
1

ECE 4170 (1)

Subprograms, Packages, and
Libraries

© Sudhakar Yalamanchili, Georgia Institute of Technology

ECE 4170 (2)

Essentials of Functions

• Formal parameters and mode
– Default mode is of type in

• Functions cannot modify parameters
– Pure functions vs. impure functions

• Latter occur because of visibility into signals that are not parameters

• Function variables initialized on each call

function rising_edge (signal clock: std_logic) return
boolean is
--
--declarative region: declare variables local to the
function
--
begin
-- body
--
return (expression)
end rising_edge;

2

ECE 4170 (3)

Essentials of Functions (cont.)

• Types of formals and actuals must match except for
formals which are constants (default)
– Formals which are constant match actuals which are

variable, constant or signal
• Wait statements are not permitted in a function!

– And therefore not in any procedure called by a functions

function rising_edge (signal clock: std_logic) return
boolean is
--
--declarative region: declare variables local to the
function
--
begin
-- body
--
return (expression)
end rising_edge;

ECE 4170 (4)

Placement of Functions

• Place function code in the declarative region of the
architecture or process

process A process B process C

function X function Y function Z

function W

Architecture
visible in processes

A, B & C

visible only in
process A

3

ECE 4170 (5)

Function: Example

architecture behavioral of dff is
function rising_edge (signal clock : std_logic)
return boolean is
variable edge : boolean:= FALSE;
begin
edge := (clock = ‘1’ and clock’event);
return (edge);
end rising_edge;

begin
output: process
begin
wait until (rising_edge(Clk));
Q <= D after 5 ns;
Qbar <= not D after 5 ns;
end process output;
end architecture behavioral;

Architecture
Declarative
Region

ECE 4170 (6)

Function: Example

function to_bitvector (svalue : std_logic_vector) return
bit_vector is
variable outvalue : bit_vector (svalue’length-1 downto 0);
begin
for i in svalue’range loop -- scan all elements of the array
case svalue (i) is
when ‘0’ => outvalue (i) := ‘0’;
when ‘1’ => outvalue (i) := ‘1’;
when others => outvalue (i) := ‘0’;
end case;
end loop;
return outvalue;
end to_bitvector

• A common use of functions: type conversion
• Use of attributes for flexible function definitions

– Data size is determined at the time of the call
• Browse the vendor supplied packages for many examples

4

ECE 4170 (7)

Implementation of Signals

• The basic structure of a signal assignment statement
– signal <= (value expression after time expression)

• RHS is referred to as a waveform element
• Every signal has associated with it a driver

• Holds the current and future values of the signal - a
projected waveform

• Signal assignment statements modify the driver of a
signal

• Value of a signal is the value at the head of the driver

value-time pairs

driver

ECE 4170 (8)

Shared Signals

• How do we model the state of a wire?
• Rules for determining the signal value is captured in the resolution

function

driver

driver

?

5

ECE 4170 (9)

Resolved Signals

• Resolution function is invoked whenever an event occurs on
this signal

• Resolution must be an associative operation

driver

driver

signal type is a resolved type

ECE 4170 (10)

Resolution Function Behavior

• Physical operation
– If any of the control signals activate the switch, the output

signal is pulled low
• VHDL model

– If any of the drivers attempt to drive the signal low (value at
the head of the driver), the resolution functions returns a
value of 0

– Resolution function is invoked when any driver attempts to
drive the output signal

X1 X2X1 X2 Xn

. . . Z. . . Z

Switch with active
low input.

Weak Pull Up
Device

000

6

ECE 4170 (11)

Resolved Types: std_logic

type std_ulogic is (
‘U’, -- Uninitialized
‘X’, -- Forcing Unknown
‘0’, -- Forcing 0
‘1’, -- Forcing 1
‘Z’, -- High Impedance
‘W’, -- Weak Unknown
‘L’, -- Weak 0
‘H’, -- Weak 1
‘-’ -- Don’t care
);

function resolved (s : std_ulogic_vector) return
std_ulogic;
subtype std_logic is resolved std_ulogic;

Type only supports only single drivers

New subtype supports
multiple drivers

ECE 4170 (12)

Resolution Function: std_logic & resolved()

• Pair wise resolution of signal values from multiple
drivers

• Resolution operation must be associative

resolving values for std_logic types

U X 0 1 Z W L H -
U U U U U U U U U U
X U X X X X X X X X
0 U X 0 X 0 0 0 0 X
1 U X X 1 1 1 1 1 X
Z U X 0 1 Z W L H X
W U X 0 1 W W W W X
L U X 0 1 L W L W X
H U X 0 1 H W W H X
- U X X X X X X X X

7

ECE 4170 (13)

Example

• Multiple components driving a shared error signal
• Signal value is the logical OR of the driver values

die

global error
signal

chip carrier

ECE 4170 (14)

A Complete Example

• Use of unconstrained arrays
– This is why the resolution function must be associative!

library IEEE;
use IEEE.std_logic_1164.all;
entity mcm is
end entity mcm;
architecture behavioral of mcm is
function wire_or (sbus :std_ulogic_vector)
return std_ulogic;
begin
for i in sbus’range loop
if sbus(i) = ‘1’ then
return ‘1’;
end if;
end loop;
return ‘0’;
end wire_or;

subtype wire_or_logic is wire_or
std_ulogic;
signal error_bus : wire_or_logic;
begin
Chip1: process
begin
--..
error_bus <= ‘1’ after 2 ns;
--..
end process Chip1;
Chip2: process
begin
--..
error_bus <= ‘0’ after 2 ns;
--..
end process Chip2;
end architecture behavioral;

Resolution
function

New resolved
type

8

ECE 4170 (15)

Synthesis Considerations: Functions

• Function in-lining model for synthesis

• All local variables initialized on each call and all
outputs are computed

Combinational Logic

ECE 4170 (16)

Summary: Essentials of Functions

• Placement of functions
– Visibility

• Formal parameters
– Actuals can have widths bound at the call time

• Check the source listings of packages for examples
of many different functions

9

ECE 4170 (17)

Essentials of Procedures

• Parameters may be of mode in (read only) and out
(write only)

• Default class of input parameters is constant
• Default class of output parameters is variable
• Variables declared within procedure are initialized

on each call

procedure read_v1d (variable f: in text; v :out std_logic_vector)
--declarative region: declare variables local to the procedure
--
begin
-- body
--
end read_v1d;

ECE 4170 (18)

Procedures: Placement

architecture behavioral of cpu is
--
-- declarative region
-- procedures can be placed in their entirety here
--
begin
process_a: process
-- declarative region of a process
-- procedures can be placed here
begin
--
-- process body
--
end process_a;
process_b: process
--declarative regions
begin
-- process body
end process_b;
end architecture behavioral;

visible to all
processes

visible only within
process_a

visible only within
process_b

10

ECE 4170 (19)

Placement of Procedures

• Placement of procedures determines visibility in its
usage

process A process B process C
procedure X procedure Y procedure Z

procedure W

Architecture
visible in processes

A, B & C

visible only in
process A

ECE 4170 (20)

Procedures and Signals

• Procedures can make assignments to signals
passed as input parameters

• Procedures may not have a wait statement if the
encompassing process has a sensitivity list

procedure mread (address : in std_logic_vector (2 downto 0);
signal R : out std_logic;
signal S : in std_logic;
signal ADDR : out std_logic_vector (2 downto 0);
signal data : out std_logic_vector (31 downto 0)) is
begin
ADDR <= address;
R <= ‘1’;
wait until S = ‘1’;
data <= DO;
R <= ‘0’;
end mread;

11

ECE 4170 (21)

Procedures and Signals

• Procedures may modify signals not in the parameter
list, e.g., ports

• Signals may not be declared in a procedure
• Procedures may make assignments to signals not

declared in the parameter list

procedure mread (address : in std_logic_vector (2 downto 0);
signal R : out std_logic;
signal S : in std_logic;
signal ADDR : out std_logic_vector (2 downto 0);
signal data : out std_logic_vector (31 downto 0)) is
begin
ADDR <= address;
R <= ‘1’;
wait until S = ‘1’;
data <= DO;
R <= ‘0’;
end mread;

ECE 4170 (22)

Concurrent vs. Sequential Procedure Calls

• Example: bit serial adder

a
b

z

carry

00/0
01/1
10/1

01/0
10/0
11/1

11/0

00/1

D

Clk

Q

Q

R

ab/s

0 1

Combinational
Logic

12

ECE 4170 (23)

Concurrent Procedure Calls
architecture structural of serial_adder is
component comb
port (a, b, c_in : in std_logic;
z, carry : out std_logic);
end component;
procedure dff(signal d, clk, reset : in std_logic;
signal q, qbar : out std_logic) is
begin
if (reset = ‘0’) then
q <= ‘0’ after 5 ns;
qbar <= ‘1’ after 5 ns;
elsif (rising_edge(clk)) then
q <= d after 5 ns;
qbar <= (not D) after 5 ns;
end if;
end dff;
signal s1, s2 : std_logic;

begin
C1: comb port map (a => a, b => b,
c_in => s1, z =>z, carry => s2);
--
-- concurrent procedure call
--
dff(clk => clk, reset =>reset, d=> s2,
q=>s1, qbar =>open);
end architectural structural;

• Variables cannot be passed into a concurrent procedure call
• Explicit vs. positional association of formal and actual

parameters

ECE 4170 (24)

Equivalent Sequential Procedure Call
architecture structural of serial_adder is
component comb
port (a, b, c_in : in std_logic;
z, carry : out std_logic);
end component;
procedure dff(signal d, clk, reset : in std_logic;
signal q, qbar : out std_logic) is
begin
if (reset = ‘0’) then
q <= ‘0’ after 5 ns;
qbar <= ‘1’ after 5 ns;
elsif (clk’event and clk = ‘1’) then
q <= d after 5 ns;
qbar <= (not D) after 5 ns;
end if;
end dff;
signal s1, s2 : std_logic;

begin
C1: comb port map (a => a, b => b,
c_in => s1, z =>z, carry => s2);
--
-- sequential procedure call
--
process
begin
dff(clk => clk, reset =>reset, d=> s2,
q=>s1, qbar =>open);
wait on clk, reset,s2;
end process;
end architecture structural;

13

ECE 4170 (25)

Synthesis Considerations: Procedures

• Procedure in-lining model for synthesis

• Synthesis compilers generally restrict processes to
one wait statement
– Cannot predict how procedures will be used

• Especially when using packages
– Therefore wait statements in procedures are generally

avoided

• Storage is inferred for parameters of mode out if
encompassed in conditional blocks
– Local variables are always initialized and hence will

synthesize to wires

ECE 4170 (26)

Subprogram Overloading

• Hardware components differ in number of inputs and the type
of input signals

• Model each component by a distinct procedure
• Procedure naming becomes tedious

D

Clk

Q

Q

D

Clk

S

Q

R

Q

D

Clk

S

Q

R

Q

D

Clk

S

Q

R

Q

bit_vector

std_logic_vector

14

ECE 4170 (27)

Subprogram Overloading
• Consider the following procedures for the previous components

dff_bit (clk, d, q, qbar)
asynch_dff_bit (clk, d,q,qbar,reset,clear)
dff_std (clk,d,q,qbar)
asynch_dff_std (clk, d,q,qbar,reset,clear)

• All of the previous components can use the same name
subprogram overloading

• The proper procedure can be determined based on the
arguments of the call
– Example
function “*” (arg1, arg2: std_logic_vector) return std_logic_vector;
function “+” (arg1, arg2 :signed) return signed;
-- the following function is from std_logic_arith.vhd
--

ECE 4170 (28)

Subprogram Overloading

• VHDL is a strongly typed language
• Overloading is a convenient means for handling user defined

types
• We need a structuring mechanism to keep track of our

overloaded implementations

Packages!

15

ECE 4170 (29)

Essentials of Packages

• Package Declaration
– Declaration of the functions, procedures, and types that are

available in the package
– Serves as a package interface
– Only declared contents are visible for external use

• Note the behavior of the use clause

• Package body
– Implementation of the functions and procedures declared in the

package header
– Instantiation of constants provided in the package header

ECE 4170 (30)

Example: Package Header std_logic_1164

package std_logic_1164 is
type std_ulogic is (‘U’, --Unitialized
‘X’, -- Forcing Unknown
‘0’, -- Forcing 0
‘1’, -- Forcing 1
‘Z’, -- High Impedance
‘W’, -- Weak Unknown
‘L’, -- Weak 0
‘H’, -- Weak 1
‘-’ -- Don’t care
);
type std_ulogic_vector is array (natural range <>) of std_ulogic;
function resolved (s : std_ulogic_vector) return std_ulogic;
subtype std_logic is resolved std_ulogic;
type std_logic_vector is array (natural range <>) of std_logic;
function “and” (l, r : std_logic_vector) return std_logic_vector;
--..<rest of the package definition>
end package std_logic_1164;

16

ECE 4170 (31)

Example: Package Body

• Packages are typically compiled into libraries
• New types must have associated definitions for

operations such as logical operations (e.g., and, or)
and arithmetic operations (e.g., +, *)

• Examine the package std_logic_1164 stored in
library IEEE

package body my_package is
--
-- type definitions, functions, and procedures
--
end my_package;

ECE 4170 (32)

Essentials of Libraries

• Design units are analyzed (compiled) and placed in libraries
• Logical library names map to physical directories
• Libraries STD and WORK are implicitly declared

Design
File

VHDL
Analyzer

WORK STD IEEE

standard.vhd

std_logic_1164.vhdtextio.vhd

LibraryLibrary Library

full_adder.vhd

half_adder. vhd

.....

Sources and analyzed
design units

17

ECE 4170 (33)

Design Units

• Distinguish the primary and secondary design units
• Compilation order

architecture-3
architecture-2

architecture-1

entity configuration package
header

package
body

binding

Primary Design Units

ECE 4170 (34)

Visibility Rules

• When multiple design units are in the same file visibility of libraries
and packages must be established for each primary design unit
(entity, package header, configuration) separately!
– Secondary design units derive library information from associated primary

design unit

• The use clause may selectively establish visibility, e.g., only the
function rising_edge() is visible within entity design-2
– Secondary design inherit visibility

• Note design unit descriptions are decoupled from file unit boundaries

library IEEE;
use IEEE.std_logic_1164.all;
entity design-1 is
.....

library IEEE;
use IEEE.std_logic_1164.rising_edge;
entity design-2 is
......

file.vhd

18

ECE 4170 (35)

Summary

• Functions
– Resolution functions

• Procedures
– Concurrent and sequential procedure calls

• Subprogram overloading
• Packages

– Package declaration - primary design unit
– Package body

• Libraries
– Relationships between design units and libraries
– Visibility Rules

