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Gﬂ%& File Objects
+ VHDL objects
— signals
— variables
— constants
— Files

The file type permits us to declare and use file objects

VHDL Program
~
T~
—
— file:
— type declaration
operations
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Tocn i File Declarations

» Files can be distinguished by the type of information stored
type text is file of string;
type IntegerFileType is file of integer;

» File declarations VHDL 1987
— file infile: text is in “inputdata.txt”;
— file ouffile: text is out “outputdata.txt”;

* File declarations VHDL 1993

— file infile: text open read_mode is “inputdata.txt’;
— file ouffile: text open write_mode is “outputdata.txt’;
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Wr.%ﬂl Binary File 1/0 (VHDL 1993)

begin

file_open(fstatus, dataout,"myfile.txt",
write_mode); -- open the file

for jin 1 to 8 loop

write(dataout,count); -- some random
values to write to the file

count := count+2;

end loop;

wait; -- an artificial way to stop the process

entity 1093 is -- this entity is empty

end entity 1093;

architecture behavioral of 1093 is

begin

process is

type IntegerFileType is file of integer; --
file declarations

file dataout :IntegerFileType;

variable count : integer:= 0;

variable fstatus: FILE_ OPEN_STATUS; end process;
- - end architecture behavioral,

+ VHDL provides read(f,value), write(f, value) and endfile(f)
+ VHDL 93 also provides File_Open() and File_Close()
» Explicit vs. implicit file open operations
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—
- Binary File /0 (VHDL 1987)

- variable check :integer :=0;

-- test of binary file I/O begin

- for count in 1 to 10 loop
entity i087 write_test is check := check +1;

end 1087 write_test; write(dataout, check);
architecture behavioral of 1087_write_test is end loop;

begin wait;

process end process;

type IntegerFileType is file of integer; end behavioral;

file dataout :IntegerFileType is out

“output.txt”;

+ VHDL 1987 provides read(f,value), write(f, value) and endfile(f)
+ Implicit file open operations via file declarations
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Gﬁ%%@ The TEXTIO Package

file

writeline()
%
< read(buf,c)
> —
wito{buiarg)

+ Afile is organized by lines

* read() and write() procedures operate on line data structures

* readline() and writeline() procedures transfer data from-to files
+ Text based /O

» All procedures encapsulated in the TEXTIO package in the
library STD

— Procedures for reading and writing the pre-defined types
from lines

— Pre-defined access to std_input and std_output
— Overloaded procedure names
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Seorgia
““eeni  Example: Use of the TEXTIO Package

use STD.Textio.all; L1: write(buf, “This is an example of
entity formatted_io is -- this entity is empty formatted I/0”);
end formatted_io; L2: writeline(outfile, buf); -- write buffer to
architecture behavioral of formatted io is file
begin L3: write(buf, “The First Parameter is =");
process is L4: write(buf, count);
file outfile :text; -- declare the file to be a text file L5: write(buf, © ©);
variable fstatus :File_open_status; L6: write(buf, “The Second Parameter is = *);
variable count: integer :=5; L7: write(buf, value);
variable value : bit_vector(3 downto 0):= X”6”; L8: writeline(outfile, buf);
variable buf: line; -- buffer to file L9: write(buf, “...and so on”);
begin L10: writeline(outfile, buf);
file_open(fstatus, outfile,”myfile.txt”, L11: file close(outfile); -- flush the buffer to
write_mode); -- open the file for writing the file

wait;

end process;
end architecture behavioral;

This is an example of formatted 10
The First Parameter is = 5 The Second Parameter is = 0110
...and so on

Result
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Gﬁ%‘-‘cﬁ@ Extending TEXTIO for Other Datatypes

» Hide the ASCII format of TEXTIO from the user

» Create type conversion procedures for reading and
writing desired datatypes, e.g., std_logic_vector

» Encapsulate procedures in a package

 Install package in a library and make its contents
visible via the use clause
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Example: Type Conversion

procedure write_v1d (variable f: out when ‘-’ => write(buf, ‘-’);

text; v : in std_logic_vector) is
variable buf: line;

variable c : character;

begin

foriin v'range loop

case V(i) is

when ‘X’ => write(buf, ‘X’);
when ‘U’ => write(buf, ‘U’);
when ‘Z' => write(buf, ‘Z’);

when ‘W’ => write(buf, ‘W’);

when ‘L’ => write(buf, ‘L’);

when ‘H’ => write(buf, ‘H’);

when others => write(buf, character'(‘0’));
end case;

end loop;

writeline (f, buf);

end procedure write_v1d;

when ‘0’ => write(buf, character'(‘0’));
when ‘1’ => write(buf, character'(‘1’));

+ Text based type conversion for user defined types
* Note: writing values vs. ASCII codes
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st

Example: Type Conversion

procedure read_v1d (variable f:in text;

v : out std_logic_vector) is

variable buf: line;
variable c : character;

begin
readline(f, buf);
foriin v’range loop
read(buf, c);
casecis

when ‘X' =>v (i)
when ‘U’ =>v (i)
when ‘Z' =>v (i) :

X
U
Z

when ‘0’ => v (i) :
when ‘1" =>v (i) :
when =’ =>v (i) :
when ‘W =>v (i) :
when ‘L’ =>v (i) :
when ‘H =>v (i) :
when others => v (i) :
end case;

end loop;

end procedure read_v1d

—‘O

i " NTITH
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‘0’

* read() is a symmetric process

ECE 4170 (10)




]
"“Seeh  Useful Code Blocks (from Bhasker95)

* Formatting the output
write (buf, “This is the header”);
writeline (outfile,buf);
write (buf, “Clk =");
write (buf, clk);
write (buf, “, N1 =");
write (buf, N1);

» Text output will appear as follows
This is the header
Clk =0, N1=01001011
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G%A Useful Code Blocks (Bhaskar95)

* Reading formatted input lines
# this file is parsed to separate comments
0001 65 00211120
0101 43 0110X001

bit vector integer std_logic_vector

*  The code block to read such files may be
while not (endfile(vectors) loop
readline(vectors, buf);
if buf(1) = ‘# then
continue;
end if;
read (buf, N1 ); convert to std_logic_vector
read (buf, N2);
read (buf, std_str);
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Useful Code Blocks: Filenames

process is

variable buf : line;

variable fname : string(1 to 10);

begin

-- prompt and read filename from standard input
write(output, “Enter Filename: ©);
readline(input,buf);

read(buf, fname);

-- process code

end process;

» Assuming “input” is mapped to simulator console
— Generally “input” and “output” are mapped to standard input

and standard output respectively
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mﬁl Useful Code Blocks: Testing Models

library IEEE;

use |[EEE.std_logic_1164.all; my /O library

use STD.textio.all; /—\/'

use Work.classio.all;

-- the package classio has been compiled into the working directory

entity checking is
end checking; -- the entity is an empty entity

architecture behavioral of checking is
begin

-- use file I/0 to read test vectors and write test results

Testing process

end architecture behavioral;
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Useful Code Blocks: Testing Models (cont.)

process is
-- use implicit file open

file infile : TEXT open read_mode is "infile.txt";
file outfile : TEXT open write_mode is "ouffile.txt";

variable check : std_logic_vector (15 downto 0) := x"0008";

begin

-- copy the input file contents to the output file

while not (endfile (infile)) loop

read_v1d (infile’ check); Can have a model here to test

write_v1d (outfile, check);

end loop;

file_close(outfile); -- flush buffers to output file

wait; -- artificial wait for this example ————  Example: Usually will not have this in your models
end process;

end architecture behavioral;
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Testbenches

Testbench output port
Model
Tester under
Test
tester vhd model.vhd
input port
testbench.vhd

» Testbenches are transportable

» General approach: apply stimulus vectors and
measure and record response vectors

» Application of predicates establish correct operation
of the model under test
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Techii Example

library IEEE;

use IEEE.std_logic_1164.all;

use STD.textio.all;

use WORK .classio.all; -- declare the I/O package

entity srtester is -- this is the module generating the tests
port (R, S, D, Clk : out std_logic;

Q, Qbar : in std_logic);

end entity srtester;

architecture behavioral of srtester is

begin

clk process: process -- generates the clock waveform with
begin -- period of 20 ns

Clk<= ‘1, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘0’ after 30 ns;
wait for 40 ns;

end process clk_process;

*Tester module to generate periodic signals and apply test vectors
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Example (cont.)

Example (cont.)

i0_process: process -- this process performs the test
file infile : TEXT is in “infile.txt”; -- functions

file outfile : TEXT is out “outfile.txt”;

variable buf : line;

variable msg : string(1 to 19) := “This vector failed!”;

variable check : std_logic_vector (4 downto 0);

begin

while not (endfile (infile)) loop -- loop through all test vectors in

read_vl1d (infile, check); -- the file

-- make assignments here

wait for 20 ns; -- wait for outputs to be available after applying

if (Q /= check (1) or (Qbar /= check(0))) then -- error check

write (buf, msg);

writeline (outfile, buf);

write_v1d (outfile, check);

end if;

end loop;

wait; -- this wait statement is important to allow the simulation to halt!
end process i0_process;

end architectural behavioral;
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“Necn Structuring Testers

library IEEE;

use IEEE.std_logic_1164.all;

use WORK .classio.all; -- declare the 1/O package
entity srbench is

end srbench;

architecture behavioral of srbench is

-- include component declarations here

-- configuration specification

for T1:srtester use entity WORK .srtester (behavioral);
for M1: asynch_dff use entity WORK.asynch_dff (behavioral);
signals r,s s,s d,s q,s gb,s clk: std logic;

begin

T1: srtester port map (R=>s_r, S=>s_s, D=>s d, Q=>s_q, Qbar=>s_qgb, Clk =>
s _clk);

M1: asynch_dff port map (R=>s _r, S=>s_s, D=>s_d, Q=>s_q, Qbar=>s_gb, Clk
=>3 clk);

end behavioral;
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e 'ﬁ& Stimulus Generation

« Stimulus vectors as well as reference vectors for
checking

» Stimulus source

* “on the fly” generation

— Local constant arrays
— File /O

» Clock and reset generation
— Generally kept separate from stimulus vectors
— Procedural stimulus
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“-deeny Stimulus Generation:

Example (Smith96)

process

begin

databus <= (others => ‘0’);

for N in 0 to 65536 loop

databus <=to_unsigned(N,16) xor
shift_right(to_unsigned(N,16),1);
for M in 1 to 7 loop

wait until rising_edge(clock);
end loop;

wait until falling_edge(Clock);
end loop;

-- rest of the the test program

end process;

» Test generation vs. File I/O: how many vectors would be need?
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G"%%'ﬁgl Stimulus Generation:

Example (Smith96)

while not endfile(vectors) loop

readline(vectors, vectorline); -- file format is 1011011

if (vectorline(1) = ‘#’ then
next;

end if;

read(vectorline, datavar);

read((vectorline, A); -- 4, B, and C are two bit vectors

read((vectorline, B); -- of type std_logic
read((vectorline, C);

--signal assignments

Indata <=to_stdlogic(datavar);

A_in <= unsigned(to_stdlogicvector(A)); -- A_in, B_in and C _in are of
B_in <= unsigned(to_stdlogicvector(B)); -- unsigned vectors

C_in <= unsigned(to_stdlogicvector(C));
wait for ClockPeriod;
end loop;
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Validation

Compare reference vectors with response vectors
and record errors in external files

In addition to failed tests record simulation time

May record additional simulation state
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ﬁ%j The “ASSERT” Statement

assert Q = check(1) and Qbar = check(0)
report “Test Vector Failed”
severity error;

Example of Simulator Console Output

Selected Top-Level: srbench (behavioral)
: ERROR : Test Vector Failed

: Time: 20 ns, Iteration: 0, Instance: /T1.

: ERROR : Test Vector Failed

: Time: 100 ns, Iteration: 0, Instance: /T1.

Designer can report errors at predefined levels: NOTE,
WARNING, ERROR and FAILURE (enumerated type)

Report argument is a character string written to simulation
output

Actions are simulator specific

Concurrent vs. sequential assertion statements

TEXTIO may be faster than ASSERT if we are not stopping the

simulation
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S ech Example: (Bhaskar 95)

architecture check_times of DFF is
constant hold_time: time:=5 ns;
constant setup_time : time:= 2 ns;
begin

process

variable lastevent: time;

begin

if d’event then

assert NOW = 0 ns or (NOW - lastevent) >=
hold_time

report “Hold time too short”
severity FAILURE;

lastevent := NOW;

end if;

-- check setup time

-- D flip flop behavioral model

end process;

end architecture check times

* Report statements may be used in isolation
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% 'ﬁ& Summary

+ Basic input/output
— ASCII I/O and the TEXTIO package
— binary I/O
— VHDL 87 vs. VHDL 93

« Testbenches

» The ASSERT statement
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