35

Advanced Topics
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E“"'mgfi‘“&l Topics

* Physical Types

* Array Types

* Entity Attributes

» Access Types and Record Structures

» Shared Variables
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Physical Types
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Gﬁ%%"ﬁg& Modeling Physical Quantities

» Physical quantities are represented by the type of
their measured values
— Integer, real, logical, etc.

* Precision, range, and type casting issues often
require the programmer to manage quantization

» Hardware description languages expand the range of
physical quantities to be represented and managed
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echji Modeling Physical Quantities: Example

entity inv_rc is
generic (c_load: real:= 0.066E-12); -- farads
port (i1 : in std_logic;
01: out: std_logic);
constant rpu: real:= 25000.0; --ohms visible in all architectures
constant rpd: real :=15000.0; -- ohms
end inv_rc;

explicit type casting and range management

architecture delay of inv_rc is
constant tplh: time := integer (rpu*c_load*1.0E15)*3 fs; These are
constant tpll: time := integer (rpu*c_load*1.0E15)*3 fs; [ ‘!
begin
o1 <=*1’ after tplh when i1 = ‘0’ else

‘0’ after tpll when i1- =1’ or i1 = ‘Z else

‘X after tplh;
end delay;

l Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998. ‘
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e "gméj Notion of Physical Types

» Purpose: to be able to create and manipulate objects
that correspond to physical, measurable, quantities
— Resistance, capacitance, time, inductance, etc.

» time is a pre-defined physical type in the language
type time is range <implementation dependent>

units

fs;

ps = 1000 fs; -- femtoseconds
ns = 1000 ps; -- picoseconds
us = 1000 ns; -- microseconds
ms = 1000 us; -- milliseconds
s =1000 ms; -- seconds

min = 60 s; -- minutes

hour = 60 min; -- hours

end units;
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Other Examples

in terms of base units and only integer bounds

type power is range 1 to 1000000 /\/

units

uw;

mw = 1000 uw;
w =1000 mw;
kw =1000 w;
mgw = 1000 kw;
end units;

+ Define a base unit and integer range that a variable
or constant can take
— Define aggregate units
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Gg‘“m“"-“& Physical Types: Example (cont.)
type capacitance is range 0 to type resistance is range 0 to 1E16
1E16 units
units I_o; -- milli-ohms
ffr; -- femtofarads ohms = 1000 |_o;
pfr = 1000 ffr; k_o= 1000 ohms;
nfr = 1000 pfr; m_o = 1000 k_o;
ufr = 1000 nfr g_0=1000 m_o:
mfr = 1000 ufr end units;

far = 1000 mfr;

kfr = 1000 far;

end units;

* Programmer must manage interpretations of the
values

* Rather than mapping the values to the real numbers,
create new physical types

l Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998. ‘
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i Physical Types: Example (cont.)

entity inv_rc is
generic (c_load: capacitance := 66 ffr); -- farads
port (i1 : in std_logic;
o1: out: std_logic);
constant rpu: resistance:= 25000 ohms;
constant rpd : resistance := 15000 ohms;
end inv_rc;
Define a new overloaded multiplication operator
architecture delay of inv_rc is

This expression now becomes

constant tplh: time := (rpu/ 1 |_o)* (c_load/1 ffr) *3 fs/1000;
constant tpll: time := (rpu/ 1 1_o)* (c_load/1 ffr) *3 fs/1000;

begin

01 <=1’ after tplh when i1 = ‘0’ else
‘0’ after tpll when i1 = ‘1" ori1 =Z else rpu * c_load * 3
‘X’ after tplh;

end delay;

l Example adapted from “VHDL: Analysis and Modeling of Digital Systems,” Z. Navabi, McGraw Hill, 1998. ‘
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Basic Ideas

+ Arithmetic operators are not defined for physical
types
— Convert the values to dimensionless quantities
— Perform integer operations

— Convert back to a physical type

» One of the arithmetic operands is an integer and one is a
physical type

* Many aspects of type management is moved from
programmer to language
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Array Types
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Thinking About Arrays

All elements must be of the
same type

LTI

» Types of multidimensional arrays
— Multidimensional arrays
— Arrays of arrays
* The type determines how elements in an array can be
referenced
— Indexing

— Using range information - dependent on construction of the
declaration
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Referencing Array Data

type std_byte is array (7 downto 0) of std_logic;

type std_word is array (31 downto 0) of std_logic;

type 2Dmask is array (7 downto 0, 4 downto 0) of
std_logic;

Can mix ascending and descending ranges

type reqister_file is array (31 downto 0) of std_word;
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Gﬁ%%"ﬁ& Array Aggregates

std_word <= (3 => '1’, others => 'Z’)
— Named associations

std_word <= (‘0’, 3 => ‘1’, others => Z’);
— Positional association

std_word <= (4 downto 0 => ‘1’, others => ‘Z’);
— Specifying ranges

— Can mix descending and ascending ranges

» Aggregates apply to each dimension
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Nesting Array Aggregates

» Specification applies to each dimension of the array

2Dmask <= (others => (others => Z));

2Dmask <= (others => (‘1’, others => Z));
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General Aggregate Operations

* This is the combination of one or more values into a
more complex type

(a, b) a&b

Must be of same size and type Can be different length arrays
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Generalizing Array Indexing

* Indices can be of types other than integers

» Array access follows the same principle > use the
type value to define the corresponding array element

type std_byte is array (std_logic) of std_logic;
— Nine elements in this array type

— Indexed by the values of the std_logic type in the order in
which it is defined

* Named associations, positional associations, and
array aggregates can be mixed and matched
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L éj Unconstrained Arrays

» Useful for building generic, parametric models
» Type bit_vector is array (natural range<>) of bit
%K—/

ascending or descending range

procedure write_v1d ( function wire_or (sbus :std_ulogic_vector)
variable f: out text; v : in std_logic_vector) is return std_ulogic is
variable buf: line; begin
variable c : character; for i in sbus’range loop
begin if sbus(i) = ‘1’ then
for i in v’range loop return ‘1’;
case V(i) is end if;
when ‘X’ => write(buf, X’); end loop;
return ‘0’;
end wire_or;
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For Hardware Generation

library IEEE;
use |IEEE.std_logic_1164.all;

entity gregister is
port (din : in std_logic_vector;
qout: out std_logic_vector;]>
clk, we : in std_logic);
end entity gregister;

architecture behavioral of gregister is

component dff_en is
Port (d:in STD_LOGIC;
we :in STD_LOGIC;
clk:in STD_LOGIC;
q:out STD_LOGIC);
end component dff_en;
begin

unconstrained arrays

dreg: for i in din'range generate

reg: dff_en port map( d=>din(i), g=>qout(i), we=>we, clk=>clk);

end generate;

end architecture behavioral
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Entity Attributes
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Sech) Entity Attributes

» Enables identification of aspects of the specific entity
such as
— Name: entity_name’simple_name
— Instance: entity_name’path_name
— Path to this instance: entity_name’instance_name

» Useful in debugging programs

* Example
ECE 4170 (21)
Georgia |
Tech Example
lib IEEE; . . .
lis;alrlgEE STD LOGIC 1164.ALL: variable instance: string(1 to
use IEEE.STD LOGIC ARITH.ALL: nand2'instance_name'length):= (others =>'.");
use IEEE.STD_LOGIC_UNSIGNED.ALL; begin
use STD.textio.all; simple := nand2'simple_name;

. . path := nand2'path_name;
entity nand2 is . instance := nand2'instance_name;
generic (gate_delay: time:= 2 ns);
port (a,b:in STD_LOGIC;
c:out STD_LOGIC); write (buf, simple);
writeline (output,buf);

end entity nand2;
write (buf, path);

hi havioral of 2 i
architecture behavioral of nand2 is writeline (outputbuf):

Begin
¢ <= a nand b after gate_delay; write (buf,instance);
writeline (output,buf);
process wait:

variable buf: line;

variable simple: string(1 to
nand2'simple_name'length):= (others =>'");

variable path: string(1 to
nand2'path_name'length):= (others =>');

end process;

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998 ECE 4170 (22)
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User Defined Attributes

ES——

» These attributes do not have simulation or synthesis
semantics. They are for the use by the designer

* This is another mechanism for communication
information throughout a design

via context clauses or attributes : II

Design Unit

via configurations

architectures II

ECE 4170 (23)

. {|-g'|;[é Record Types

» Records are a composite type where each element may be of a
distinct type
type opcode is (add, sub, and, or, xor, sl, sr, Id, sw, rot, nop);
type reg_addr is integer range 0 to 31;
type addr is unsigned (17 downto 0);
type op_format is unsigned (12 downto 0);

type r_format is record type i_format is record
op : opcode; op : opcode;
dest: reg_addr; dest: reg_addr;
source1 : reg_addr; source1 : reg_addr;
source2: reg_addr; mem_addr: addr;
misc_op: op_format; end record;
end record;
l op | dest |source1 | source2| op_format l op | dest |source1| mem_addr

ECE 4170 (24)
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Alias

» Declare alternative labels for parts of a structure
— For example, consider bits 4 through 8 of the memory address
as a cache line address
signal current_instr : i_format:= (nop, 0,0,000000000000000000");
alias cache_line is current_instr.mem_addr(7 downto 3);

index <= cache_ling;

cache_line <= “1110";
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e 'ﬁ& Comments

+ VHDL is intended to model hardware structures at all
levels of design
— Device - timing, delay, physical attributes

— Gate level - timing, delay, logic operations, physical
attributes

— Instruction set level - instruction formats, memory
structures, operating system data, architecture state
information

— Block level: test bench, verification & validation

» Different aspects of the language are used at
different levels of modeling

+ This distinguishes VHDL from many domain-specific
modeling languages

ECE 4170 (26)




Access Types: Also Known as Pointers

type my_struct; -- incomplete type declaration
type pointer is access my_struct; -- define access

type my_struct is record -- define type
data1: integer;

data2: integer;

next: pointer;

end record;

ECE 4170 (27)

Using Access Types

» Follow conventional programming language usage in
the context of records, linked lists, pointers, etc.

« Traversal
variable head : pointer:= NULL;
variable p1 :pointer;
p1 := head.next;

» Allocation de-allocation
head.next := NEW my_struct;

deallocate (p1);

ECE 4170 (28)
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Shared Variables

Architecture

shared variable my var: integer ——» visible in processes
- - A B&C

process A_| process B process C |
/_Variable X variable y: .. variable z: ..
visible only in
process A

» Shared variables represent a way to change the
visible scope of a variable
— Now accessible to a range of procedures and processes
— Effect is non-deterministic

« Examples
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Wﬁéﬁ‘“& Blocks and Guarded Signal Assignments

* Blocks are a mechanism to identify a “part” of a
design without treating it as a complete design unit
— Entity/architecture pair need not be created

» Syntactically identify a part of the design
— Treat it like a design entity in the sense that
* It can have ports and generics
* Has a declarative part
* Has a concurrent statement part

ECE 4170 (30)
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“Necn Example: Blocks and Guards

library IEEE;
use |[EEE.std_logic_1164.all;

entity my_dff is
generic (gate_delay: time:= 5 ns);
port (d, clk, we: in std_logic;
g, not_q: out std_logic);
end entlty my—dff; Value of the implicit guard signal

architecture behavioral of my_dff is/(_/

begin / ~
my_block: block (rising_edge(clk) and (we = '1")) is
begin
g<= guarded d after gate_delay;
not_qg<= guarded (not d) after gate_delay;
end block my_block;
end architecture behavioral;
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Sequln "s--'i'&l More on Processes: Postponed and Passive

* Postponed processes
— Execute the processes after all delta events on sensitive
signals
— Reduction in number of process invocations = reduce
simulation time
— Reduction in the number of events inserted/removed from
signal drivers - reduce simulation time

* Passive processes
— These are processes that do not alter the simulation state

— They can be placed to perform checks

ECE 4170 (32)
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entity dff is begin
generic (sq_delay, if set ='1’ the

rq_delay,cq_delay: time:=6 ns)

port (d, set, rst, clk :in bit;
g, notq: out bit);
end entity dff;

architecture behavioral of dff is

begin

process (rst, clk, set)
type bit_time is record
state : bit;

sd_delay: time;

end record:

sd := (‘1’, sq_delay);

elsif rst = ‘1’ then

sd := (‘0’, rq_delay);

elsif (rising_edge(clk)) then
sd := cq_delay;

end if;

q <= sd.state after sd.delay;

notq <= not sd.state after
sd.delay;

end process;
end architecture behavioral;

variable sd: bit_time:= (‘0’, 0 ns);

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998
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Georgia | .
wacné; Example: Passive Processes
entity dff is
package body of my_package is generic (sq_delay, rq_delay,cq_delay: time:=6 ns)
begin port ( d, set, rst, clk :in bit;
type bit_time is record g, notq: out bit);
state : bit; process
sd_delay: time; begin
end record: if set =1" the

shared variable sd: bit_time:= (‘0’, 0 ns);
end package;

Adapted from: Z. Navabi, “VHDL: Analysis and Modeling of Digital Systems”, McGraw Hill 1998

sd := (1", sq_delay);
elsif rst = ‘1’ then
sd := (‘0’, rq_delay);
elsif (rising_edge(clk)) then
sd := cq_delay;
end if;
end process;
end entity dff;

architecture behavioral of dff is
begin

q <= sd.state after sd.delay;

notq <= not sd.state after sd.delay;
end process;

end architecture behavioral;
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Tech it Disconnect Specification

* A signal can be disconnected from its driver by
assigning the NULL transaction
— The value then is determined by the signal kind
* Register : use the last known value
signal s1 : wired_or bus;
» Bus: use a resolution function
signal s2 : bit register:

» The availability of the disconnect specification
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