standard VHDL Synthesis
Packages

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 20 March 1997

IEEE Standards Board

Abstract:

The current

interpretation of common logic values and the association of numeric values
to specific VHDL array types is described. This standard provides semantic for the VHDL synthesis
domain, and enables formal verification and simulation acceleration in the VHDL based design. The
standard interpretations are provided for values of standard logic types defined by IEEE Std 1164-
1993, and of the BIT and BOOLEAN types defined in IEEE Std 1076-1993. The numeric types
SIGNED and UNSIGNED and their associated operators define integer and natural number arith-
metic for arrays of common logic values. TwoÕs complement and binary encoding techniques are
used. The numeric semantic is conveyed by two VHDL packages. This standard also contains any
allowable modifications.

Keywords:

 interpretations, metalogical values, numeric VHDL vector types, signed, synthesis, un-
signed

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinat-
ing Committees of the IEEE Standards Board. Members of the committees serve voluntarily and
without compensation. They are not necessarily members of the Institute. The standards developed
within IEEE represent a consensus of the broad expertise on the subject within the Institute as well
as those activities outside of IEEE that have expressed an interest in participating in the develop-
ment of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply
that there are no other ways to produce, test, measure, purchase, market, or provide other goods and
services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard. Every IEEE Standard is sub-
jected to review at least every Þve years for revision or reafÞrmation. When a document is more
than Þve years old and has not been reafÞrmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reßect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership afÞliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as
they relate to speciÞc applications. When the need for interpretations is brought to the attention of
IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards rep-
resent a consensus of all concerned interests, it is important to ensure that any interpretation has
also received the concurrence of a balance of interests. For this reason, IEEE and the members of its
societies and Standards Coordinating Committees are not able to provide an instant response to
interpretation requests except in those cases where the matter has previously received formal
consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is
granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate
fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact
Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA;
(508) 750-8400. Permission to photocopy portions of any individual standard for educational class-
room use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

iii

Introduction

(This introduction is not a part of IEEE Std 1076.3-1997, IEEE Standard VHDL Synthesis Packages.)

This standard, IEEE Std 1076.3-1997, supports the synthesis and veriÞcation of hardware designs, by deÞn-
ing vector types for representing signed or unsigned integer values and providing standard interpretations of
widely used scalar VHDL values.

The standardization activity started during the development of IEEE Std 1076-1993, IEEE Standard VHDL
Language Reference Manual, to address a number of issues in the synthesis area that could not be ade-
quately addressed within the scope of the main 1076 project.

The initial Synthesis Special Interest Group (SSIG) analyzed a wide range of requirements and grouped
them in four categories:

a) Standard Interpretations of IEEE Std 1164-1993 values for synthesis
b) Numeric types for synthesis
c) Special attribute semantics
d) Constraint speciÞcation

Consensus was reached only on solutions presented for categories a) and b). The large working group then
commissioned a Pilot Team to drive the standardization effort. The three standardization chapters (North
America, Europe, and Asia-PaciÞc) were all represented in the Pilot Team. The active members of the Pilot
Team were the following:

Alex N. ZamÞrescu,

Chair

The hard work and professionalism of the Pilot Team members contributed signiÞcantly to the Þnal result.
Although the Working Group met regularly and voted on all major issues, the Pilot Team also extensively
used electronic mail, a common repository, and several World Wide Web pages to accelerate the completely
voluntary standardization process of the IEEE. A simple VHDL test suite (not part of the standard) that exer-
cises and veriÞes the packages was also produced during standardization. A set of axioms and formal prop-
erties involving standard operators has been formally proven.

Wolfgang Ecker European Chapter Representative
Kazuhiro Yoshinaga Asia-PaciÞc Chapter Chair
Rob Anderson Library Design Chair
J. Bhasker Ballot Comment Resolution Chair
David Bishop Repository and WWW Account Administrator
Dominique Borrione Leader, Formal VeriÞcation Effort
James H. Vellenga Documentation and Pilot Team Co-Chair
Rob Dekker
Bob Flatt
Chris Kingsley

iv

Individuals from many organizations participated in the development of IEEE Std 1076.3-1997. In addition
to members of the Pilot Team, the following individuals attended meetings of the Synthesis Working Group:

The following persons were on the balloting committee:

Masamichi Kawarabayashi
Chi Lai Huang
Naotaka Maeda
Sabine Maertz
Kiyoshi Makino
Yasunori Mako
Erich Marschner
Victor M. Martin
Francoise Martinolle
Michael McKinney
Adam Morawiec
Yutaka Murase
Zainalabedin Navabi
Kevin OÕBrien

Dave Ackley
Mart Altm�e
Jean-Michel Berg�
Glenn Boysko
Joanne DeGroat
Allen Dewey
Iain Finlay
Bj�rn Fjellborg
Chris Flynn
Brian GrifÞn
Bradley Grove
James P. Hanna
John Hillawi
Robert Hillman
Masaharu Imai

Venu Pemmaraju
C. R. Ramesh
Ray Ryan
Larry F. Saunders
Jay Schleicher
Quentin Schmierer
Kenneth E. Scott
Manfred Selz
Hirotake Shinde
Dennis Soderberg
Yuri Tatarnikov
Victor Toporkov
Tatiana Trondora
Kerry Veenstra
Eugenio Villar

Mostapha Aboulhamid
John Ainscough
Robert E. Anderson
LaNae Avra
Pete Bakowski
Daniel S. Barclay
David L. Barton
Mike Beaver
Jean-Michel Berg�
Victor Berman
J. Bhasker
William D. Billowitch
Dominique Borrione
Dennis B. Brophy
Walter H. Burkhardt
Raul Camposano
Todd P. Carpenter
Moon Jung Chung
David Coelho
Edmond S. Cooley
Alan Coppola
Robert A. Cottrell
Timothy R. Davis
Allen Dewey
Michael A. Dukes
Douglas D. Dunlop
William Fazakerly
Robert A. Flatt
Walter Geisselhardt
Brian GrifÞn
Richard Grisel
Steve Grout
Andrew Guyler
James P. Hanna
William A. Hanna
Randolph E. Harr
Frederick Hill
Robert G. Hillman
Kazuyuki Hirakawa
Paul W. Horstmann
Yee-Wing Hsieh

Yu-I Hsieh
Christophe Hui Bon Hoa
Sylvie Hurat
Masaharu Imai
Mitsuaki Ishikawa
Stephen Ives
David Jakopac
Takashi Kambe
Masamichi Kawarabayashi
Choon B. Kim
Chris Kingsley
Stanley J. Krolikoski
Charles R. Lang
Marc Laurent
Jean Lebrun
Steven Levitan
Bob Lisanke
Alfred Lowenstein
Rajeev Madhavan
Naotaka Maeda
Serge Maginot
Maqsoodul Mannan
F. Erich Marschner
Victor M. Martin
Peter Marwedel
Paul J. Menchini
Jean Mermet
Gerald T. Michael
Israel Michel
Toshio Misawa
John T. Montague
Larry Moore
Gabe Moretti
Vijay Nagasamy
Zainalabedin Navabi
Wolfgang W. Nebel
Kevin OÕBrien
Eamonn OÕBrien-Strain
Yoichi Onishi
Mauro Pipponzi

Gary S. Porter
Adam Postula
Jean Pouilly
Shiv Prakash
Paolo Prinetto
Jan Pukite
Hemant G. Rotithor
Jacques Rouillard
Ray Ryan
Johan Sandstrom
Larry F. Saunders
Quentin Schmierer
Kenneth E. Scott
Francesco Sforza
Moe Shahdad
Ravi Shankar
Balmukund Sharma
Charles Shelor
Raj Singh
Supreet Singh
David W. Smith
William Bong H. Soon
Alec G. Stanculescu
Balsha R. Stanisic
Michael F. Sullivan
Charles Swart
Peter Trajmar
Fatehy El-Turky
Cary Ussery
James H. Vellenga
Ranganadha R. Vemuri
Venkat V. Venkataraman
Eugenio Villar
Martin J. Walter
Greg Ward
Ronald Waxman
Alan Whittaker
John C. Willis
Alex N. ZamÞrescu
Reinhard Zippelius
Mark Zwolinski

v

When the IEEE Standards Board approved this standard on 20 March 1997, it had the following
membership:

Donald C. Loughry,

 Chair

Richard J. Holleman,

Vice Chair

Andrew G. Salem,

Secretary

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
Alan H. Cookson

Kim Breitfelder

IEEE Standards Project Editor

Clyde R. Camp
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Thomas F. Garrity
Donald N. Heirman
Jim Isaak
Ben C. Johnson

Lowell Johnson
Robert Kennelly
E. G. ÒAlÓ Kiener
Joseph L. KoepÞnger*
Stephen R. Lambert
Lawrence V. McCall
L. Bruce McClung
Marco W. Migliaro

Louis-Fran�ois Pau
Gerald H. Peterson
John W. Pope
Jose R. Ramos
Ronald H. Reimer
Ingo R�sch
John S. Ryan
Chee Kiow Tan
Howard L. Wolfman

vi

Contents

1. Overview.. 1

1.1 Scope.. 1
1.2 Terminology... 1
1.3 Conventions ... 2

2. References.. 2

3. Definitions.. 2

4. Interpretation of the standard logic types... 3

4.1 The STD_LOGIC_1164 values ... 3
4.2 Static constant values... 4
4.3 Interpretation of logic values ... 4

5. The STD_MATCH function .. 6

6. Signal edge detection ... 6

7. Standard arithmetic packages .. 6

7.1 Allowable modifications.. 8
7.2 Compatibility with IEEE Std 1076-1987... 9
7.3 The package texts... 9

Annex A (informative) Notes on the package functions ... 39

A.1 General considerations... 39
A.2 Arithmetic operator functions .. 40
A.3 Relational operator functions... 41
A.4 Shift functions.. 42
A.5 Type conversion functions... 42
A.6 Logical operator functions ... 43
A.7 The STD_MATCH function .. 43

IEEE Standard VHDL Synthesis
Packages

1. Overview

1.1 Scope

This standard deÞnes standard practices for synthesizing binary digital electronic circuits from VHDL
source code. It includes the following:

a) The hardware interpretation of values belonging to the BIT and BOOLEAN types deÞned by IEEE
Std 1076-19931 and to the STD_ULOGIC type deÞned by IEEE Std 1164-1993.

b) A function (STD_MATCH) that provides ÒdonÕt careÓ or Òwild cardÓ testing of values based on the
STD_ULOGIC type.

c) Standard functions for representing sensitivity to the edge of a signal.

d) Two packages that deÞne vector types for representing signed and unsigned arithmetic values, and
that deÞne arithmetic, shift, and type conversion operations on those types.

This standard is designed for use with IEEE Std 1076-1993. ModiÞcations that may be made to the packages
for use with the previous edition, IEEE Std 1076-1987, are described in 7.2.

1.2 Terminology

The word shall indicates mandatory requirements strictly to be followed in order to conform to the standard
and from which no deviation is permitted (shall equals is required to). The word should is used to indicate
that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain
course of action is deprecated but not prohibited (should equals is recommended that). The word may indi-
cates a course of action permissible within the limits of the standard (may equals is permitted).

A synthesis tool is said to accept a VHDL construct if it allows that construct to be legal input; it is said to
interpret the construct (or to provide an interpretation of the construct) by producing something that repre-
sents the construct. A synthesis tool is not required to provide an interpretation for every construct that it
accepts, but only for those for which an interpretation is speciÞed by this standard.

1Information on references can be found in Clause 2.
1

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL

1.3 Conventions

This standard uses the following conventions:

a) The body of the text of this standard uses boldface to denote VHDL reserved words (such as
downto) and upper case to denote all other VHDL identiÞers (such as REVERSE_RANGE or
FOO).

b) The text of the VHDL packages deÞned by this standard, as well as the text of VHDL examples and
code fragments, is represented in a Þxed-width font. All such text represents VHDL reserved words
as lower case text and all other VHDL identiÞers as upper case text.

c) In the body of the text, italics denote words or phrases that are being deÞned by the paragraph in
which they occur.

d) VHDL code fragments not supported by this standard are denoted by an italic Þxed-width font.

2. References

This standard shall be used in conjunction with the following publications. When the following standards are
superseded by an approved revision, the revision shall apply.

IEEE Std 1076-1993, IEEE Standard VHDL Language Reference Manual (ANSI).2

IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(Std_logic_1164) (ANSI).

3. DeÞnitions

Terms used in this standard, but not deÞned in this clause, are assumed to be from IEEE Std 1076-1993 and
IEEE Std 1164-1993.

3.1 argument: An expression occurring as the actual value in a function call or procedure call.

3.2 arithmetic operation: An operation for which the VHDL operator is +, -, *, /, mod, rem, abs, or **.

3.3 assignment reference: The occurrence of a literal or other expression as the waveform element of a sig-
nal assignment statement or as the right-hand side expression of a variable assignment statement.

3.4 donÕt care value: The enumeration literal Ô-Õ of the type STD_ULOGIC deÞned by IEEE Std 1164-
1993.

3.5 equality relation: A VHDL relational expression in which the relational operator is =.

3.6 high-impedance value: The enumeration literal ÔZÕ of the type STD_ULOGIC deÞned by IEEE Std
1164-1993.

3.7 inequality relation: A VHDL relational expression in which the relational operator is /=.

3.8 logical operation: An operation for which the VHDL operator is and, or, nand, nor, xor, xnor, or not.

3.9 metalogical value: One of the enumeration literals ÔUÕ, ÔXÕ, ÔWÕ, or Ô-Õ of the type STD_ULOGIC
deÞned by IEEE Std 1164-1993.

2IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA.
2

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997

3.10 ordering relation: A VHDL relational expression in which the relational operator is <, <=, >, or >=.

3.11 shift operation: An operation for which the VHDL operator is sll, srl, sla, sra, rol, or ror.

3.12 standard logic type: The type STD_ULOGIC deÞned by IEEE Std 1164-1993, or any type derived
from it, including, in particular, one-dimensional arrays of STD_ULOGIC or of one of its subtypes.

3.13 synthesis tool: Any system, process, or tool that interprets VHDL source code as a description of an
electronic circuit in accordance with the terms of this standard and derives an alternate description of that
circuit.

3.14 user: A person, system, process, or tool that generates the VHDL source code that a synthesis tool pro-
cesses.

3.15 vector: A one-dimensional array.

3.16 well-deÞned: Containing no metalogical or high-impedance element values.

4. Interpretation of the standard logic types

This clause deÞnes how a synthesis tool shall interpret values of the standard logic types deÞned by IEEE
Std 1164-1993 and of the BIT and BOOLEAN types deÞned by IEEE Std 1076-1993. Simulation tools,
however, shall continue to interpret these values according to the standards in which the values are deÞned.

4.1 The STD_LOGIC_1164 values

IEEE Std 1164-1993 deÞnes the standard logic type:

type STD_ULOGIC is (ÕUÕ, -- Uninitialized
 ÕXÕ, -- Forcing Unknown
 Õ0Õ, -- Forcing 0
 Õ1Õ, -- Forcing 1
 ÕZÕ, -- High Impedance
 ÕWÕ, -- Weak Unknown
 ÕLÕ, -- Weak 0
 ÕHÕ, -- Weak 1
 Õ-Õ -- DonÕt care
);

The logical values Ô1Õ, ÔHÕ, Ô0Õ, and ÔLÕ are interpreted as representing one of two logic levels, where each
logic level represents one of two distinct voltage ranges in the circuit to be synthesized.

IEEE Std 1164-1993 also deÞnes a resolution function named RESOLVED and a subtype STD_LOGIC that
is derived from STD_ULOGIC by using RESOLVED. The resolution function RESOLVED treats the values
Ô0Õ and Ô1Õ as forcing values that override the weak values ÔLÕ and ÔHÕ when multiple sources drive the same
signal.

The values ÔUÕ, ÔXÕ, ÔWÕ, and Ô-Õ are metalogical values; they deÞne the behavior of the model itself rather
than the behavior of the hardware being synthesized. The value ÔUÕ represents the value of an object before
it is explicitly assigned a value during simulation; the values ÔXÕ and ÔWÕ represent forcing and weak values,
respectively, for which the model is not able to distinguish between logic levels.

The value Ô-Õ is also called the donÕt care value. This standard treats it in the same way as the other metalog-
ical values except when it is furnished as an argument to the STD_MATCH functions in the
3

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL

IEEE.NUMERIC_STD package. The STD_MATCH functions use Ô-Õ to implement a Òmatch allÓ or Òwild
cardÓ matching.

The value ÔZÕ is called the high-impedance value, and represents the condition of a signal source when that
source makes no effective contribution to the resolved value of the signal.

4.2 Static constant values

Wherever a synthesis tool accepts a reference to a locally static or globally static named constant, it shall
treat that constant as the equivalent of the associated static expression.

4.3 Interpretation of logic values

This subclause describes the interpretations of logic values occurring as literals (or in literals) after a synthe-
sis tool has replaced named constants by their corresponding values.

4.3.1 Interpretation of the forcing and weak values (Ô0Õ, Ô1Õ, ÔLÕ, ÔHÕ, FALSE, TRUE)

A synthesis tool shall interpret the following values as representing a logic value 0:

Ñ The BIT value Ô0Õ.
Ñ The BOOLEAN value FALSE.
Ñ The STD_ULOGIC values Ô0Õ and ÔLÕ.

It shall interpret the following values as representing a logic value 1:

Ñ The BIT value Ô1Õ.
Ñ The BOOLEAN value TRUE.
Ñ The STD_ULOGIC value Ô1Õ and ÔHÕ.

This standard makes no restriction as to the interpretation of the relative strength of values.

4.3.2 Interpretation of the metalogical values (ÔUÕ, ÔWÕ, ÔXÕ, Ô-Õ)

4.3.2.1 Metalogical values in relational expressions

If the VHDL source code includes an equality relation (=) for which one operand is a static metalogical
value and for which the other operand is not a static value, a synthesis tool shall interpret the equality rela-
tion as equivalent to the BOOLEAN value FALSE. If one operand of an equality relation is a vector, and one
element of that vector is a static metalogical value, a synthesis tool shall interpret the entire equality relation
as equivalent to the BOOLEAN value FALSE.

A synthesis tool shall interpret an inequality relation (/=) for which one operand is or contains a static meta-
logical value, and for which the other operand is not a static value, as equivalent to the BOOLEAN value
TRUE.

A synthesis tool shall treat an ordering relation for which at least one operand is or contains a static metalog-
ical value as an error.

4.3.2.2 Metalogical values as a choice in a case statement

If a metalogical value occurs as a choice, or as an element of a choice, in a case statement that is interpreted
by a synthesis tool, the synthesis tool shall interpret the choice as one that can never occur. That is, the inter-
4

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997

pretation that is generated is not required to contain any constructs corresponding to the presence or absence
of the sequence of statements associated with the choice.

Whenever a synthesis tool interprets a case statement alternative that associates multiple choices with a sin-
gle sequence of statements, it shall produce an interpretation consistent with associating the sequence of
statements with each choice individually.

Whenever a synthesis tool interprets a selected signal assignment statement, it shall interpret the selected
signal assignment statement as if it were the case statement in the equivalent process as deÞned by IEEE Std
1076-1993.

4.3.2.3 Metalogical values in logical, arithmetic, and shift operations

When a static metalogical value occurs as all of, or one element of, an operand to a logical, arithmetic, or
shift operation, and when the other operand to the operation is not a static value, a synthesis tool shall treat
the operation as an error.

4.3.2.4 Metalogical values in concatenate operations

If a static metalogical value occurs as all of, or as one element of, an operand to the concatenate (&) opera-
tor, a synthesis tool shall treat it as if it had occurred as the corresponding element of the expression formed
by the concatenate operation.

4.3.2.5 Metalogical values in type conversion and sign-extension functions

If a static metalogical value occurs as all of, or as one element of, the value argument to a type conversion or
sign-extension function, a synthesis tool shall treat it as if it had occurred as the corresponding element of
the expression formed by the function call.

4.3.2.6 Metalogical values used in assignment references

A synthesis tool shall accept a static metalogical value used as all of, or as one element of, an assignment
reference, but is not required to provide any particular interpretation of that metalogical value.

4.3.3 Interpretation of the high-impedance value (ÔZÕ)

If the static value ÔZÕ occurs as an assignment reference in a signal assignment statement, a synthesis tool
shall interpret the assignment as implying the equivalent of a three-state buffer that is disabled when the con-
ditions under which the assignment occurs is true. The output of the three-state buffer is the target of the
assignment. The input of the three-state buffer is the logic network that represents the value of the target
apart from any assignments to ÔZÕ.

If the ÔZÕ occurs as one or more elements of an assignment reference in a signal assignment statement, a syn-
thesis tool shall interpret each such occurrence as implying the equivalent of a three-state buffer in the man-
ner deÞned by the preceding paragraph.

This standard does not specify an interpretation when a static value ÔZÕ occurs as all of, or one bit of, an
assignment reference in a variable assignment statement.

Whenever a static high-impedance value occurs in any context other than an assignment reference, a synthe-
sis tool shall treat it as equivalent to a static metalogical value.

NOTEÑA signal assignment statement that assigns one or more bits of a signal to ÔZÕ unconditionally implies the equiv-
alent of a three-state buffer that is always disabled. A synthesis tool may choose to ignore such assignments.
5

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL

5. The STD_MATCH function

The NUMERIC_STD package deÞned by this standard deÞnes functions named STD_MATCH to provide
wild card matching for the donÕt care value. Whenever the STD_MATCH function compares two arguments
which are STD_ULOGIC values, it returns TRUE if and only if:

Ñ Both values are well-deÞned and the values are the same, or
Ñ One value is Ô0Õ and the other is ÔLÕ, or
Ñ One value is Ô1Õ and the other is ÔHÕ, or
Ñ At least one of the values is the donÕt care value (Ô-Õ).

Whenever the STD_MATCH function compares two arguments which are vectors whose elements belong to
the STD_ULOGIC type or to one of its subtypes, it returns TRUE if and only if:

a) The operands have the same length, and
b) STD_MATCH applied to each pair of matching elements returns TRUE.

When one of the arguments to the STD_MATCH function is a static value and the other is not, a synthesis
tool shall interpret the call to the STD_MATCH function as equivalent to an equality test on matching ele-
ments of the arguments, excepting those elements of the static value which are equal to Ô-Õ.

NOTEÑIf any argument value passed to STD_MATCH is or contains a metalogical or high-impedance value other than
Ô-Õ, the function returns FALSE.

6. Signal edge detection

Wherever a synthesis tool interprets a particular expression as the edge of a signal, it shall also interpret the
function RISING_EDGE as representing a rising edge and the function FALLING_EDGE as representing a
falling edge, where RISING_EDGE and FALLING_EDGE are the functions declared either by the package
STD_LOGIC_1164 of IEEE Std 1164-1993 or by the NUMERIC_BIT package of this standard.

7. Standard arithmetic packages

Two VHDL packages are deÞned by this standard. The NUMERIC_BIT package is based on the VHDL type
BIT, while the second package, NUMERIC_STD, is based on the subtype STD_LOGIC of the type
STD_ULOGIC. Simulations based on the subprograms of the NUMERIC_BIT package ordinarily require
less execution time, because the subprograms do not have to deal with operands containing metalogical or
high-impedance values. Use of the subprograms of the NUMERIC_STD package allow simulation to detect
the propagation or generation of metalogical values.

Each package deÞnes a vector type named SIGNED and a vector type named UNSIGNED. The type
UNSIGNED represents an unsigned binary integer with the most signiÞcant bit on the left, while the type
SIGNED represents a twoÕs-complement binary integer with the most signiÞcant bit on the left. In particular,
a one-element SIGNED vector represents the integer values Ð1 and 0.

The two packages are mutually incompatible, and only one shall be used in any given design unit. To facili-
tate changing from one package to the other, most of the subprograms declared in one package are also
declared for corresponding arguments in the other. Exceptions are when:

a) The NUMERIC_BIT package declares the functions RISING_EDGE and FALLING_EDGE; the
corresponding functions for STD_ULOGIC are declared by the STD_LOGIC_1164 package.
6

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997

b) The NUMERIC_STD package declares the STD_MATCH functions, which give special treatment
to the donÕt care value, whereas the BIT-based types of the NUMERIC_BIT package have no donÕt
care values.

c) The NUMERIC_STD package declares the TO_01 functions, which may be applied to SIGNED
and UNSIGNED vector values, and which map the element values of the vectors to the
STD_ULOGIC values Ô0Õ and Ô1Õ and to a third value representing metalogical or high-impedance
values.

Table 1 shows the order of the function declarations within the package declarations.

Table 1ÑOrder of functions within packages

Function Id(s) NUMERIC_BIT NUMERIC_STD

A.1
A.2

abs
unary Ð

abs
unary Ð

A.3ÐA.8
A.9ÐA.14
A.15ÐA.20
A.21ÐA.26
A.27ÐA.32
A.33ÐA.38

binary +
binary Ð
*
/
rem
mod

binary +
binary Ð
*
/
rem
mod

C.1ÐC.6
C.7ÐC.12
C.13ÐC.18
C.19ÐC.24
C.25ÐC.30
C.31ÐC.36

>
<
<=
>=
=
/=

>
<
<=
>=
=
/=

S.1, S.3
S.2, S.4
S.5, S.7
S.6, S.8

SHIFT_LEFT
SHIFT_RIGHT
ROTATE_LEFT
ROTATE_RIGHT

SHIFT_LEFT
SHIFT_RIGHT
ROTATE_LEFT
ROTATE_RIGHT

S.9, S.10
S.11, S.12
S.13, S.14
S.15, S.16

(predeÞned in VHDL) sll
srl
rol
ror

R.1ÐR.2 RESIZE RESIZE

D.1-2
D.3
D.4

TO_INTEGER
TO_UNSIGNED
TO_SIGNED

TO_INTEGER
TO_UNSIGNED
TO_SIGNED

E.1
E.2

RISING_EDGE
FALLING_EDGE

(deÞned by the
STD_LOGIC_1164
package)

L.1, L.8
L.2, L.9
L.3, L.10
L.4, L.11
L.5, L.12
L.6, L.13
L.7, L.14

not
and
or
nand
nor
xor
xnor

not
and
or
nand
nor
xor
xnor

M.1ÐM.5 STD_MATCH

T.1ÐT.2 TO_01
7

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL

If a null array is furnished as an input argument to any subprogram declared by NUMERIC_BIT or
NUMERIC_STD, a synthesis tool shall treat it as an error.

All vector return values that are not null array values are normalized so that the direction of the index range
is downto and the right bound is 0. A vector return value that is a null array has the index range Ò0 downto 1Ó.

The package declarations use the following format to declare each function:

 -- Id: <id_nr>
function <designator> (<formal_parameter_list>) return <type_mark>;
 -- Result Subtype: <subtype_indication>
 -- Result: <description of function>

The elements of this format have the following meanings:

<id_nr>
A unique identiÞer of the form letter.number. A corresponding identiÞer appears at the beginning of the
corresponding function body in the package body for the same package.

<designator>
The function designator as deÞned by IEEE Std 1076-1993.

<formal_parameter_list>
The formal parameter list for the function as deÞned by IEEE Std 1076-1993.

<type_mark>
A type mark denoting the result subtype of the function as deÞned by IEEE Std 1076-1993.

<subtype_indication>
The subtype of the value returned by the function. If the result subtype of the function denotes an
unconstrained vector subtype, <subtype_indication> also includes an index constraint deÞning the
index range of the returned value in terms of sizes and values of the input parameters.
<subtype_indication> is syntactically a subtype indication as deÞned by IEEE Std 1076-1993.

<description of function>
An English language description of the operation performed by the function.

Both packages shall be analyzed into the library symbolically named IEEE.

7.1 Allowable modiÞcations

Vendors of tools conforming to this standard shall not modify the package declarations for NUMERIC_BIT
or NUMERIC_STD. However, a vendor may provide package bodies for either or both packages in which
subprograms are rewritten for more efÞcient simulation or synthesis, provided that the behavior of the
rewritten subprograms remains the same under simulation. The behavior of the original and rewritten sub-
programs are the same if, for any combination of input values, they return the same return values. The text of
messages associated with assertions may differ in the rewritten subprogram.

The package bodies for both packages declare a constant named NO_WARNING that has the value FALSE.
A user may set NO_WARNING to TRUE and reanalyze the package body to suppress warning messages
generated by calls to the functions in these packages. For this reason:

Ñ A tool vendor who rewrites the package body shall preserve the declaration of the NO_WARNING
constant to allow a user to suppress warnings by editing and reanalyzing the package body.

Ñ A simulation tool vendor who provides a preanalyzed version of the package body should also pro-
vide a mechanism for suppressing warning messages generated by the package functions.
8

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997

7.2 Compatibility with IEEE Std 1076-1987

The following functions from the NUMERIC_STD package are compatible with IEEE Std 1076-1993 but
not with the previous edition, IEEE Std 1076-1987:

a) "xnor"
b) "sll"
c) "srl"
d) "rol"
e) "ror"

To use these functions with a VHDL-based system that has not yet been upgraded to be compatible with IEEE
Std 1076-1993, a user or vendor may comment out the subprogram declarations and subprogram bodies.

In addition, IEEE Std 1076-1993 supports a character set that includes the copyright symbol (©). However,
IEEE Std 1076-1987 does not support this same character set. Therefore, in order to use the NUMERIC_BIT
and NUMERIC_STD packages with a system that has not yet been upgraded to be compatible with IEEE
Std 1076-1993, a user or vendor may replace the copyright symbol within the sources of those packages by a
left parenthesis, a lowercase Òc,Ó and a right parenthesis.

7.3 The package texts

The texts of the NUMERIC_BIT and NUMERIC_STD packages (both package declarations and package
bodies) are on the diskette that is included with this standard. Those texts are an ofÞcial part of this standard.
For the convenience of users, the package declarations are also included in the printed form of the standard.
Please consult the diskette for the contents of the package bodies.
9

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL

7.3.1 Package declaration for NUMERIC_BIT

-- ---
--
-- Copyright © 1997 by IEEE. All rights reserved.
--
-- This source file is an essential part of IEEE Std 1076.3-1997,
-- IEEE Standard VHDL Synthesis Packages. This source file may not be
-- copied, sold, or included with software that is sold without written
-- permission from the IEEE Standards Department. This source file may
-- be used to implement this standard and may be distributed in compiled
-- form in any manner so long as the compiled form does not allow direct
-- decompilation of the original source file. This source file may be
-- copied for individual use between licensed users. This source file is
-- provided on an AS IS basis. The IEEE disclaims ANY WARRANTY EXPRESS OR
-- IMPLIED INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR USE
-- FOR A PARTICULAR PURPOSE. The user of the source file shall indemnify
-- and hold IEEE harmless from any damages or liability arising out of the
-- use thereof.
--
-- This package may be modified to include additional data required by tools,
-- but it must in no way change the external interfaces or simulation behavior
-- of the description. It is permissible to add comments and/or attributes to
-- the package declarations, but not to change or delete any original lines of
-- the package declaration. The package body may be changed only in accordance
-- with the terms of 7.1 and 7.2 of this standard.
--
-- Title : Standard VHDL Synthesis Packages (IEEE Std 1076.3-1997, NUMERIC_BIT)
--
-- Library : This package shall be compiled into a library symbolically
-- : named IEEE.
--
-- Developers : IEEE DASC Synthesis Working Group.
--
-- Purpose : This package defines numeric types and arithmetic functions
-- : for use with synthesis tools. Two numeric types are defined:
-- : -- > UNSIGNED: represents an UNSIGNED number in vector form
-- : -- > SIGNED: represents a SIGNED number in vector form
-- : The base element type is type BIT.
-- : The leftmost bit is treated as the most significant bit.
-- : Signed vectors are represented in twoÕs complement form.
-- : This package contains overloaded arithmetic operators on
-- : the SIGNED and UNSIGNED types. The package also contains
-- : useful type conversions functions, clock detection
-- : functions, and other utility functions.
-- :
-- : If any argument to a function is a null array, a null array is
-- : returned (exceptions, if any, are noted individually).
--
-- Note : No declarations or definitions shall be included in, or
-- : excluded from, this package. The "package declaration" defines
-- : the types, subtypes, and declarations of NUMERIC_BIT. The
-- : NUMERIC_BIT package body shall be considered the formal
-- : definition of the semantics of this package. Tool developers
-- : may choose to implement the package body in the most efficient
-- : manner available to them.
-- :
-- ---
-- Version : 2.4
-- Date : 12 April 1995
-- ---
10

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997

package NUMERIC_BIT is
constant CopyRightNotice: STRING

:= "Copyright © 1997 IEEE. All rights reserved.";

--==
-- Numeric Array Type Definitions
--==

type UNSIGNED is array (NATURAL range <>) of BIT;
type SIGNED is array (NATURAL range <>) of BIT;

--==
-- Arithmetic Operators:
--==

-- Id: A.1
function "abs" (ARG: SIGNED) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Returns the absolute value of a SIGNED vector ARG.

-- Id: A.2
function "-" (ARG: SIGNED) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Returns the value of the unary minus operation on a
-- SIGNED vector ARG.

--==

-- Id: A.3
function "+" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(MAX(LÕLENGTH, RÕLENGTH)-1 downto 0)
-- Result: Adds two UNSIGNED vectors that may be of different lengths.

-- Id: A.4
function "+" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(MAX(LÕLENGTH, RÕLENGTH)-1 downto 0)
-- Result: Adds two SIGNED vectors that may be of different lengths.

-- Id: A.5
function "+" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Adds an UNSIGNED vector, L, with a nonnegative INTEGER, R.

-- Id: A.6
function "+" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Adds a nonnegative INTEGER, L, with an UNSIGNED vector, R.

-- Id: A.7
function "+" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Adds an INTEGER, L(may be positive or negative), to a SIGNED
-- vector, R.

-- Id: A.8
function "+" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Adds a SIGNED vector, L, to an INTEGER, R.

--==
11

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL

-- Id: A.9
function "-" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(MAX(LÕLENGTH, RÕLENGTH)-1 downto 0)
-- Result: Subtracts two UNSIGNED vectors that may be of different lengths.

-- Id: A.10
function "-" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(MAX(LÕLENGTH, RÕLENGTH)-1 downto 0)
-- Result: Subtracts a SIGNED vector, R, from another SIGNED vector, L,
-- that may possibly be of different lengths.

-- Id: A.11
function "-" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Subtracts a nonnegative INTEGER, R, from an UNSIGNED vector, L.

-- Id: A.12
function "-" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Subtracts an UNSIGNED vector, R, from a nonnegative INTEGER, L.

-- Id: A.13
function "-" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Subtracts an INTEGER, R, from a SIGNED vector, L.

-- Id: A.14
function "-" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Subtracts a SIGNED vector, R, from an INTEGER, L.

--==

-- Id: A.15
function "*" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED((LÕLENGTH+RÕLENGTH-1) downto 0)
-- Result: Performs the multiplication operation on two UNSIGNED vectors
-- that may possibly be of different lengths.

-- Id: A.16
function "*" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED((LÕLENGTH+RÕLENGTH-1) downto 0)
-- Result: Multiplies two SIGNED vectors that may possibly be of
-- different lengths.

-- Id: A.17
function "*" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED((LÕLENGTH+LÕLENGTH-1) downto 0)
-- Result: Multiplies an UNSIGNED vector, L, with a nonnegative
-- INTEGER, R. R is converted to an UNSIGNED vector of
-- size LÕLENGTH before multiplication.

-- Id: A.18
function "*" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED((RÕLENGTH+RÕLENGTH-1) downto 0)
-- Result: Multiplies an UNSIGNED vector, R, with a nonnegative
-- INTEGER, L. L is converted to an UNSIGNED vector of
-- size RÕLENGTH before multiplication.

-- Id: A.19
12

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997

function "*" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED((LÕLENGTH+LÕLENGTH-1) downto 0)
-- Result: Multiplies a SIGNED vector, L, with an INTEGER, R. R is
-- converted to a SIGNED vector of size LÕLENGTH before
-- multiplication.

-- Id: A.20
function "*" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED((RÕLENGTH+RÕLENGTH-1) downto 0)
-- Result: Multiplies a SIGNED vector, R, with an INTEGER, L. L is
-- converted to a SIGNED vector of size RÕLENGTH before
-- multiplication.

--==
--
-- NOTE: If second argument is zero for "/" operator, a severity level
-- of ERROR is issued.

-- Id: A.21
function "/" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Divides an UNSIGNED vector, L, by another UNSIGNED vector, R.

-- Id: A.22
function "/" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Divides an SIGNED vector, L, by another SIGNED vector, R.

-- Id: A.23
function "/" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Divides an UNSIGNED vector, L, by a nonnegative INTEGER, R.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.24
function "/" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Divides a nonnegative INTEGER, L, by an UNSIGNED vector, R.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

-- Id: A.25
function "/" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Divides a SIGNED vector, L, by an INTEGER, R.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.26
function "/" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Divides an INTEGER, L, by a SIGNED vector, R.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

--==
--
-- NOTE: If second argument is zero for "rem" operator, a severity level
-- of ERROR is issued.

-- Id: A.27
function "rem" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where L and R are UNSIGNED vectors.
13

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL

-- Id: A.28
function "rem" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where L and R are SIGNED vectors.

-- Id: A.29
function "rem" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where L is an UNSIGNED vector and R is a
-- nonnegative INTEGER.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.30
function "rem" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where R is an UNSIGNED vector and L is a
-- nonnegative INTEGER.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

-- Id: A.31
function "rem" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where L is SIGNED vector and R is an INTEGER.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.32
function "rem" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where R is SIGNED vector and L is an INTEGER.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

--==
--
-- NOTE: If second argument is zero for "mod" operator, a severity level
-- of ERROR is issued.

-- Id: A.33
function "mod" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L and R are UNSIGNED vectors.

-- Id: A.34
function "mod" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L and R are SIGNED vectors.

-- Id: A.35
function "mod" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L is an UNSIGNED vector and R
-- is a nonnegative INTEGER.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.36
function "mod" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where R is an UNSIGNED vector and L
-- is a nonnegative INTEGER.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.
14

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997

-- Id: A.37
function "mod" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L is a SIGNED vector and
-- R is an INTEGER.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.38
function "mod" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L is an INTEGER and
-- R is a SIGNED vector.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

--==
-- Comparison Operators
--==

-- Id: C.1
function ">" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.2
function ">" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.3
function ">" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.4
function ">" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L is a INTEGER and
-- R is a SIGNED vector.

-- Id: C.5
function ">" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.6
function ">" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L is a SIGNED vector and
-- R is a INTEGER.

--==

-- Id: C.7
function "<" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L and R are UNSIGNED vectors possibly
-- of different lengths.
15

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
-- Id: C.8
function "<" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.9
function "<" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.10
function "<" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.11
function "<" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.12
function "<" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L is a SIGNED vector and
-- R is an INTEGER.

--==

-- Id: C.13
function "<=" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.14
function "<=" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.15
function "<=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.16
function "<=" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.17
function "<=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L is an UNSIGNED vector and
16

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
-- R is a nonnegative INTEGER.

-- Id: C.18
function "<=" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L is a SIGNED vector and
-- R is an INTEGER.

--==

-- Id: C.19
function ">=" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.20
function ">=" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.21
function ">=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.22
function ">=" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.23
function ">=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.24
function ">=" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L is a SIGNED vector and
-- R is an INTEGER.

--==

-- Id: C.25
function "=" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.26
function "=" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.27
17

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
function "=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.28
function "=" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.29
function "=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.30
function "=" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L is a SIGNED vector and
-- R is an INTEGER.

--==

-- Id: C.31
function "/=" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.32
function "/=" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.33
function "/=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.34
function "/=" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.35
function "/=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.36
function "/=" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L is a SIGNED vector and
-- R is an INTEGER.
18

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
--==
-- Shift and Rotate Functions
--==

-- Id: S.1
function SHIFT_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a shift-left on an UNSIGNED vector COUNT times.
-- The vacated positions are filled with Bit Õ0Õ.
-- The COUNT leftmost bits are lost.

-- Id: S.2
function SHIFT_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a shift-right on an UNSIGNED vector COUNT times.
-- The vacated positions are filled with Bit Õ0Õ.
-- The COUNT rightmost bits are lost.

-- Id: S.3
function SHIFT_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a shift-left on a SIGNED vector COUNT times.
-- The vacated positions are filled with Bit Õ0Õ.
-- The COUNT leftmost bits are lost.

-- Id: S.4
function SHIFT_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a shift-right on a SIGNED vector COUNT times.
-- The vacated positions are filled with the leftmost bit, ARGÕLEFT.
-- The COUNT rightmost bits are lost.

--==

-- Id: S.5
function ROTATE_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a rotate-left of an UNSIGNED vector COUNT times.

-- Id: S.6
function ROTATE_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a rotate-right of an UNSIGNED vector COUNT times.

-- Id: S.7
function ROTATE_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a logical rotate-left of a SIGNED vector COUNT times.

-- Id: S.8
function ROTATE_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a logical rotate-right of a SIGNED vector COUNT times.

--==

--
-- Note: Function S.9 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.9
19

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
function "sll" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: SHIFT_LEFT(ARG, COUNT)

--
-- Note: Function S.10 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.10
function "sll" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: SHIFT_LEFT(ARG, COUNT)

--
-- Note: Function S.11 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.11
function "srl" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: SHIFT_RIGHT(ARG, COUNT)

--
-- Note: Function S.12 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.12
function "srl" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: SIGNED(SHIFT_RIGHT(UNSIGNED(ARG), COUNT))

--
-- Note: Function S.13 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.13
function "rol" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: ROTATE_LEFT(ARG, COUNT)

--
-- Note: Function S.14 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.14
function "rol" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: ROTATE_LEFT(ARG, COUNT)

--
-- Note: Function S.15 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.15
function "ror" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: ROTATE_RIGHT(ARG, COUNT)

--
-- Note: Function S.16 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
20

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
--
-- Id: S.16
function "ror" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: ROTATE_RIGHT(ARG, COUNT)

--==
-- RESIZE Functions
--==

-- Id: R.1
function RESIZE (ARG: SIGNED; NEW_SIZE: NATURAL) return SIGNED;
-- Result subtype: SIGNED(NEW_SIZE-1 downto 0)
-- Result: Resizes the SIGNED vector ARG to the specified size.
-- To create a larger vector, the new [leftmost] bit positions
-- are filled with the sign bit (ARGÕLEFT). When truncating,
-- the sign bit is retained along with the rightmost part.

-- Id: R.2
function RESIZE (ARG: UNSIGNED; NEW_SIZE: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(NEW_SIZE-1 downto 0)
-- Result: Resizes the UNSIGNED vector ARG to the specified size.
-- To create a larger vector, the new [leftmost] bit positions
-- are filled with Õ0Õ. When truncating, the leftmost bits
-- are dropped.

--==
-- Conversion Functions
--==

-- Id: D.1
function TO_INTEGER (ARG: UNSIGNED) return NATURAL;
-- Result subtype: NATURAL. Value cannot be negative since parameter is an
-- UNSIGNED vector.
-- Result: Converts the UNSIGNED vector to an INTEGER.

-- Id: D.2
function TO_INTEGER (ARG: SIGNED) return INTEGER;
-- Result subtype: INTEGER
-- Result: Converts a SIGNED vector to an INTEGER.

-- Id: D.3
function TO_UNSIGNED (ARG, SIZE: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(SIZE-1 downto 0)
-- Result: Converts a nonnegative INTEGER to an UNSIGNED vector with
-- the specified size.

-- Id: D.4
function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL) return SIGNED;
-- Result subtype: SIGNED(SIZE-1 downto 0)
-- Result: Converts an INTEGER to a SIGNED vector of the specified size.

--==
-- Logical Operators
--==

-- Id: L.1
function "not" (L: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Termwise inversion
21

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
-- Id: L.2
function "and" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector AND operation

-- Id: L.3
function "or" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector OR operation

-- Id: L.4
function "nand" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector NAND operation

-- Id: L.5
function "nor" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector NOR operation

-- Id: L.6
function "xor" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector XOR operation

--
-- Note: Function L.7 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: L.7
function "xnor" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector XNOR operation

-- Id: L.8
function "not" (L: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Termwise inversion

-- Id: L.9
function "and" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector AND operation

-- Id: L.10
function "or" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector OR operation

-- Id: L.11
function "nand" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector NAND operation

-- Id: L.12
function "nor" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector NOR operation

-- Id: L.13
function "xor" (L, R: SIGNED) return SIGNED;
22

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector XOR operation

--
-- Note: Function L.14 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: L.14
function "xnor" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector XNOR operation

--==
-- Edge Detection Functions
--==

-- Id: E.1
function RISING_EDGE (signal S: BIT) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Returns TRUE if an event is detected on signal S and the
-- value changed from a Õ0Õ to a Õ1Õ.

-- Id: E.2
function FALLING_EDGE (signal S: BIT) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Returns TRUE if an event is detected on signal S and the
-- value changed from a Õ1Õ to a Õ0Õ.

end NUMERIC_BIT;
23

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
7.3.2 Package declaration for NUMERIC_STD

-- --
--
-- Copyright © 1997 by IEEE. All rights reserved.
--
-- This source file is an essential part of IEEE Std 1076.3-1997,
-- IEEE Standard VHDL Synthesis Packages. This source file may not be
-- copied, sold, or included with software that is sold without written
-- permission from the IEEE Standards Department. This source file may
-- be used to implement this standard and may be distributed in compiled
-- form in any manner so long as the compiled form does not allow direct
-- decompilation of the original source file. This source file may be
-- copied for individual use between licensed users. This source file is
-- provided on an AS IS basis. The IEEE disclaims ANY WARRANTY EXPRESS OR
-- IMPLIED INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR USE
-- FOR A PARTICULAR PURPOSE. The user of the source file shall indemnify
-- and hold IEEE harmless from any damages or liability arising out of the
-- use thereof.
--
-- This package may be modified to include additional data required by tools,
-- but it must in no way change the external interfaces or simulation behavior
-- of the description. It is permissible to add comments and/or attributes to
-- the package declarations, but not to change or delete any original lines of
-- the package declaration. The package body may be changed only in accordance
-- with the terms of 7.1 and 7.2 of this standard.
--
-- Title : Standard VHDL Synthesis Packages (IEEE Std 1076.3-1997, NUMERIC_STD)
--
-- Library : This package shall be compiled into a library symbolically
-- : named IEEE.
--
-- Developers : IEEE DASC Synthesis Working Group.
--
-- Purpose : This package defines numeric types and arithmetic functions
-- : for use with synthesis tools. Two numeric types are defined:
-- : -- > UNSIGNED: represents UNSIGNED number in vector form
-- : -- > SIGNED: represents a SIGNED number in vector form
-- : The base element type is type STD_LOGIC.
-- : The leftmost bit is treated as the most significant bit.
-- : Signed vectors are represented in twoÕs complement form.
-- : This package contains overloaded arithmetic operators on
-- : the SIGNED and UNSIGNED types. The package also contains
-- : useful type conversions functions.
-- :
-- : If any argument to a function is a null array, a null array is
-- : returned (exceptions, if any, are noted individually).
--
-- Note : No declarations or definitions shall be included in, or
-- : excluded from this package. The "package declaration" defines
-- : the types, subtypes and declarations of NUMERIC_STD. The
-- : NUMERIC_STD package body shall be considered the formal
-- : definition of the semantics of this package. Tool developers
-- : may choose to implement the package body in the most efficient
-- : manner available to them.
--
-- --
-- Modification History :
-- --
-- Version: 2.4
-- Date : 12 April 1995
24

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
-- ---
library IEEE;
use IEEE.STD_LOGIC_1164.all;

package NUMERIC_STD is
constant CopyRightNotice: STRING

:= "Copyright © 1997 IEEE. All rights reserved.";

--==
-- Numeric Array Type Definitions
--==

type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
type SIGNED is array (NATURAL range <>) of STD_LOGIC;

--==
-- Arithmetic Operators:
--===

-- Id: A.1
function "absÓ (ARG: SIGNED) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Returns the absolute value of a SIGNED vector ARG.

-- Id: A.2
function "-" (ARG: SIGNED) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Returns the value of the unary minus operation on a
-- SIGNED vector ARG.

--==

-- Id: A.3
function "+" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(MAX(LÕLENGTH, RÕLENGTH)-1 downto 0)
-- Result: Adds two UNSIGNED vectors that may be of different lengths.

-- Id: A.4
function "+" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(MAX(LÕLENGTH, RÕLENGTH)-1 downto 0)
-- Result: Adds two SIGNED vectors that may be of different lengths.

-- Id: A.5
function "+" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Adds an UNSIGNED vector, L, with a nonnegative INTEGER, R.

-- Id: A.6
function "+" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Adds a nonnegative INTEGER, L, with an UNSIGNED vector, R.

-- Id: A.7
function "+" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Adds an INTEGER, L(may be positive or negative), to a SIGNED
-- vector, R.

-- Id: A.8
function "+" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
25

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
-- Result: Adds a SIGNED vector, L, to an INTEGER, R.

--==

-- Id: A.9
function "-" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(MAX(LÕLENGTH, RÕLENGTH)-1 downto 0)
-- Result: Subtracts two UNSIGNED vectors that may be of different lengths.

-- Id: A.10
function "-" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(MAX(LÕLENGTH, RÕLENGTH)-1 downto 0)
-- Result: Subtracts a SIGNED vector, R, from another SIGNED vector, L,
-- that may possibly be of different lengths.

-- Id: A.11
function "-" (L: UNSIGNED;R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Subtracts a nonnegative INTEGER, R, from an UNSIGNED vector, L.

-- Id: A.12
function "-" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Subtracts an UNSIGNED vector, R, from a nonnegative INTEGER, L.

-- Id: A.13
function "-" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Subtracts an INTEGER, R, from a SIGNED vector, L.

-- Id: A.14
function "-" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Subtracts a SIGNED vector, R, from an INTEGER, L.

--==

-- Id: A.15
function "*" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED((LÕLENGTH+RÕLENGTH-1) downto 0)
-- Result: Performs the multiplication operation on two UNSIGNED vectors
-- that may possibly be of different lengths.

-- Id: A.16
function "*" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED((LÕLENGTH+RÕLENGTH-1) downto 0)
-- Result: Multiplies two SIGNED vectors that may possibly be of
-- different lengths.

-- Id: A.17
function "*" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED((LÕLENGTH+LÕLENGTH-1) downto 0)
-- Result: Multiplies an UNSIGNED vector, L, with a nonnegative
-- INTEGER, R. R is converted to an UNSIGNED vector of
-- SIZE LÕLENGTH before multiplication.

-- Id: A.18
function "*" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED((RÕLENGTH+RÕLENGTH-1) downto 0)
-- Result: Multiplies an UNSIGNED vector, R, with a nonnegative
-- INTEGER, L. L is converted to an UNSIGNED vector of
26

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
-- SIZE RÕLENGTH before multiplication.

-- Id: A.19
function "*" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED((LÕLENGTH+LÕLENGTH-1) downto 0)
-- Result: Multiplies a SIGNED vector, L, with an INTEGER, R. R is
-- converted to a SIGNED vector of SIZE LÕLENGTH before
-- multiplication.

-- Id: A.20
function "*" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED((RÕLENGTH+RÕLENGTH-1) downto 0)
-- Result: Multiplies a SIGNED vector, R, with an INTEGER, L. L is
-- converted to a SIGNED vector of SIZE RÕLENGTH before
-- multiplication.

--==
--
-- NOTE: If second argument is zero for "/" operator, a severity level
-- of ERROR is issued.

-- Id: A.21
function "/" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Divides an UNSIGNED vector, L, by another UNSIGNED vector, R.

-- Id: A.22
function "/" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Divides an SIGNED vector, L, by another SIGNED vector, R.

-- Id: A.23
function "/" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Divides an UNSIGNED vector, L, by a nonnegative INTEGER, R.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.24
function "/" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Divides a nonnegative INTEGER, L, by an UNSIGNED vector, R.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

-- Id: A.25
function "/" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Divides a SIGNED vector, L, by an INTEGER, R.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.26
function "/" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Divides an INTEGER, L, by a SIGNED vector, R.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

--==
--
-- NOTE: If second argument is zero for "rem" operator, a severity level
-- of ERROR is issued.
27

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
-- Id: A.27
function "rem" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where L and R are UNSIGNED vectors.

-- Id: A.28
function "rem" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where L and R are SIGNED vectors.

-- Id: A.29
function "rem" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where L is an UNSIGNED vector and R is a
-- nonnegative INTEGER.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.30
function "rem" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where R is an UNSIGNED vector and L is a
-- nonnegative INTEGER.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

-- Id: A.31
function "rem" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where L is SIGNED vector and R is an INTEGER.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.32
function "rem" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L rem R" where R is SIGNED vector and L is an INTEGER.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

--==
--
-- NOTE: If second argument is zero for "mod" operator, a severity level
-- of ERROR is issued.

-- Id: A.33
function "mod" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L and R are UNSIGNED vectors.

-- Id: A.34
function "mod" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L and R are SIGNED vectors.

-- Id: A.35
function "mod" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L is an UNSIGNED vector and R
-- is a nonnegative INTEGER.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.36
function "mod" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(RÕLENGTH-1 downto 0)
28

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
-- Result: Computes "L mod R" where R is an UNSIGNED vector and L
-- is a nonnegative INTEGER.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

-- Id: A.37
function "mod" (L: SIGNED; R: INTEGER) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L is a SIGNED vector and
-- R is an INTEGER.
-- If NO_OF_BITS(R) > LÕLENGTH, result is truncated to LÕLENGTH.

-- Id: A.38
function "mod" (L: INTEGER; R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(RÕLENGTH-1 downto 0)
-- Result: Computes "L mod R" where L is an INTEGER and
-- R is a SIGNED vector.
-- If NO_OF_BITS(L) > RÕLENGTH, result is truncated to RÕLENGTH.

--==
-- Comparison Operators
--==

-- Id: C.1
function ">" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.2
function ">" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.3
function ">" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.4
function ">" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L is a INTEGER and
-- R is a SIGNED vector.

-- Id: C.5
function ">" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.6
function ">" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L > R" where L is a SIGNED vector and
-- R is a INTEGER.

--==
29

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
-- Id: C.7
function "<" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.8
function "<" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.9
function "<" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.10
function "<" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.11
function "<" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.12
function "<" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L < R" where L is a SIGNED vector and
-- R is an INTEGER.

--==

-- Id: C.13
function "<=" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.14
function "<=" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.15
function "<=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.16
function "<=" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L is an INTEGER and
-- R is a SIGNED vector.
30

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
-- Id: C.17
function "<=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.18
function "<=" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L <= R" where L is a SIGNED vector and
-- R is an INTEGER.

--==

-- Id: C.19
function ">=" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.20
function ">=" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.21
function ">=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.22
function ">=" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.23
function ">=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.24
function ">=" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L >= R" where L is a SIGNED vector and
-- R is an INTEGER.

--==

-- Id: C.25
function "=" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.26
function "=" (L, R: SIGNED) return BOOLEAN;
31

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.27
function "=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.28
function "=" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.29
function "=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.30
function "=" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L = R" where L is a SIGNED vector and
-- R is an INTEGER.

--==

-- Id: C.31
function "/=" (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L and R are UNSIGNED vectors possibly
-- of different lengths.

-- Id: C.32
function "/=" (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L and R are SIGNED vectors possibly
-- of different lengths.

-- Id: C.33
function "/=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L is a nonnegative INTEGER and
-- R is an UNSIGNED vector.

-- Id: C.34
function "/=" (L: INTEGER; R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L is an INTEGER and
-- R is a SIGNED vector.

-- Id: C.35
function "/=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L is an UNSIGNED vector and
-- R is a nonnegative INTEGER.

-- Id: C.36
32

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
function "/=" (L: SIGNED; R: INTEGER) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: Computes "L /= R" where L is a SIGNED vector and
-- R is an INTEGER.

--==
-- Shift and Rotate Functions
--==

-- Id: S.1
function SHIFT_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a shift-left on an UNSIGNED vector COUNT times.
-- The vacated positions are filled with Õ0Õ.
-- The COUNT leftmost elements are lost.

-- Id: S.2
function SHIFT_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a shift-right on an UNSIGNED vector COUNT times.
-- The vacated positions are filled with Õ0Õ.
-- The COUNT rightmost elements are lost.

-- Id: S.3
function SHIFT_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a shift-left on a SIGNED vector COUNT times.
-- The vacated positions are filled with Õ0Õ.
-- The COUNT leftmost elements are lost.

-- Id: S.4
function SHIFT_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a shift-right on a SIGNED vector COUNT times.
-- The vacated positions are filled with the leftmost
-- element, ARGÕLEFT. The COUNT rightmost elements are lost.

--==

-- Id: S.5
function ROTATE_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a rotate-left of an UNSIGNED vector COUNT times.

-- Id: S.6
function ROTATE_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a rotate-right of an UNSIGNED vector COUNT times.

-- Id: S.7
function ROTATE_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a logical rotate-left of a SIGNED
-- vector COUNT times.

-- Id: S.8
function ROTATE_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: Performs a logical rotate-right of a SIGNED
-- vector COUNT times.
33

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
--==

--==

--
-- Note: Function S.9 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.9
function "sll" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: SHIFT_LEFT(ARG, COUNT)

--
-- Note: Function S.10 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.10
function "sll" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: SHIFT_LEFT(ARG, COUNT)

--
-- Note: Function S.11 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.11
function "srl" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: SHIFT_RIGHT(ARG, COUNT)

--
-- Note: Function S.12 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.12
function "srl" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: SIGNED(SHIFT_RIGHT(UNSIGNED(ARG), COUNT))

--
-- Note: Function S.13 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.13
function "rol" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: ROTATE_LEFT(ARG, COUNT)

--
-- Note: Function S.14 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.14
function "rol" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: ROTATE_LEFT(ARG, COUNT)

--
-- Note: Function S.15 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
34

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
--
-- Id: S.15
function "ror" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-- Result subtype: UNSIGNED(ARGÕLENGTH-1 downto 0)
-- Result: ROTATE_RIGHT(ARG, COUNT)

--
-- Note: Function S.16 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
--
-- Id: S.16
function "ror" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
-- Result subtype: SIGNED(ARGÕLENGTH-1 downto 0)
-- Result: ROTATE_RIGHT(ARG, COUNT)

--==
-- RESIZE Functions
--==

-- Id: R.1
function RESIZE (ARG: SIGNED; NEW_SIZE: NATURAL) return SIGNED;
-- Result subtype: SIGNED(NEW_SIZE-1 downto 0)
-- Result: Resizes the SIGNED vector ARG to the specified size.
-- To create a larger vector, the new [leftmost] bit positions
-- are filled with the sign bit (ARGÕLEFT). When truncating,
-- the sign bit is retained along with the rightmost part.

-- Id: R.2
function RESIZE (ARG: UNSIGNED; NEW_SIZE: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(NEW_SIZE-1 downto 0)
-- Result: Resizes the SIGNED vector ARG to the specified size.
-- To create a larger vector, the new [leftmost] bit positions
-- are filled with Õ0Õ. When truncating, the leftmost bits
-- are dropped.

--==
-- Conversion Functions
--==

-- Id: D.1
function TO_INTEGER (ARG: UNSIGNED) return NATURAL;
-- Result subtype: NATURAL. Value cannot be negative since parameter is an
-- UNSIGNED vector.
-- Result: Converts the UNSIGNED vector to an INTEGER.

-- Id: D.2
function TO_INTEGER (ARG: SIGNED) return INTEGER;
-- Result subtype: INTEGER
-- Result: Converts a SIGNED vector to an INTEGER.

-- Id: D.3
function TO_UNSIGNED (ARG, SIZE: NATURAL) return UNSIGNED;
-- Result subtype: UNSIGNED(SIZE-1 downto 0)
-- Result: Converts a nonnegative INTEGER to an UNSIGNED vector with
-- the specified SIZE.

-- Id: D.4
function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL) return SIGNED;
-- Result subtype: SIGNED(SIZE-1 downto 0)
-- Result: Converts an INTEGER to a SIGNED vector of the specified SIZE.
35

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
--==
-- Logical Operators
--==

-- Id: L.1
function "not" (L: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Termwise inversion

-- Id: L.2
function "and" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector AND operation

-- Id: L.3
function "or" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector OR operation

-- Id: L.4
function "nand" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector NAND operation

-- Id: L.5
function "nor" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector NOR operation

-- Id: L.6
function "xor" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector XOR operation

-- ---
-- Note: Function L.7 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
-- ---
-- Id: L.7
function "xnor" (L, R: UNSIGNED) return UNSIGNED;
-- Result subtype: UNSIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector XNOR operation

-- Id: L.8
function "not" (L: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Termwise inversion

-- Id: L.9
function "and" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector AND operation

-- Id: L.10
function "or" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector OR operation

-- Id: L.11
function "nand" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
36

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
-- Result: Vector NAND operation

-- Id: L.12
function "nor" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector NOR operation

-- Id: L.13
function "xor" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector XOR operation

-- ---
-- Note: Function L.14 is not compatible with IEEE Std 1076-1987. Comment
-- out the function (declaration and body) for IEEE Std 1076-1987 compatibility.
-- ---
-- Id: L.14
function "xnor" (L, R: SIGNED) return SIGNED;
-- Result subtype: SIGNED(LÕLENGTH-1 downto 0)
-- Result: Vector XNOR operation

--==
-- Match Functions
--==

-- Id: M.1
function STD_MATCH (L, R: STD_ULOGIC) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: terms compared per STD_LOGIC_1164 intent

-- Id: M.2
function STD_MATCH (L, R: UNSIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: terms compared per STD_LOGIC_1164 intent

-- Id: M.3
function STD_MATCH (L, R: SIGNED) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: terms compared per STD_LOGIC_1164 intent

-- Id: M.4
function STD_MATCH (L, R: STD_LOGIC_VECTOR) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: terms compared per STD_LOGIC_1164 intent

-- Id: M.5
function STD_MATCH (L, R: STD_ULOGIC_VECTOR) return BOOLEAN;
-- Result subtype: BOOLEAN
-- Result: terms compared per STD_LOGIC_1164 intent

--==
-- Translation Functions
--==

-- Id: T.1
function TO_01 (S: UNSIGNED; XMAP: STD_LOGIC := Õ0Õ) return UNSIGNED;
-- Result subtype: UNSIGNED(SÕRANGE)
-- Result: Termwise, ÕHÕ is translated to Õ1Õ, and ÕLÕ is translated
-- to Õ0Õ. If a value other than Õ0Õ|Õ1Õ|ÕHÕ|ÕLÕ is found,
-- the array is set to (others => XMAP), and a warning is
-- issued.
37

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
-- Id: T.2
function TO_01 (S: SIGNED; XMAP: STD_LOGIC := Õ0Õ) return SIGNED;
-- Result subtype: SIGNED(SÕRANGE)
-- Result: Termwise, ÕHÕ is translated to Õ1Õ, and ÕLÕ is translated
-- to Õ0Õ. If a value other than Õ0Õ|Õ1Õ|ÕHÕ|ÕLÕ is found,
-- the array is set to (others => XMAP), and a warning is
-- issued.

end NUMERIC_STD;
38

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
Annex A

(informative)

Notes on the package functions

This annex provides notes on functions included in the NUMERIC_BIT and NUMERIC_STD packages.

The appearance of a code fragment in this annex does not require a synthesis tool conforming to this stan-
dard to accept the construct represented by that fragment.

A.1 General considerations

A.1.1 Mixing SIGNED and UNSIGNED operands

The NUMERIC_BIT and NUMERIC_STD packages do not provide functions for mixing SIGNED and
UNSIGNED operands. To do so would make it necessary to use qualiÞed expressions to disambiguate com-
monly occurring forms. For example, with the declarations

variable S: SIGNED (3 downto 0);
variable U: UNSIGNED (4 downto 0);

if the arithmetic and relational functions allowed mixing of SIGNED and UNSIGNED operands, it would be
necessary to rewrite the expressions

S >= "0000"

and

U + "1"

as

S >= SIGNEDÕ("0000")

and

U + UNSIGNEDÕ("1")

To apply a binary operation from the NUMERIC_BIT or NUMERIC_STD package to a combination of
SIGNED and UNSIGNED operands, the user must explicitly convert one of the operands to the other type
(see A.5.2).

A.1.2 Mixing vector and element operands

The NUMERIC_BIT and NUMERIC_STD do not declare functions that combine a vector with an operand
that belongs to the element type of the vector. For example, with the declarations

signal A, B, S: SIGNED(3 downto 0);
signal C: BIT;

a user may not write

S <= A + B(4);

or
39

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
S <= A - C;

or

S <= A / Õ1Õ;

For the Þrst and third example, a user may write instead

S <= A + B(3 downto 3);

and

S <= A / "1";

For the second example, the user may concatenate C with a 0-length vector

S <= A - (C & "");

A.2 Arithmetic operator functions

A.2.1 Overßow of maximum negative value

When the SIGNED operand to an abs (function A.1) or unary - (function A.2) function from either package
has the maximum negative value for the number of elements that it has, the result is the maximum negative
value of the same size. This means, for example, that

- SIGNEDÕ("1000")

evaluates to

"1000"

Similarly, in functions A.22 and A.25, when the Þrst operand to the Ò/Ó operator has the maximum negative
value for the number of elements that it has, and when the second operand is either an INTEGER with the
value Ð1 or a SIGNED operand with a value equivalent to Ð1, the result is the same as the Þrst operand,
rather than its complement:

SIGNEDÕ("1000") / "11111" evaluates to "1000"
SIGNEDÕ("10000") / (- 1) evaluates to "10000"

To prevent overßow, a user may add an extra bit to the representation. For example, with the declarations

variable DIVIDEND: SIGNED (4 downto 0);
variable DIVISOR: INTEGER range -8 to 7;
variable QUOTIENT: SIGNED (5 downto 0);

one may write

QUOTIENT := (DIVIDEND(4) & DIVIDEND) / DIVISOR;

A.2.2 Lack of carry and borrow

When both operands to a binary arithmetic functions + or Ð are either SIGNED or UNSIGNED, the function
returns a value with the same number of elements (bits) as the larger of the two operands. If one operand is
SIGNED or UNSIGNED and the other is INTEGER or NATURAL, the function returns a value with the
same number of elements as the vector operand. Thus, these functions do not return an extra bit to represent
a carry, borrow, or overßow value, nor do they generate a warning if a carry, borrow, or overßow occurs.
40

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
The choice not to generate a carry or borrow (and not to generate a warning) makes it easier to represent
counter operations in the VHDL source code via assignments such as

A := A + 1;

or

B <= B - "1";

To obtain the appropriate carry, borrow, or overßow value, a user may add an extra bit to the vector operand.
For example, with the declarations

signal U: UNSIGNED (4 downto 0);
signal S: SIGNED (5 downto 0);
signal SUM: UNSIGNED (5 downto 0);
signal DIFFERENCE: SIGNED (6 downto 0);

one may write

SUM <= (Õ0Õ & U) + 1;
DIFFERENCE <= (S(5) & S) - "1";

A.2.3 Return value for metalogical and high-impedance operands

If an operand to a NUMERIC_STD arithmetic function contains a metalogical or high-impedance value, the
function returns a vector in which every element has the value ÔXÕ. The function does not report a warning or
error.

A.3 Relational operator functions

A.3.1 JustiÞcation of vector operands

The relational operator functions for the SIGNED and UNSIGNED types in both packages have a behavior
different from the default behavior deÞned by IEEE Std 1076-1993 for vector types. The default behavior
compares the vector elements left to right after the operands are left-justiÞed, whereas the relational operator
functions for SIGNED and UNSIGNED treat their operands as representing binary integers.

Table A.1 compares results for relational operators when both operands are BIT_VECTORs, SIGNED val-
ues, or UNSIGNED values.

Table A.1ÑRelational operators examples

Expression
Value when both operands are ...

BIT_VECTOR UNSIGNED SIGNED

"001" = "00001" FALSE TRUE TRUE

"001" > "00001" TRUE FALSE FALSE

"100" < "01000" FALSE TRUE TRUE

"010" < "10000" TRUE TRUE FALSE

"100" < "00100" FALSE FALSE TRUE
41

IEEE
Std 1076.3-1997 IEEE STANDARD VHDL
A.3.2 Expansion of vector operands compared to integers

When a relational operator compares a SIGNED or UNSIGNED argument value with an INTEGER or NAT-
URAL value, the function has the effect of converting the SIGNED or UNSIGNED argument to its equiva-
lent universal integer value and then doing the corresponding comparison of integer values. For example

(SIGNEDÕ("111") > -8) = TRUE

and

(UNSIGNEDÕ("111") < 8) = TRUE

That is, the INTEGER value may be larger in magnitude than any value that can be represented by the num-
ber of elements in the SIGNED or UNSIGNED value.

A.3.3 Return value for metalogical and high-impedance operands

If an operand to any of the NUMERIC_STD relational operator functions for =, <, <=, >, or >= contains a
metalogical or high-impedance value, the function returns the value FALSE. If an operand to the
NUMERIC_STD relational operator function /= contains a metalogical or high-impedance value, the func-
tion returns the value TRUE.

A.4 Shift functions

A.4.1 Multiplication by a power of 2 with remaindering

The SHIFT_LEFT function for an UNSIGNED argument provides for multiplication by a power of 2
remaindered by the maximum size of the vector argument. In particular, if ARG is UNSIGNED and is well-
deÞned, and if the integer values fall within the range allowed for INTEGERs,

TO_INTEGER(SHIFT_LEFT(ARG, COUNT)) =
TO_INTEGER(ARG) * (2 ** COUNT) rem (2 ** ARGÕLENGTH)

A.4.2 Division by a power of 2

The SHIFT_RIGHT function for an UNSIGNED argument provides for division by a power of 2. That is, if
ARG is UNSIGNED and is well-deÞned, and if the integer values fall with the range allowed for INTEGERs,

TO_INTEGER(SHIFT_RIGHT(ARG, COUNT) = TO_INTEGER(ARG) / (2 ** COUNT)

A.5 Type conversion functions

A.5.1 Overßow in conversion to INTEGER

The TO_INTEGER function does not contain code to check that the SIGNED or UNSIGNED argument has
an equivalent universal integer value that belongs to the range deÞned for the INTEGER or NATURAL sub-
types. If TO_INTEGER is called with an argument value that is too large, the simulation tool may therefore
detect an overßow. A user should avoid applying TO_INTEGER to argument subtypes for which the number
of elements is greater than the number of bits used to represent INTEGERs in the userÕs simulation and syn-
thesis tools.
42

IEEE
SYNTHESIS PACKAGES Std 1076.3-1997
A.5.2 Conversion between SIGNED and UNSIGNED

The packages do not provide functions for converting directly between the SIGNED and UNSIGNED types.
Such conversions must be performed by the user. There are several ways to convert between SIGNED and
UNSIGNED types. In performing such conversions, a user must determine how to handle any possible dif-
ferences in the ranges supported by SIGNED and UNSIGNED objects having the same number of elements.
For example, suppose the VHDL source code contains the declarations

signal S: SIGNED(3 downto 0);
signal BIG_S: SIGNED(4 downto 0);
signal U: UNSIGNED(3 downto 0);
constant S1: SIGNED(3 downto 0) := "1000"; -- equivalent to -8
constant U1: UNSIGNED(3 downto 0) := "1100"; -- equivalent to +12

a) A user can use a VHDL type conversion to convert one form to another:

S <= SIGNED(U1); -- U1 (= +12) gets converted to S (= -4)
U <= UNSIGNED(S1); -- S1 (= -8) gets converted to U (= +8)

b) A user can add an extra bit to represent the sign when converting from UNSIGNED to SIGNED:

BIG_S <= SIGNED(Õ0Õ & U1); -- U1 (= +12) gets converted to BIG_S (= +12)

c) Finally, a user can generate an error or warning when the value of one cannot be represented in the
number of elements available in the other:

assert S >= "0000" report "Cannot convert negative value."
severity WARNING;

U <= UNSIGNED(S);

A.6 Logical operator functions

A.6.1 Application to SIGNED and UNSIGNED

The functions that deÞne the application of the logical operators and, or, nand, nor, xor, and xnor to
SIGNED and UNSIGNED argument values are equivalent to functions that apply the same logical operators
to STD_LOGIC_VECTOR (or STD_ULOGIC_VECTOR) arguments. This equivalence includes the han-
dling of metalogical and high-impedance element values. That is, for example, if S1 and S2 are SIGNED
values of equal length,

S1 nand S2 = SIGNED(STD_LOGIC_VECTOR(S1) nand STD_LOGIC_VECTOR(S2))

A.6.2 Index range of return values

For the functions and, or, nand, nor, xor, and xnor deÞned in the NUMERIC_STD package, the index range
for the return values has the form Òn - 1 downto 0,Ó where n is the number of elements in the return value.

In the NUMERIC_BIT package, the corresponding functions are deÞned implicitly by the type declarations
for the SIGNED and UNSIGNED types, so that the index range of the return values is as deÞned by IEEE
Std 1076-1993.

A.7 The STD_MATCH function

The behavior of the STD_MATCH functions in the NUMERIC_STD package differs from that of the =
functions for the same types of arguments. The STD_MATCH function compares its arguments element by
element, and treats the value Ô-Õ as matching any other STD_ULOGIC value. The = function interprets its
operands, however, as representing the equivalent integer values, and returns TRUE if the equivalent integer
values are equal.
43

	Title Page
	Introduction
	Participants
	CONTENTS
	1. Overview
	1.1 Scope
	1.2 Terminology
	1.3 Conventions

	2. References
	3. Definitions
	4. Interpretation of the standard logic types
	4.1 The STD_LOGIC_1164 values
	4.2 Static constant values
	4.3 Interpretation of logic values

	5. The STD_MATCH function
	6. Signal edge detection
	7. Standard arithmetic packages
	7.1 Allowable modifications
	7.2 Compatibility with IEEE Std 1076-1987
	7.3 The package texts

	Annex A—Notes on the package functions

