Basic Input and Output

© Sudhakar Yalamanchili, Georgia Institute of Technology ECE 4170 (1)
Gﬂ%& File Objects
+ VHDL objects
— signals
— variables
— constants
— Files

The file type permits us to declare and use file objects

VHDL Program
~
T~
—
— file:
— type declaration
operations

ECE 4170 (2)

i
i
Tocn i File Declarations

» Files can be distinguished by the type of information stored
type text is file of string;
type IntegerFileType is file of integer;

» File declarations VHDL 1987
— file infile: text is in “inputdata.txt”;
— file ouffile: text is out “outputdata.txt”;

* File declarations VHDL 1993

— file infile: text open read_mode is “inputdata.txt’;
— file ouffile: text open write_mode is “outputdata.txt’;

ECE 4170 (3)

Wr.%ﬂl Binary File 1/0 (VHDL 1993)

begin

file_open(fstatus, dataout,"myfile.txt",
write_mode); -- open the file

for jin 1 to 8 loop

write(dataout,count); -- some random
values to write to the file

count := count+2;

end loop;

wait; -- an artificial way to stop the process

entity 1093 is -- this entity is empty

end entity 1093;

architecture behavioral of 1093 is

begin

process is

type IntegerFileType is file of integer; --
file declarations

file dataout :IntegerFileType;

variable count : integer:= 0;

variable fstatus: FILE_ OPEN_STATUS; end process;
- - end architecture behavioral,

+ VHDL provides read(f,value), write(f, value) and endfile(f)
+ VHDL 93 also provides File_Open() and File_Close()
» Explicit vs. implicit file open operations

ECE 4170 (4)

[}
—
- Binary File /0 (VHDL 1987)

- variable check :integer :=0;

-- test of binary file I/O begin

- for count in 1 to 10 loop
entity i087 write_test is check := check +1;

end 1087 write_test; write(dataout, check);
architecture behavioral of 1087_write_test is end loop;

begin wait;

process end process;

type IntegerFileType is file of integer; end behavioral;

file dataout :IntegerFileType is out

“output.txt”;

+ VHDL 1987 provides read(f,value), write(f, value) and endfile(f)
+ Implicit file open operations via file declarations

ECE 4170 (5)

Gﬁ%%@ The TEXTIO Package

file

writeline()
%
< read(buf,c)
> —
wito{buiarg)

+ Afile is organized by lines

* read() and write() procedures operate on line data structures

* readline() and writeline() procedures transfer data from-to files
+ Text based /O

» All procedures encapsulated in the TEXTIO package in the
library STD

— Procedures for reading and writing the pre-defined types
from lines

— Pre-defined access to std_input and std_output
— Overloaded procedure names
ECE 4170 (6)

Seorgia
““eeni Example: Use of the TEXTIO Package

use STD.Textio.all; L1: write(buf, “This is an example of
entity formatted_io is -- this entity is empty formatted I/0”);
end formatted_io; L2: writeline(outfile, buf); -- write buffer to
architecture behavioral of formatted io is file
begin L3: write(buf, “The First Parameter is =");
process is L4: write(buf, count);
file outfile :text; -- declare the file to be a text file L5: write(buf, © ©);
variable fstatus :File_open_status; L6: write(buf, “The Second Parameter is = *);
variable count: integer :=5; L7: write(buf, value);
variable value : bit_vector(3 downto 0):= X”6”; L8: writeline(outfile, buf);
variable buf: line; -- buffer to file L9: write(buf, “...and so on”);
begin L10: writeline(outfile, buf);
file_open(fstatus, outfile,”myfile.txt”, L11: file close(outfile); -- flush the buffer to
write_mode); -- open the file for writing the file

wait;

end process;
end architecture behavioral;

This is an example of formatted 10
The First Parameter is = 5 The Second Parameter is = 0110
...and so on

Result

ECE 4170 (7)

Gﬁ%‘-‘cﬁ@ Extending TEXTIO for Other Datatypes

» Hide the ASCII format of TEXTIO from the user

» Create type conversion procedures for reading and
writing desired datatypes, e.g., std_logic_vector

» Encapsulate procedures in a package

 Install package in a library and make its contents
visible via the use clause

ECE 4170 (8)

Example: Type Conversion

procedure write_v1d (variable f: out when ‘-’ => write(buf, ‘-’);

text; v : in std_logic_vector) is
variable buf: line;

variable c : character;

begin

foriin v'range loop

case V(i) is

when ‘X’ => write(buf, ‘X’);
when ‘U’ => write(buf, ‘U’);
when ‘Z' => write(buf, ‘Z’);

when ‘W’ => write(buf, ‘W’);

when ‘L’ => write(buf, ‘L’);

when ‘H’ => write(buf, ‘H’);

when others => write(buf, character'(‘0’));
end case;

end loop;

writeline (f, buf);

end procedure write_v1d;

when ‘0’ => write(buf, character'(‘0’));
when ‘1’ => write(buf, character'(‘1’));

+ Text based type conversion for user defined types
* Note: writing values vs. ASCII codes

ECE 4170 (9)

st

Example: Type Conversion

procedure read_v1d (variable f:in text;

v : out std_logic_vector) is

variable buf: line;
variable c : character;

begin
readline(f, buf);
foriin v’range loop
read(buf, c);
casecis

when ‘X' =>v (i)
when ‘U’ =>v (i)
when ‘Z' =>v (i) :

X
U
Z

when ‘0’ => v (i) :
when ‘1" =>v (i) :
when =’ =>v (i) :
when ‘W =>v (i) :
when ‘L’ =>v (i) :
when ‘H =>v (i) :
when others => v (i) :
end case;

end loop;

end procedure read_v1d

—‘O

i " NTITH
‘:FI_E_

‘0’

* read() is a symmetric process

ECE 4170 (10)

]
"“Seeh Useful Code Blocks (from Bhasker95)

* Formatting the output
write (buf, “This is the header”);
writeline (outfile,buf);
write (buf, “Clk =");
write (buf, clk);
write (buf, “, N1 =");
write (buf, N1);

» Text output will appear as follows
This is the header
Clk =0, N1=01001011

ECE 4170 (11)

G%A Useful Code Blocks (Bhaskar95)

* Reading formatted input lines
this file is parsed to separate comments
0001 65 00211120
0101 43 0110X001

bit vector integer std_logic_vector

* The code block to read such files may be
while not (endfile(vectors) loop
readline(vectors, buf);
if buf(1) = ‘# then
continue;
end if;
read (buf, N1); convert to std_logic_vector
read (buf, N2);
read (buf, std_str);

ECE 4170 (12)

Useful Code Blocks: Filenames

process is

variable buf : line;

variable fname : string(1 to 10);

begin

-- prompt and read filename from standard input
write(output, “Enter Filename: ©);
readline(input,buf);

read(buf, fname);

-- process code

end process;

» Assuming “input” is mapped to simulator console
— Generally “input” and “output” are mapped to standard input

and standard output respectively

ECE 4170 (13)

mﬁl Useful Code Blocks: Testing Models

library IEEE;

use |[EEE.std_logic_1164.all; my /O library

use STD.textio.all; /—\/'

use Work.classio.all;

-- the package classio has been compiled into the working directory

entity checking is
end checking; -- the entity is an empty entity

architecture behavioral of checking is
begin

-- use file I/0 to read test vectors and write test results

Testing process

end architecture behavioral;

ECE 4170 (14)

SEOFgEs |
ech

==

Useful Code Blocks: Testing Models (cont.)

process is
-- use implicit file open

file infile : TEXT open read_mode is "infile.txt";
file outfile : TEXT open write_mode is "ouffile.txt";

variable check : std_logic_vector (15 downto 0) := x"0008";

begin

-- copy the input file contents to the output file

while not (endfile (infile)) loop

read_v1d (infile’ check); Can have a model here to test

write_v1d (outfile, check);

end loop;

file_close(outfile); -- flush buffers to output file

wait; -- artificial wait for this example ———— Example: Usually will not have this in your models
end process;

end architecture behavioral;

ECE 4170 (15)

Testbenches

Testbench output port
Model
Tester under
Test
tester vhd model.vhd
input port
testbench.vhd

» Testbenches are transportable

» General approach: apply stimulus vectors and
measure and record response vectors

» Application of predicates establish correct operation
of the model under test

ECE 4170 (16)

Techii Example

library IEEE;

use IEEE.std_logic_1164.all;

use STD.textio.all;

use WORK .classio.all; -- declare the I/O package

entity srtester is -- this is the module generating the tests
port (R, S, D, Clk : out std_logic;

Q, Qbar : in std_logic);

end entity srtester;

architecture behavioral of srtester is

begin

clk process: process -- generates the clock waveform with
begin -- period of 20 ns

Clk<= ‘1, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘0’ after 30 ns;
wait for 40 ns;

end process clk_process;

*Tester module to generate periodic signals and apply test vectors

ECE 4170 (17)

Example (cont.)

Example (cont.)

i0_process: process -- this process performs the test
file infile : TEXT is in “infile.txt”; -- functions

file outfile : TEXT is out “outfile.txt”;

variable buf : line;

variable msg : string(1 to 19) := “This vector failed!”;

variable check : std_logic_vector (4 downto 0);

begin

while not (endfile (infile)) loop -- loop through all test vectors in

read_vl1d (infile, check); -- the file

-- make assignments here

wait for 20 ns; -- wait for outputs to be available after applying

if (Q /= check (1) or (Qbar /= check(0))) then -- error check

write (buf, msg);

writeline (outfile, buf);

write_v1d (outfile, check);

end if;

end loop;

wait; -- this wait statement is important to allow the simulation to halt!
end process i0_process;

end architectural behavioral;

ECE 4170 (18)

P]
“Necn Structuring Testers

library IEEE;

use IEEE.std_logic_1164.all;

use WORK .classio.all; -- declare the 1/O package
entity srbench is

end srbench;

architecture behavioral of srbench is

-- include component declarations here

-- configuration specification

for T1:srtester use entity WORK .srtester (behavioral);
for M1: asynch_dff use entity WORK.asynch_dff (behavioral);
signals r,s s,s d,s q,s gb,s clk: std logic;

begin

T1: srtester port map (R=>s_r, S=>s_s, D=>s d, Q=>s_q, Qbar=>s_qgb, Clk =>
s _clk);

M1: asynch_dff port map (R=>s _r, S=>s_s, D=>s_d, Q=>s_q, Qbar=>s_gb, Clk
=>3 clk);

end behavioral;

ECE 4170 (19)

e 'ﬁ& Stimulus Generation

« Stimulus vectors as well as reference vectors for
checking

» Stimulus source

* “on the fly” generation

— Local constant arrays
— File /O

» Clock and reset generation
— Generally kept separate from stimulus vectors
— Procedural stimulus

ECE 4170 (20)

PR
“-deeny Stimulus Generation:

Example (Smith96)

process

begin

databus <= (others => ‘0’);

for N in 0 to 65536 loop

databus <=to_unsigned(N,16) xor
shift_right(to_unsigned(N,16),1);
for M in 1 to 7 loop

wait until rising_edge(clock);
end loop;

wait until falling_edge(Clock);
end loop;

-- rest of the the test program

end process;

» Test generation vs. File I/O: how many vectors would be need?

ECE 4170 (21)

G"%%'ﬁgl Stimulus Generation:

Example (Smith96)

while not endfile(vectors) loop

readline(vectors, vectorline); -- file format is 1011011

if (vectorline(1) = ‘#’ then
next;

end if;

read(vectorline, datavar);

read((vectorline, A); -- 4, B, and C are two bit vectors

read((vectorline, B); -- of type std_logic
read((vectorline, C);

--signal assignments

Indata <=to_stdlogic(datavar);

A_in <= unsigned(to_stdlogicvector(A)); -- A_in, B_in and C _in are of
B_in <= unsigned(to_stdlogicvector(B)); -- unsigned vectors

C_in <= unsigned(to_stdlogicvector(C));
wait for ClockPeriod;
end loop;

ECE 4170 (22)

ES——

Validation

Compare reference vectors with response vectors
and record errors in external files

In addition to failed tests record simulation time

May record additional simulation state

ECE 4170 (23)

ﬁ%j The “ASSERT” Statement

assert Q = check(1) and Qbar = check(0)
report “Test Vector Failed”
severity error;

Example of Simulator Console Output

Selected Top-Level: srbench (behavioral)
: ERROR : Test Vector Failed

: Time: 20 ns, Iteration: 0, Instance: /T1.

: ERROR : Test Vector Failed

: Time: 100 ns, Iteration: 0, Instance: /T1.

Designer can report errors at predefined levels: NOTE,
WARNING, ERROR and FAILURE (enumerated type)

Report argument is a character string written to simulation
output

Actions are simulator specific

Concurrent vs. sequential assertion statements

TEXTIO may be faster than ASSERT if we are not stopping the

simulation
ECE 4170 (24)

.
S ech Example: (Bhaskar 95)

architecture check_times of DFF is
constant hold_time: time:=5 ns;
constant setup_time : time:= 2 ns;
begin

process

variable lastevent: time;

begin

if d’event then

assert NOW = 0 ns or (NOW - lastevent) >=
hold_time

report “Hold time too short”
severity FAILURE;

lastevent := NOW;

end if;

-- check setup time

-- D flip flop behavioral model

end process;

end architecture check times

* Report statements may be used in isolation

ECE 4170 (25)

% 'ﬁ& Summary

+ Basic input/output
— ASCII I/O and the TEXTIO package
— binary I/O
— VHDL 87 vs. VHDL 93

« Testbenches

» The ASSERT statement

ECE 4170 (26)

