

April 1996

5-1

© 1996 Actel Corporation

Application Note

5

Using Actel FPGAs to Implement
the 100 Mbit/s Ethernet Standard

One of the more recent entrants into the high-speed
networking standards battle is 100Base-X—Ethernet
operating at 100 Mbit/s. This standard is supported by the
Fast Ethernet Alliance and sponsored by several key
networking companies such as Intel, National
Semiconductor, Sun Microsystems, and 3Com. This proposed
standard involves many of the types of digital logic functions
facing high-speed network designers and, as will be shown in
this application note, can be readily implemented using Actel
FPGA devices.

The emerging 100 Mbit Ethernet market is expected to
mushroom as network performance requirements continue to
grow. Network users are expected to have almost doubled
between 1991 and 1994, and networks will need to provide
these new users with just as much (if not more) bandwidth. A
high-speed Ethernet network could solve the bandwidth
problems for many classes of users while maintaining
compatibility with current equipment and software.

100Base-X Network Standards

The 100Base-X proposal uses two established networking
standards to support the 100 Mbit data rate required to
implement the tenfold increase in the 10 Mbit rate of the
current Ethernet standard. The 100Base-X standard keeps
the Media Access Control (MAC) layer the same as the
current Ethernet standard, but it raises the data rate to
100 Mbit/s. Since the MAC layer was defined independently of
performance level, this increase can be accomplished
relatively easily, and the well-proven behavioral dynamics of
the Ethernet MAC can be retained. The only change required
is to reduce the physical network span to 1/10 of the 10 Mbit/s
distance, resulting in a span of about 250 meters.

This reduced span fits well within current structured wiring
methodologies. Building-floor wiring in modern installations
of Ethernet, such as 10Base-T, are organized as physical stars
with a centralized wiring closet and cable runs of less than
100 meters. For LANs, this results in a hub-station
architecture with interconnections of less than 100 meters.

At the physical layer, 100Base-X leverages off the proven
FDDI standard for 100 Mbit/s communications using a
full-duplex 125 Mbit/s Physical Media-Dependent (PMD)
sublayer. This supports fiber optic, shielded twisted-pair
(STP) and unshielded twisted-pair (UTP) wiring. Combining
the MAC layer of Ethernet to the PMD layer of FDDI requires

a convergence sublayer (CS) between them. Using the CS,
100Base-X maps the PMD’s constant signaling system to the
packet-oriented half-duplex system imposed by the Ethernet
MAC.

Convergence Sublayer Interfaces

The MAC transmits data to the convergence sublayer in the
form of 4-bit words (Figure 1). This data is then encoded into
5-bit groups, serialized, and transmitted by the CS to the PMD
sublayer as the transmitPMD signal.

Received data is sent from the PMD to the CS as the
receivePMD signal and is synchronized with the 125 MHz
clock. Note that the PMD also generates signalDetect when
data is detected on the line. The CS decodes the serial data,
converting the input 5-bit code groups into 4-bit hex
characters and sends it to the MAC as the receiveMAC signal.
Note that the PMD extracts the clock from the serial bit
stream input. The 125 MHz frequency is recovered from the
input data stream by the PMD clock circuits in the CS. In
addition, receiveError is generated by the CS to indicate to
the MAC that an error has occurred during reception. The
carrierSense signal is provided to the MAC to indicate that
the line is active. The collisionDetect signal notifies the MAC
if a collision has occurred.

This application note will show you how to use Actel FPGAs to
develop a complete convergence sublayer. It will subdivide
the CS into its functional divisions and will show you how
each can be implemented using Actel ACT 3 FPGAs.

Convergence Sublayer Functions

Figure 2 shows the basic data flow in the convergence
sublayer. The CS receives transmit data from the MAC as
4-bit words designated transmitMAC. These 4-bit words are
encoded into 5-bit symbols (designated TxSYM) that are
shifted out to the PMD at the 125 MHz clock rate.

Received data at a 125 Mbit/s rate is sent from the PMD to
the CS as the receivePMD signal. The CS formats input data
to produce 5-bit symbol groups. Detection of the two-symbol
sequence, J and K, marks the beginning of a packet and starts
the synchronization of the input data stream. The 5-bit
groups are then decoded by the 5B4B decoder and sent to the
MAC as a stream of 4-bit words until the packet’s end is
detected by the reception of the end-of-packet delimiter
characters, T and R.

5-2

Figure 1 •

Convergence Sublayer Interfaces

Figure 2 •

Data Flow in Convergence Sublayer

CONVERGENCE sublayer (CS)

 MEDIA ACCESS CONTROLLER (MAC)

collisionDetect

carrierSense
receiveMACtransmitEnable

transmitMAC
1

1

1
414

125 MHz
clock

transmitPMD
1

1
signalDetect

1

receivePMD

PHYSICAL MEDIA DEPENDENT (PMD) LAYER

(receiveError)

1

MAC (100 Mbit/s)

3 2 1 0

4-BIT-TO-5-BIT
(4B5B) ENCODER

4-BIT WORDS

4 3 2 1 0

TxSYM
5-BIT

PMD (125 Mbit/s)

TxBIT

transmitPMD

5-BIT-TO-4-BIT
(5B4B) DECODER

1 0
5-BIT GROUPS

SERIAL TO PARALLEL

receivePMD

4-BIT WORDS

RxBIT
RxSYM

(receiveError) receiveMAC

CONVERGENCE sublayer (CS)

GROUPS

transmitMAC 44

3 2 1 0

9 8 7 6 5 4 3 2 1 0

5-3

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

5

The 4B5B encoding/decoding method, which is a subset of
the standard FDDI 4B5B encoding method, employs 5-bits to
encode/decode both 16 data (hex) characters and the
signaling symbols required to indicate the start and end of
the data packet. In addition to the 16 valid 4-bit-binary code
groups shown in Table 1, there are five special control signals
used to indicate start of packet (J followed by K), end of
packet (T followed by R), and idle (I). A number of other 5-bit
combinations are designated as invalid and represent
channel errors or repeater collision artifacts. Thus, the
physical line idles until the start of a data packet is indicated
by a J symbol followed by a K. Data symbols then follow with
the end of data being indicated by a T symbol followed by an
R. Idle symbols immediately follow. The job of the
convergence sublayer is to extract the control characters or
idles from the packet and then send a data-only packet to the
MAC. Thus, the MAC never receives idle, JK, or TR symbols.
When receiving, the CS reverses the process, encapsulating
and encoding the data from the MAC for transmission by the
PMD.

Convergence Sublayer Data Flow

The block diagram of the convergence sublayer is shown in
Figure 3. The receive state machine generates receiveMAC

data and receiveError for the MAC based on the receivePMD
data input from the media. The transmit state machine
accepts transmitMAC and transmitEnable from the MAC and
generates the transmitPMD data to the physical layer. The
collisionDetect function is generated by the transmit state
machine, based on transmitEnable and the receive state
machine’s receiving signal.

The Carrier Sense function asserts the carrierSense signal
when the convergence sublayer is either transmitting or
receiving, based upon the two corresponding internal signals
generated by the Transmit and Receive functions. The Link
Monitor function generates linkTestFail based on the PMDs
signalDetect. LinkTestFail is an internal signal unused by the
MAC and can optionally be used by your network
management entity.

Transmitted data, shown as the transmitMAC signal in
Figure 3, indicates that MAC data is available and is
registered in the convergence sublayer logic. Groups of 4 data
bits in the transmit bit stream are converted to 5-bit code
groups by 4B5B encoding prior to transmission on the
125 Mbit/s PMD. The TxDATA, TxSYM, and TxBIT signals are
all different views of the same data, but at different data
rates.

Figure 3 •

Convergence Sublayer Functional Block Diagram

MAC (100 Mbit/s)

PMD (125 Mbit/s)

transmitPMD

receivePMD

(receiveError)

receiveMACtransmitMAC

Transmit State Machine Carrier Sense/
Link Monitor

Circuits

Receive State Machine
and Receive Data and Transmit Data

4
1

transmitEnable

collisionDetect

1 1

carrierSense

1

1

125 MHz
clock

linkTestFail

transmitting

CONVERGENCE
sublayer (CS)

SignalDetect1

1

receiving

125 MHz clock

4

1

Path Circuits Path Circuits

5-4

Using FPGAs to Implement a
100Base-X Convergence Sublayer

As will be seen in the following sections, the 100Base-X
convergence sublayer can be implemented as eight
functional blocks, each of which forms the subject of a
separate application discussion. These are listed under the
three main headings: the transmit function, the receive
function, and the carrier-sense and link-monitor circuits.

Convergence Sublayer Transmit Function

The design of the transmit function shows some common
design techniques used in high-speed FPGA applications. The

main function of this block is to provide the requested symbol
data to the PMD at the 125 Mbit/s serial rate. This requires
the 4-bit MAC data words to be 4B5B encoded and then
shifted out using the 125 MHz clock. In addition, the serial
data stream needs to be framed using the leading /J/K/
symbol pair and trailing /T/R/ symbol pair. When data is not
transmitting, it is replaced by the constant transmission of
idle symbols. The transmit function is divided into two blocks
as shown in Figure 4:

• The Transmit State Machine

• The Data Path

Data Path

The data path portion of the transmit block is shown in
Figure 4. The main flow of data comes from the MAC at
25 MHz with a 4-bit-wide data word and a control signal that
enables transmission. When MAC data is not being
transmitted, the convergence sublayer sends continuous idle
(I) symbols to the PMD. When the transmitEnable signal

becomes active, a /J/K/ symbol pair is transmitted to indicate
the beginning of a data packet. MAC data symbols then follow
and are encoded into 5-bit symbols using the 4B5B encoding
scheme shown in Table 1. The end of MAC data is indicated
by the transmitEnable signal going inactive and a /T/R/
symbol pair is inserted at the end of the data packet. Finally,
the CS logic returns to transmitting idle symbols.

Figure 4 •

Convergence Sublayer Transmit Functions

S1A

REG5

ACLR

Q[4:0]

DATA[4:0]

CLOCK

IDLE_Symbol

K_Symbol

J_Symbol

A

B
Y

AND2A Q

CLR

CLK

D

DFC1B

SREG5

ENABLE

ACLR

CLOCK

SHIFTIN

SHIFTEN

DATA[4:0]
SHIFTOUT

REG5

ACLR

Q[4:0]

DATA[4:0]

CLOCK

MUX5_2

RESULT[4:0]

DATA0_[4:0]

DATA2_[4:0]

DATA3_[4:0]

DATA1_[4:0]

S
E
L
E
C
T
0

S
E
L
E
C
T
1

DAT_0[4:0]

GND

Q[4:0]

Q[3:0]

MUX5_1

S
E
L
E
C
T
1

S
E
L
E
C
T
0

RESULT[4:0]
DATA0_[4:0]

DATA3_[4:0]

DATA1_[4:0]

DATA2_[4:0]

DAT_2[4:0]

RSLT[4:0]

VDD,VDD,GND,GND,GND

DAT_1[4:0]

LOAD

LOAD
EXT_CLK25

CLK125

RESET

RESET

VDD

Y
B

A

NAND2B

Serial_Out

TX_PMD

S0BS1B

S0B

S1B

S0A

CLK125

EXT_CLK25

CLR

S1A S0A

EXT_CLK25

CLR

EXT_CLK25

MAC DATA

CLR

TX_DATA[4:0]

GND,VDD,VDD,GND,VDD

GND,GND,VDD,VDD,VDD RSLT[4:0]

CLR

EXT_CLK25

TX_EN

TEST_EN

TX

VDD,GND,GND,GND,VDD

Q[4:0]

RST

CLK

D[3:0]

Decode

4B5B

T_Symbol

R_Symbol

VDD,VDD,VDD,VDD,VDD

T

TE

CLK S0B

S1B

S0A

S1A

TSM

RST

Transmit

Machine

State

Data Path

Transmit State
Machine

5-5

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

5

The implementation of the described functions involves
selecting six different symbol sources for PMD data: the I
(idle), J, K, T, and R symbols and the 4B5B encoded MAC
data. In addition, a TestData input can be used to provide raw
unencoded data to the PMD for use in diagnostics and
testing. This selection is accomplished via the multiplexer in
front of the output shift register. One multiplexer selects
from the I, J, and K symbols or from another multiplexer
output. The other multiplexer selects from the T and R
symbols and the encoded MAC data. Note the additional path

around the encoder, which allows raw (unencoded) data to
be provided to the PMD. This is used for system test and
diagnostics and is the only way to inject known errors into the
system, simulating collision remnants and exercising the
boundary conditions of the standard.

The Actel logic implements multiplexers directly in a single
logic module so, by inspection, the path through the
multiplexer tree requires only two module delays and can
easily meet the 25 MHz performance requirement. The 4B5B
encode block also requires only two logic levels and can be

Table 1 •

4B5B Symbol Coding

Symbol

5-bit Code Group
(in Convergence

sublayer)

4-Bit-Binary
Code Group

(in MAC) Interpretation/Function

0 11110 0000 Data character: 0H

1 01001 0001 Data character: 1H

2 10100 0010 Data character: 2H

3 10101 0011 Data character: 3H

4 01010 0100 Data character: 4H

5 01011 0101 Data character: 5H

6 01110 0110 Data character: 6H

7 01111 0111 Data character: 7H

8 10010 1000 Data character: 8H

9 10011 1001 Data character: 9H

A 10110 1010 Data character: AH

B 10111 1011 Data character: BH

C 11010 1100 Data character: CH

D 11011 1101 Data character: DH

E 11100 1110 Data character: EH

F 11101 1111 Data character: FH

I 11111 -- Idle character transmitted between packets

J 11000 -- First control character in start-of-packet delimiter

K 10001 -- Second control character in start-of-packet delimiter

T 01101 -- First control character in end-of-packet delimiter

R 00111 -- Second control character in end-of-packet delimiter

V 00000 -- Invalid character

V 00001 -- Invalid character

V 00010 -- Invalid character

V 00011 -- Invalid character

V 00100 -- Invalid character

V 00101 -- Invalid character

V 00110 -- Invalid character

V 01000 -- Invalid character

V 01100 -- Invalid character

V 10000 -- Invalid character

V 11001 -- Invalid character

5-6

designed via schematics or via equations. The equations can
be automatically compiled using Actel’s ACTmap VHDL
Synthesis tool and then incorporated into the schematic.

4B5B Encoder

Symbol encoding of the 4-bit data words transmitted from the
MAC into the 5-bit coded groups required by the convergence
sublayer and the PHY layer employs a modified version of the
coding used in FDDI-based systems. The differences from
FDDI are that the symbols S, Q, and H are not used and that R
is now used as part of the /T/R/ end-of-packet delimiter
character group.

Table 1 lists all 32 5-bit data- and special-symbol codes that
the PMD can send to the convergence sublayer. The 16 data
characters—0 through F (hex)—are shown in Table 1, both
as 5-bit code groups and as their 4-bit binary equivalents, as
sent by the CS to the MAC. The idle character I and the
control characters J, K, T, and R are shown in Table 1 in 5-bit
form only, because they are not used in the MAC. The same
applies to the remaining 11 possible 5-bit combinations that
might be received on the media, all of which have no meaning
to the decoder and hence are treated as invalid. For
simplicity, each of the 11 invalid symbols is designated as V.

Encoding of 4-bit data words into 5-bit symbols can be
accomplished in a few simple logic equations, as shown in the
PALASM2 entry format shown in Figure 5.

The above equations translate each bit in sequence. Bits
D0-D3 are the 4-bit data word input to the decoder, and
B0-B4 define the 5-bit output symbols from the decoder.
Thus, in the first equation, bit D0 is always the same as the bit
B0, as can be seen by inspection of Table 1. The decoding
equations for the remaining output bits (bits B4 through B1)
are derived in a comparable fashion.

ACTmap VHDL Synthesis

These equations are then processed by ACTmap VHDL
Synthesis, a computer-aided design tool for working with the
Actel families of FPGAs. It performs three basic functions:

• PALASM2, VHDL to netlist translation

• Netlist-optimized mapping

• I/O insertion

ACTmap reads the PALASM2 or VHDL source file and
translates it into either an EDIF or an ADL (Actel Design
Language) output file or Verilog netlist. The output file that it
generates is optimized for a specific family of Actel FPGAs
(ACT 1, ACT 2, 1200XL, 3200DX, or ACT 3).

You can specify whether the design should be optimized for
area or speed. The PALASM2 description for the 4B5B
encoder shown in Figure 5 was processed by ACTmap VHDL,
and the following results where achieved:

• Area = 9 modules

• Estimated worst-case delay = 8.80 ns

;Encoder for 4B to 5B
;Used in 100 Mbit Ethernet application
CHIP 4b5b generic
clk rst d3 d2 d1 d0 q4 q3 q2 q1 q0

EQUATIONS

q4 := d3 + (/d2 * d1) + (/d2 * /d0)
q3 := d2 + (/d3 * /d1)
q2 := d1 + (/d3 * /d2 * /d0)
q1 := (/d1 * /d0) + (d3 :+: d2) + (d2 * /d1)
q0 := d0

q4.clkf = clk
q3.clkf = clk
q2.clkf = clk
q1.clkf = clk
q0.clkf = clk

q4.rstf = /rst
q3.rstf = /rst
q2.rstf = /rst
q1.rstf = /rst
q0.rstf = /rst

Figure 5 •

PALASM2 Description for the 4B5B Encoder

5-7

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

5

These results easily meet the 25 MHz requirements of the
transmit function and show the speed and capacity
capabilities of the ACT 3 architecture. The schematic logic
implementation of the 4B5B encoder (see Figure 6) shows
the compact nature of the final implementation.

Transmit Operation

Transmit operational states are shown in block diagram form
in Figure 7.

The actions shown in Figure 7 are assumed to be
instantaneous, although, for simplicity, some time-sequenced
events are contained in single states. Unconditional state
transitions are unlabeled. Conditional state transitions occur
when explicitly shown by the accompanying condition; a state
is repeated until some transitional condition is detected.
States are atomic in that conditions are evaluated only at the
completion of the state's actions. Transitions shown without
source states, notably linkTestFail, are evaluated at the
completion of every state and take precedence over other
transition conditions.

Convergence Sublayer Transmit Operation

The transmit state block diagram begins with the IDLE state.
The transmitting and collisionDetect signals are initialized as

FALSE and the IDLE symbol is continuously supplied to the
PMD. Once the MAC has data to transmit, it asserts
transmitEnable and the START state is entered. The
transmitting signal is asserted (set to TRUE) to indicate to
the Carrier Sense function that data is being transmitted. In
addition, collisionDetect is set to the level of the receiving
signal. The receiving signal comes from the Receive function;
if it is also asserted, a collision has occurred. The waitNibble
function synchronizes the MAC data with the PMD clock. The
first 8-bits of the MAC preamble are replaced with the /J/K/
symbol pair. If transmitEnable becomes FALSE, the machine
makes a transition back to IDLE. If transmitEnable stays
asserted, the next state becomes TRANSMIT. During
TRANSMIT state, collisionDetect is still set to receiving. The
MAC data (TxDATA) is encoded using the 4B5B function, and
encoding continues until transmitEnable is disabled. Once
transmitEnable is deasserted, the machine makes a
transition to the END state. In the END state, transmitting
and collisionDetect are both FALSE. The /T/R/ symbols are
transmitted to indicate the end of data, and the machine
moves to the IDLE state. The assertion of linkTestFail (by the
Link Monitor function) causes an immediate transition to the
IDLE state and takes precedence over any MAC request.

Figure 6 •

Transmit Path: 4B5B Encoder FPGA Logic

Q4P

Q

CLR

CLK

D

DFC1B

Q1P

Q

CLR

CLK

D

DFC1B

Q2P

Q

CLR

CLK

D

DFC1B

D0

D0

Q0P

Q

CLR

CLK

D

DFC1B

Q3P

Q

CLR

CLK

D

DFC1B

CLK

CM8_2244_7

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

RST

Q[4:0]

Q0

Q1

Q2

Q3

Q4

CM8_2244_1

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_2244_2

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_2244_4

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_2244_6

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_2244_5

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

VDD

GND

CM8_2244_3

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

D1

D2

D3

D3

D[3:0]

RST

RST

RST

RST

CLK

CLK

CLK

CLK

5-8

Transmit State Machine

The state-diagram implementation of transmit operation is
shown in Figure 8. The state machine starts in the IDLE state
and transmits the idle symbol (I) until transmitEnable (TE)
is TRUE. As long as TE is TRUE, the machine proceeds
through the J and K states, sending first the J symbol and
then the K symbol to indicate the start of a data packet. The
machine then transmits data until TE goes FALSE (i.e.,
transmit not enabled (/TE)), after which a T and an R are
transmitted, indicating the end of the data packet. The state
machine then returns to the IDLE state and waits for the next
data packet. The test mode may be entered from the IDLE
state by asserting Test mode (TM). In this mode, any 5-bit
code symbol may be transmitted, thus allowing known error
conditions to be injected onto the network.

The logic implementation of the transmit state machine is
shown in Figure 9. Each state is encoded into the transmit
state machine flip-flops to allow symbol selection in the
transmit multiplexer. These transitions are controlled by the
input logic for each flip-flop and depend only on the TE signal
and the current state.

The resulting design employs only 11 logic modules and runs
well in excess of the required 25 MHz speed.

Note:

This state-machine implementation differs from
the commonly seen one-hot approach in that the
states are encoded into four D flip-flops rather
than a single flip-flop per state. Also, the
state-machine encoding shown in this
application is more efficient than the one-hot
approach because the state flip-flops can drive the
data-path multiplexer directly, eliminating the
additional encoding logic that would be required
to handle the one-hot state variables and to select
desired multiplexer sources.

Convergence Sublayer Receive Function

The receive functions of the convergence sublayer are shown
in the block diagram in Figure 10. These functions are
discussed in the following sections.

• Shift register, sync detect, and squelch

• Clock generation

• 5B4B symbol decoder

• Receive state machine

Figure 7 •

Convergence Sublayer Transmit Operation

IDLE state
transmitting ← FALSE
collisionDetect ← FALSE
TxSYM ← I

linkTestFail

RESET

START state
transmitting ← TRUE
collisionDetect ← receiving
waitNibble
TxSYM ← J
waitNibble
TxSYM ← K

transmitEnable

TRANSMIT state
collisionDetect ← receiving
waitNibble
TxSYM ← 4B5B (TxDATA)

transmitEnable

NOT (transmitEnable)

END state
transmitting ← FALSE
collisionDetect ← FALSE
TxSYM ← T
TxSYM ← R

5-9

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

5

Figure 8 •

Transmit State Machine Diagram

IDLE

Send I

/TE

LEGEND

TE = Transmit enabled

/TE = Transmit not enabled

TM = Test mode

/TM = Normal mode

linkTestFail

Reset

J

Send J

K

Send K

TE

TE

TE

TE

/TE

DATA
Send data

T

Send T

R

Send R

/TE

/TE

TM

TM

TEST
Send
Test

/TM

5-10

Receive Operation

The sequence of receive states is shown in the
receive-operation diagram, Figure 11. The receive state
machine tracks the received symbols to ensure that a
complete packet has been received and indicates the current
line state to the next layer of the protocol. The receive
process (see Figure 11) involves two separate sets of states.
The constituents in the first set—the IDLE, SCAN, CARRIER,
and ALIGN states—are prealigned and operate on the raw
input bits using RxBIT. The remaining states are aligned and
operate on the input data stream as symbols (RxSYM).
Output data, designated RxDATA, is sent directly to the MAC
in these states.

The RECEIVE state sequence begins with the IDLE state. The
receiving signal and the optional receiveError signal are
initialized to FALSE. The SCAN state is entered next and the
waitBit function synchronizes the machine to the received
data stream. At this point, the squelch function filters out
noise events by not allowing a transition to the CARRIER
state unless two nonconsecutive zeros are detected. Because
carrierSense is used by the MAC for deferral purposes, it
must be asserted on the detection of any received signal (i.e.,
received energy, or non-IDLE input) whether or not it's an
actual packet. Since carrierSense is also used to detect
collisions, it's important to avoid triggering on noise,

specifically a single-bit event. If CARRIER is entered,
RxDATA is initialized to all zeros (0000) and receiving is set
to true.

The system enters the ALIGN state next. In ALIGN, the start
of packet symbols /J/K/ is searched for. If at least two idle
symbols (1111111111) are found instead, no start of packet
has been detected and the machine moves to the IDLE state.
If the /J/K/ symbols are successfully found, the START state is
entered. In START, the MAC preamble data (55) is
substituted for the received /J/K/ symbols. The waitQuint
function assures that MAC data is not overwritten. The
RECEIVE state is entered next. Usually, in the RECEIVE
state, valid data is received and a transition to the DATA state
is made. In the DATA state, receiveError is deasserted and
4B5B decoded data is sent to the MAC.

From the DATA state, the machine returns to the RECEIVE
state. If, during the RECEIVE state, two idle symbols are
received, the PREMATURE END state is entered,
receiveError is asserted, and IDLE is reentered. If, in the
RECEIVE state, invalid data is received, the DATA ERROR
state is entered, receiveError is asserted, and RECEIVE is
reentered. Invalid data is not transmitted to the MAC. If, in
the RECEIVE state, a /T/R/ symbol pair is detected, the END
state is entered, receiving is deasserted, and IDLE state is
reentered.

Figure 9 •

Transmit State Machine Schematic

S1A

VDD

S0B

GND

TE

VDD

CM8_5385_2

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

T

CM8_5385_1

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_5385_11

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_5385_4

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_5385_10

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_5385_7

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CM8_5385_9

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

S0AP

Q

CLR

CLK

D

DFC1B

S0A

S1BP

Q

CLR

CLK

D

DFC1B

CM8_5385_5

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

TE

S1B

CM8_5385_6

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

CLK

CLK

S0BP

Q

CLR

CLK

D

DFC1B

S0B

CM8_5385_3

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

S1B

CM8_5385_8

D0
D1
D2
D3

S00
S01
S10
S11

Y

CM8

S1AP

Q

CLR

CLK

D

DFC1B

S1A

CLK

RST

CLK

RST

RST

RST

VDD

5-11

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

5

Figure 10 •

Convergence Sublayer Receive Functions

CLK125

CLR

RX
RX_ERRRXDATA[3:0]

RX_PMD

D[3:0]

RESET

CLR

B[9:5]

INT_CLK25

T
S
Y
M

S
Q

SDATA

R
S
Y
M

RESET

K
S
Y
M

J
S
Y
M

J
1
S
Y
M

I
1
S
Y
M

CLK125

B
[
9
:
5
]

Shift/Sync

Detect

Gen

Clock
RESET

J1SYM

I1SYM

INT_CLK25

CLK125

CLK125
Decode

Symbol

V

T
S
Y
M

TR

R
S
Y
M

K
S
Y
M

J
S
Y
M

JK

J
1
S
Y
M

II

I
1
S
Y
M

D[3:0]

CLR

B
[
9
:
5
]

INT_CLK25

LNK_T/F
Machine

State

Receive

SQ

LNK_T/F

D[3:0]
INT_CLK25

CLR

RXDATA[3:0] RX_ERR RX

II V JKTR

5-12

Shift Register, Sync Detect, and Squelch

The shift register, sync detect, and squelch circuits
(Figure 12) are responsible for shifting serial data at the
125 MHz line rate and detecting clock synchronization
symbols. Once a sync symbol is detected, the clock generation
state machine adjusts the 25 MHz symbol clock by stretching
it the required number of 125 MHz clocks to align it with an
input symbol. Control symbols in the input data stream can
then be captured correctly by the 25 MHz clock and decoded
by the 4B5B decode block.

Serial data is clocked into the shift register and sync detect
block by using the 125 MHz clock. Sync symbols are detected
as the data shifts. As shown in Figure 12, only a single logic
level is required to detect each of the five important sync
signals (J, K, T, R, and I). The code groups corresponding to
each of these symbols are shown in Table 1.

Note:

The shift register generates both the true and
complemented versions of bits B3, B4, B8, and B9.
This is required to implement single-level decode
for the I symbol because the ACT 3 logic module
implements five-input AND/NAND gates with at
least two inverted inputs. The technique of
providing additional registers with inverted
outputs is common when implementing logic
functions using fine-grained antifuse FPGAs. The
additional registers cost little because of the
fine-grained logic module, and they can be used
where needed to provide additional logic signals.
The abundant routing resources available with
antifuse FPGAs also supply the additional
routing required to create these additional logic
signals.

Figure 11 •

Convergence Sublayer Receive Operation

IDLE state
receiving ← FALSE
(receiveError) ← FALSE

linkTestFail

SCAN state
waitBit

squelch RxBIT [0] = 0 AND
RxBIT [9:2] ≠ 11111111

CARRIER state
RxDATA ← 0000
receiving ← TRUE

RESET

ALIGN state (wait for JK)
waitBitno start-of-packet

RxBIT [9:0] = 1111111111

RxBIT [9:0] = 1100010001
START state (replace JK)
RxDATA ← 0101
waitQuint
RxDATA ← 0101

RECEIVE state
waitQuint

RxSYM [1]
= DATA

DATA state
(receiveError) ← FALSE
RxDATA ←

4B5B (RxSYM [1])

END state (skip TR)
receiving ← FALSE
waitQuint
waitQuint

RxSYM [1]
= TR

DATA ERROR state
(receiveError) ← TRUE

else

RxSYM [1:0] = II

PREMATURE END state
(receiveError) ← TRUE
waitQuint

5-13

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

5

The squelch function filters out noise events from the
received data stream. Zeros are ignored unless there are two
noncontiguous zeros within the first 10 bits. At first glance, it
would appear that the logic to detect two noncontiguous
zeros in a 10-bit word should be quite extensive. However,
once it is observed that this function is used only on a serial
data stream, several simplifying logic reductions can be
made. First, check the least significant bit (B0) for a zero,
and then check that at least one of the higher-order bits (only
B2 through B9, since B1 is contiguous) is also zero. Any other
combination is simply a shift from B0. However, the resulting
logic equation for a squelch state (S),

S:= /B0*(/B2+/B3+/B4+/B5+/B6+/B7+/B8+/B9)

is too large to implement in a single FPGA logic level.

To simplify this approach, note that because data is being
serially shifted in, higher-order terms can be precomputed
and then combined with the critical B0 signal using a single

logic level. The logic that results can be expressed by the
following three equations:

S1:= /(/B1+/B2+/B3+/B4)

S2:= /(/B5+/B6+/B7+/B8)

S:= /B0*(/S1+/S2)

These three equations are the ones actually implemented in
FPGA form. (See Figure 12.)

Note:

As shown in Figure 12, bits B1–B4 and bits B5–B8
are used with registers to develop the two
intermediate terms S1 and S2. These two are then
ORed with bit B1 to develop the final squelch
function (S). This form of pipelined operation
works well in serial data applications and will
almost always result in faster and more
area-efficient FPGA designs.

Figure 12 •

Shift Register, Sync Detect, and Squelch Schematic Diagram

B[9:5]

4BNPIPO

Q[3:0]

DATA[3:0]

CLOCK

ACLR

B[9:0]

B2

B4

B3

B1

B0

RESET

CLK125

Y

D

C

B

A

NAND5C

E

Q

CLR

CLK

D

DFC1B

VDD

10B_SIPO

SHIFTEN

SHIFTIN

CLOCK

ACLR

Q[9:0]

Q

CLR

CLK

D

DFC1B

Q

CLR

CLK

D

DFC1B

Y

E

D

C

B

AND5B

A

Y

D

C

B

A

NAND5C

E

Q

CLR

CLK

D

DFC1B

RESET

CLK125

RESET

CLK125

RESET

CLK125

Q

CLR

CLK

D

DFC1B

Q

CLR

CLK

D

DFC1B

Q

CLR

CLK

D

DFC1B

A

B

C

D

Y
NOR4B

A

B

C

D

Y
NOR4B

NB[2:1],NB[6:5]

B[1:0],B[5:4]

CLK125RESET

CLK125

SDATA

CLK125

RESET

CLK125

RESET

CLK125

RESET

I1SYM

TSYM

RSYM

B4

B0

B3

B2

B1

B7

B8

B9

B8

B7

NB6

NB5

RESET

Y
C

B

A

OA1B

B4

B3

NB1

NB2

B7

B8

NB5

NB6

B0

SQ

B7

B3

B2

B1

B0

B9

B6

NB5

B9

B8

B6

B5

B4

Q

CLR

CLK

D

DFC1B

CLK125

RESET

RESET

CLK125

JSYM

KSYM

Y

D

C

B

A

NAND5C

E

Q

CLR

CLK

D

DFC1B

J1SYM

Y

D

C

B

A

NAND5C

E

Y

E

D

C

B

AND5B

A

5-14

Also, notice that the extra inversions on the S1 and S2 terms
(Figure 12) are used because NOR functions with inverted
inputs map more easily into a single ACT 3 logic module.
Synthesis software like Actel's ACTmap VHDL Synthesis
program figures this out automatically, allowing the designer
to focus on architectural and functional issues instead. Thus,
what initially looks like a difficult decoding problem can be
significantly simplified to only three logic modules that
operate easily at the serial data rate.

Clock Generation

The clock generation state diagram and the clock generation
schematic diagram are shown in Figures 13 and 14,
respectively. The clock generation logic divides the 125 MHz
serial clock by 5 to generate the 25 MHz symbol clock,
Clock25. The Clock25 signal (Figure 13) is stretched when a
sync symbol is detected, to align it with the 5-bit symbols.
This is accomplished by a transition to the Q0 state when the
JK signal (start of packet) is active. Entry into Q0
synchronizes the 25 MHz clock (Clock25, the output from
states Q2 and Q3) and the load signal. The load signal is
active every 5 clocks after synchronization, which captures
the 5-bit symbol from the aligned data stream. The symbol
can then be safely captured by the 25 MHz clock, Clock25 in
the aligned symbol register (ASR). The schematic
implementation for this process is shown in Figure 14.

Note:

Each state in the machine uses a single register.
This one-hot (i.e., one register at a time) type of
state machine design uses the register-intensive
nature of fine-grained, antifuse-based FPGAs to
reduce the logic complexity required to determine
next-state transitions. In traditional encoded
designs every state bit is needed to determine
which state the machine is in. This can make for
large transition terms in complex state
machines. FPGAs, on the other hand, can use the
additional register available to reduce the logic
complexity, because only a single register output
is required to determine the state of the machine.
Thus, the FPGA’s narrow, high-speed logic
module can be used to generate the transition
terms efficiently. In fact, on closer examination,
the implementation of the state machine maps
very closely to the state diagram. Transitions
from one state to another result in a connection
from the starting-states register to the
entered-states register. Logic complexity can
easily be estimated directly from the state
diagram. Because only a single logic module is
required to implement even the most complex
transition, the entire machine runs easily at the
125 MHz clock rate.

Figure 13 •

Clock Generation State Diagram

Q0

Q4
Load

Q1

Q2
Clock25

JKSYM

Reset

Q5

Q3
Clock25

5-15

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

5

5B4B Symbol Decoder

Once a symbol has been aligned, the data must be extracted
by converting the 5-bit input from the PHY into a 4-bit data
word that is sent to the MAC. The logic diagram for this
decoder is shown in Figure 15. Symbol conversion is done in
accordance with the 4B5B decode table, Table 1.
Implementation of the decoder in the ACT 3 family is
automatically generated from the logic equations developed
from the encoding table by using the ACTmap VHDL tool. As
shown in Figure 15, the full decode requires only 24 modules
and only two levels of logic, easily meeting the speed required
for the 25 MHz clock.

Receive State Machine Diagram

The RECEIVE state diagram is shown in Figure 16. The
machine begins in the START state and waits for the
reception of a JK symbol pair. The RECEIVE state is entered
upon the reception of this pair and exited only under one or
more of the following conditions:

• Reception of a TR symbol pair (end of data packet)

• Reception of an idle (I) symbol (premature packet end)

• Reception of an invalid symbol (error condition)

Note that if an invalid symbol is received, the ERROR state is
entered to capture the event. This state is cleared only by
resetting the state machine.

Receive State Machine Logic

As shown in Figure 17, the schematic implementation of the
RECEIVE state machine requires only 4 logic modules and
two levels of logic. It easily meets the 25 MHz clock rate

required for this portion of the design.

Figure 14 •

Clock Generation State Machine Schematic

JUMP

Q1

A

B
Y

AND2A

RESET

CLK125

I1SYM

J1SYM

Y
B

A
OR2A

CLK125

RESET

JUMP

Q5

Q0

JUMP

JUMP

JUMP

JUMP

CLK125

Q

CLK

D

DF1

Q

CLK

D

DF1

Q

CLK

D

DF1

Q

CLK

D

DF1

Q

CLK

D

DF1

Q5

Q3

Q2

Q1

RESET

RESET

RESET

Q4

Q3

Q2

Q4

RESET

RESET

CLK125

Y

C

B

A

AND3A

Y

C

B

A

AND3A

CLK125

Y

C

B

A

AND3A

CLK125

Y

C

B

A

AND3A

CLK125

Q1

JUMP

INT_CLK25

A

B

D

C Y
OA3A

Q

CLK

D

DF1

CLK125

Q0

Q2

Q

CLR

CLK

D

DFC1B

Q

CLK

D

DF1

A
OR2

Y
B

CLKINT

A Y

5-16

Figure 15 •

5B4B Decoder Schematic Diagram

Figure 16 •

Receive State Machine Diagram

Q

CLR

CLK

D

DFC1B

A

B
Y

AND2A

N[4:0]

B[9:5]

INT_CLK25

CLR

Q

CLR

CLK

D

DFC1B

Q

CLR

CLK

D

DFC1B

CLR

CLR

CLK125

A

B
Y

AND2B

A

B
Y

AND2A

N4

N2 A

B
Y

AND2A

Y

C

B

A

OR3
Y

C

B

A

AND3A

A

B
Y

AND2A

N1

N3

CLR

CLR

CLR

CLR

CLR

CLR

N4

N1

N0

N4

N3

N2

N1

Q

CLR

CLK

D

DFC1B

V

N1

N2

N4

N3

N2

N4

N4

N2

N1

N3

N2

N2

N3

N1

N1

N3

N2

N2

N1

GND

N3

N4

INT_CLK25

INT_CLK25

N0

N4

N3

N1

N0

N1

N2

N3

N0

INT_CLK25

N0

INT_CLK25

INT_CLK25

Y

D

C

B

A

NAND4C

Y

D

C

B

A

NAND4D

E

Y

A

B

D

C
AO9

Y

E

D

C

B

AND5B

A

Y

C

B

A

AND3C

Q

CLR

CLK

D

DFC1B

Y

E

D

C

A

B

NOR5C

Q

CLR

CLK

D

DFC1B

Y

C

B

A

OR3

Y

C

B

A

AND3A

Y

C

B

A

AND3A

Y

C

B

A

AND3A

Y

C

B

A

AND3A

A

B
Y

AND2A

Y

C

B

A

OR3

RSYM

TSYM

KSYM

JSYM
JK

CLK125

Q

CLR

CLK

D

DFC1B

II

CLK125

Q

CLR

CLK

D

DFC1B

D3

D2

D1

D0

D[3:0]

N2

N4

A

B
Y

AND2A TR

REG5

ACLR

Q[4:0]

DATA[4:0]

CLOCK

I1SYM

J1SYM

ELSE
ERROR

START

RECEIVE

JK

TR + II + JK

V

/JK
Reset

5-17

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

5

Carrier Sense and Link Monitor Circuits

The carrier sense and link monitor circuits combine outputs
from the transmit, receive, and PMD blocks to develop the
receiveError, carrierSense, and collisionDetect signals. The
logic for implementing this process is shown in Figure 18.

Conclusion

This application note has described the complete design of a
100Base-X convergence sublayer. Each building block has
been fully tested and documented and is available on disk to
those contemplating similar or related applications.

Figure 17 •

Receive State Machine Schematic Diagram

Figure 18 •

Carrier Sense and Link Monitor FPGA Logic Schematic

CLR

CLR

CLR

RX_ERR

SQ

TR

II

V

II

TR

V

RX

RX

INT_CLK25

D[3:0]

RXDATA[3:0]

JK

Q[3:0]

DATA[3:0]

CLOCK

4B_PIPO

LNK_T/F

C

B

A

AO1A
Y

A
OR2

Y
B

ERROR

JK

START

A

B

C

D

Y
AND4C

Y
C

B

A

AO1

Y
D

C

B

A

OA4A

START
INT_CLK25

RX

INT_CLK25

Q

CLR

CLK

D

DFC1D

Q

CLR

CLK

D

DFC1D

Q

CLR

CLK

D

DFC1D

INT_CLK25

CR_SNS

LNK_T/F

TX

RX

SGNL_DET A

B

C

D

Y
AO6

YA
INV

5-18

