35

Advanced Topics

ECE 4170 (1)

E“"'mgfi‘“&l Topics

* Physical Types

* Array Types

* Entity Attributes

» Access Types and Record Structures

» Shared Variables

ECE 4170 (2)

)
|
)
\

?5

Physical Types

© Sudhakar Yalamanchili, Georgia Institute of Technology ECE 4170 (3)

Gﬁ%%"ﬁg& Modeling Physical Quantities

» Physical quantities are represented by the type of
their measured values
— Integer, real, logical, etc.

* Precision, range, and type casting issues often
require the programmer to manage quantization

» Hardware description languages expand the range of
physical quantities to be represented and managed

ECE 4170 (4)

echji Modeling Physical Quantities: Example

entity inv_rc is
generic (c_load: real:= 0.066E-12); -- farads
port (i1 : in std_logic;
01: out: std_logic);
constant rpu: real:= 25000.0; --ohms visible in all architectures
constant rpd: real :=15000.0; -- ohms
end inv_rc;

explicit type casting and range management

architecture delay of inv_rc is
constant tplh: time := integer (rpu*c_load*1.0E15)*3 fs; These are
constant tpll: time := integer (rpu*c_load*1.0E15)*3 fs; [‘!
begin
o1 <=*1’ after tplh when i1 = ‘0’ else

‘0’ after tpll when i1- =1’ or i1 = ‘Z else

‘X after tplh;
end delay;

l Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998. ‘
ECE 4170 (5)

e "gméj Notion of Physical Types

» Purpose: to be able to create and manipulate objects
that correspond to physical, measurable, quantities
— Resistance, capacitance, time, inductance, etc.

» time is a pre-defined physical type in the language
type time is range <implementation dependent>

units

fs;

ps = 1000 fs; -- femtoseconds
ns = 1000 ps; -- picoseconds
us = 1000 ns; -- microseconds
ms = 1000 us; -- milliseconds
s =1000 ms; -- seconds

min = 60 s; -- minutes

hour = 60 min; -- hours

end units;

ECE 4170 (6)

i

Other Examples

in terms of base units and only integer bounds

type power is range 1 to 1000000 /\/

units

uw;

mw = 1000 uw;
w =1000 mw;
kw =1000 w;
mgw = 1000 kw;
end units;

+ Define a base unit and integer range that a variable
or constant can take
— Define aggregate units

ECE 4170 (7)

Gg‘“m“"-“& Physical Types: Example (cont.)
type capacitance is range 0 to type resistance is range 0 to 1E16
1E16 units
units I_o; -- milli-ohms
ffr; -- femtofarads ohms = 1000 |_o;
pfr = 1000 ffr; k_o= 1000 ohms;
nfr = 1000 pfr; m_o = 1000 k_o;
ufr = 1000 nfr g_0=1000 m_o:
mfr = 1000 ufr end units;

far = 1000 mfr;

kfr = 1000 far;

end units;

* Programmer must manage interpretations of the
values

* Rather than mapping the values to the real numbers,
create new physical types

l Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998. ‘
ECE 4170 (8)

i Physical Types: Example (cont.)

entity inv_rc is
generic (c_load: capacitance := 66 ffr); -- farads
port (i1 : in std_logic;
o1: out: std_logic);
constant rpu: resistance:= 25000 ohms;
constant rpd : resistance := 15000 ohms;
end inv_rc;
Define a new overloaded multiplication operator
architecture delay of inv_rc is

This expression now becomes

constant tplh: time := (rpu/ 1 |_o)* (c_load/1 ffr) *3 fs/1000;
constant tpll: time := (rpu/ 1 1_o)* (c_load/1 ffr) *3 fs/1000;

begin

01 <=1’ after tplh when i1 = ‘0’ else
‘0’ after tpll when i1 = ‘1" ori1 =Z else rpu * c_load * 3
‘X’ after tplh;

end delay;

l Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998. ‘
ECE 4170 (9)

Basic Ideas

+ Arithmetic operators are not defined for physical
types
— Convert the values to dimensionless quantities
— Perform integer operations

— Convert back to a physical type

» One of the arithmetic operands is an integer and one is a
physical type

* Many aspects of type management is moved from
programmer to language

ECE 4170 (10)

Array Types

ECE 4170 (11)

Thinking About Arrays

All elements must be of the
same type

LTI

» Types of multidimensional arrays
— Multidimensional arrays
— Arrays of arrays
* The type determines how elements in an array can be
referenced
— Indexing

— Using range information - dependent on construction of the
declaration

ECE 4170 (12)

SEOrgEs |
echn

==

Referencing Array Data

type std_byte is array (7 downto 0) of std_logic;

type std_word is array (31 downto 0) of std_logic;

type 2Dmask is array (7 downto 0, 4 downto 0) of
std_logic;

Can mix ascending and descending ranges

type reqister_file is array (31 downto 0) of std_word;

ECE 4170 (13)

Gﬁ%%"ﬁ& Array Aggregates

std_word <= (3 => '1’, others => 'Z’)
— Named associations

std_word <= (‘0’, 3 => ‘1’, others => Z’);
— Positional association

std_word <= (4 downto 0 => ‘1’, others => ‘Z’);
— Specifying ranges

— Can mix descending and ascending ranges

» Aggregates apply to each dimension

ECE 4170 (14)

Jeorgss,
Tech

ESE-—

Nesting Array Aggregates

» Specification applies to each dimension of the array

2Dmask <= (others => (others => Z));

2Dmask <= (others => (‘1’, others => Z));

ECE 4170 (15)

General Aggregate Operations

* This is the combination of one or more values into a
more complex type

(a, b) a&b

Must be of same size and type Can be different length arrays

ECE 4170 (16)

i

Generalizing Array Indexing

* Indices can be of types other than integers

» Array access follows the same principle > use the
type value to define the corresponding array element

type std_byte is array (std_logic) of std_logic;
— Nine elements in this array type

— Indexed by the values of the std_logic type in the order in
which it is defined

* Named associations, positional associations, and
array aggregates can be mixed and matched

ECE 4170 (17)

L éj Unconstrained Arrays

» Useful for building generic, parametric models
» Type bit_vector is array (natural range<>) of bit
%K—/

ascending or descending range

procedure write_v1d (function wire_or (sbus :std_ulogic_vector)
variable f: out text; v : in std_logic_vector) is return std_ulogic is
variable buf: line; begin
variable c : character; for i in sbus’range loop
begin if sbus(i) = ‘1’ then
for i in v’range loop return ‘1’;
case V(i) is end if;
when ‘X’ => write(buf, X’); end loop;
return ‘0’;
end wire_or;

ECE 4170 (18)

For Hardware Generation

library IEEE;
use |IEEE.std_logic_1164.all;

entity gregister is
port (din : in std_logic_vector;
qout: out std_logic_vector;]>
clk, we : in std_logic);
end entity gregister;

architecture behavioral of gregister is

component dff_en is
Port (d:in STD_LOGIC;
we :in STD_LOGIC;
clk:in STD_LOGIC;
q:out STD_LOGIC);
end component dff_en;
begin

unconstrained arrays

dreg: for i in din'range generate

reg: dff_en port map(d=>din(i), g=>qout(i), we=>we, clk=>clk);

end generate;

end architecture behavioral

ECE 4170 (19)

Entity Attributes

ECE 4170 (20)

Sech) Entity Attributes

» Enables identification of aspects of the specific entity
such as
— Name: entity_name’simple_name
— Instance: entity_name’path_name
— Path to this instance: entity_name’instance_name

» Useful in debugging programs

* Example
ECE 4170 (21)
Georgia |
Tech Example
lib IEEE; . . .
lis;alrlgEE STD LOGIC 1164.ALL: variable instance: string(1 to
use IEEE.STD LOGIC ARITH.ALL: nand2'instance_name'length):= (others =>'.");
use IEEE.STD_LOGIC_UNSIGNED.ALL; begin
use STD.textio.all; simple := nand2'simple_name;

. . path := nand2'path_name;
entity nand2 is . instance := nand2'instance_name;
generic (gate_delay: time:= 2 ns);
port (a,b:in STD_LOGIC;
c:out STD_LOGIC); write (buf, simple);
writeline (output,buf);

end entity nand2;
write (buf, path);

hi havioral of 2 i
architecture behavioral of nand2 is writeline (outputbuf):

Begin
¢ <= a nand b after gate_delay; write (buf,instance);
writeline (output,buf);
process wait:

variable buf: line;

variable simple: string(1 to
nand2'simple_name'length):= (others =>'");

variable path: string(1 to
nand2'path_name'length):= (others =>');

end process;

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998 ECE 4170 (22)

Georgia
ech

User Defined Attributes

ES——

» These attributes do not have simulation or synthesis
semantics. They are for the use by the designer

* This is another mechanism for communication
information throughout a design

via context clauses or attributes : II

Design Unit

via configurations

architectures II

ECE 4170 (23)

. {|-g'|;[é Record Types

» Records are a composite type where each element may be of a
distinct type
type opcode is (add, sub, and, or, xor, sl, sr, Id, sw, rot, nop);
type reg_addr is integer range 0 to 31;
type addr is unsigned (17 downto 0);
type op_format is unsigned (12 downto 0);

type r_format is record type i_format is record
op : opcode; op : opcode;
dest: reg_addr; dest: reg_addr;
source1 : reg_addr; source1 : reg_addr;
source2: reg_addr; mem_addr: addr;
misc_op: op_format; end record;
end record;
l op | dest |source1 | source2| op_format l op | dest |source1| mem_addr

ECE 4170 (24)

Beorgss
Tecn

| =

Alias

» Declare alternative labels for parts of a structure
— For example, consider bits 4 through 8 of the memory address
as a cache line address
signal current_instr : i_format:= (nop, 0,0,000000000000000000");
alias cache_line is current_instr.mem_addr(7 downto 3);

index <= cache_ling;

cache_line <= “1110";

ECE 4170 (25)

e 'ﬁ& Comments

+ VHDL is intended to model hardware structures at all
levels of design
— Device - timing, delay, physical attributes

— Gate level - timing, delay, logic operations, physical
attributes

— Instruction set level - instruction formats, memory
structures, operating system data, architecture state
information

— Block level: test bench, verification & validation

» Different aspects of the language are used at
different levels of modeling

+ This distinguishes VHDL from many domain-specific
modeling languages

ECE 4170 (26)

Access Types: Also Known as Pointers

type my_struct; -- incomplete type declaration
type pointer is access my_struct; -- define access

type my_struct is record -- define type
data1: integer;

data2: integer;

next: pointer;

end record;

ECE 4170 (27)

Using Access Types

» Follow conventional programming language usage in
the context of records, linked lists, pointers, etc.

« Traversal
variable head : pointer:= NULL;
variable p1 :pointer;
p1 := head.next;

» Allocation de-allocation
head.next := NEW my_struct;

deallocate (p1);

ECE 4170 (28)

Beorgss
Tecn

| =

Shared Variables

Architecture

shared variable my var: integer ——» visible in processes
- - A B&C

process A_| process B process C |
/_Variable X variable y: .. variable z: ..
visible only in
process A

» Shared variables represent a way to change the
visible scope of a variable
— Now accessible to a range of procedures and processes
— Effect is non-deterministic

« Examples

ECE 4170 (29)

Wﬁéﬁ‘“& Blocks and Guarded Signal Assignments

* Blocks are a mechanism to identify a “part” of a
design without treating it as a complete design unit
— Entity/architecture pair need not be created

» Syntactically identify a part of the design
— Treat it like a design entity in the sense that
* It can have ports and generics
* Has a declarative part
* Has a concurrent statement part

ECE 4170 (30)

i
i
“Necn Example: Blocks and Guards

library IEEE;
use |[EEE.std_logic_1164.all;

entity my_dff is
generic (gate_delay: time:= 5 ns);
port (d, clk, we: in std_logic;
g, not_q: out std_logic);
end entlty my—dff; Value of the implicit guard signal

architecture behavioral of my_dff is/(_/

begin / ~
my_block: block (rising_edge(clk) and (we = '1")) is
begin
g<= guarded d after gate_delay;
not_qg<= guarded (not d) after gate_delay;
end block my_block;
end architecture behavioral;

ECE 4170 (31)

Sequln "s--'i'&l More on Processes: Postponed and Passive

* Postponed processes
— Execute the processes after all delta events on sensitive
signals
— Reduction in number of process invocations = reduce
simulation time
— Reduction in the number of events inserted/removed from
signal drivers - reduce simulation time

* Passive processes
— These are processes that do not alter the simulation state

— They can be placed to perform checks

ECE 4170 (32)

eorgia |
Techi Example
entity dff is begin
generic (sq_delay, if set ='1’ the

rq_delay,cq_delay: time:=6 ns)

port (d, set, rst, clk :in bit;
g, notq: out bit);
end entity dff;

architecture behavioral of dff is

begin

process (rst, clk, set)
type bit_time is record
state : bit;

sd_delay: time;

end record:

sd := (‘1’, sq_delay);

elsif rst = ‘1’ then

sd := (‘0’, rq_delay);

elsif (rising_edge(clk)) then
sd := cq_delay;

end if;

q <= sd.state after sd.delay;

notq <= not sd.state after
sd.delay;

end process;
end architecture behavioral;

variable sd: bit_time:= (‘0’, 0 ns);

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998

ECE 4170 (33)

Georgia | .
wacné; Example: Passive Processes
entity dff is
package body of my_package is generic (sq_delay, rq_delay,cq_delay: time:=6 ns)
begin port (d, set, rst, clk :in bit;
type bit_time is record g, notq: out bit);
state : bit; process
sd_delay: time; begin
end record: if set =1" the

shared variable sd: bit_time:= (‘0’, 0 ns);
end package;

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998

sd := (1", sq_delay);
elsif rst = ‘1’ then
sd := (‘0’, rq_delay);
elsif (rising_edge(clk)) then
sd := cq_delay;
end if;
end process;
end entity dff;

architecture behavioral of dff is
begin

q <= sd.state after sd.delay;

notq <= not sd.state after sd.delay;
end process;

end architecture behavioral;

ECE 4170 (34)

Tech it Disconnect Specification

* A signal can be disconnected from its driver by
assigning the NULL transaction
— The value then is determined by the signal kind
* Register : use the last known value
signal s1 : wired_or bus;
» Bus: use a resolution function
signal s2 : bit register:

» The availability of the disconnect specification

ECE 4170 (35)

