

April 1996

6-1

© 1996 Actel Corporation

Paper published in the 1995 PLD Conference Proceedings

Customer-Authored
Application Note

6

HDL Methodology Offers Fast
Design Cycle and Vendor Independence

Joseph Cerra, Senior Design Engineer
Wellfleet Communications Inc.

In the highly competitive data communications field, the
ability to bring a product to market quickly is essential for
success. Using FPGAs with an HDL methodology offers this
fast time to market by providing the flexibility to design,
debug and verify, all within the same environment. In
addition, the use of HDL allows the relative ease of
re-targeting a design between vendors/technologies.

The design consists of a complex multiple port DMA
controller for a data communication card that resides in a
high speed router environment. The objective of the design
was to control the flow of data from two TI TMS380 token ring
controllers to a proprietary high speed bus interface utilizing
FPGA technology and high speed FIFOs. The design
contained two DMA engines, one that controlled the data
flow to and from the TMS380’s and the other that controlled
the data flow to and from the bus interface. The data within
the FIFO was monitored by the use of multiple address
descriptors and transfer counters within the FPGA.

During the course of the design process, several FPGA
vendors were considered and implemented based on the
speed, size and architecture of their product offerings.
Additionally, there was a future consideration of converting
the design to a conventional gate array. By carefully writing
scripts files and a “Verilog Wrapper” the core Verilog code
itself was “untouched”(i.e., vendor independent) while taking
optimal advantage of the architecture offered by the various
vendors.

The design process itself had three steps to achieve the
desired target. First, the core Verilog code was written and
simulated at the behavioral level to ensure circuit
functionality. Once this process was completed this would
become the baseline that would remain unchanged
throughout the design process to ensure vendor
independence. Second, Synopsys script files were written
based on the vendors architecture to keep reasonable
constraints on parameters such as clock period, area, clock
trees and internal delays. These constraints would keep logic
levels and excessive fanout in check. Third, a “Verilog
Wrapper” was written around the Verilog core to take
advantage of architectural differences in the pad logic offered
by the various vendors.

At the beginning of the design cycle it was estimated that the
target design would need approximately 8000 gate array
gates. A gate was agreed upon to be a four transistor two
input NAND gate (gate array equivalent) and not a FPGA
equivalent gate. The desired clock speed of the design was 16
MHz. The toolset for the design was Verilog along with
Synopsys FPGA compiler version 3.2 all running on a Sun
Sparc 20 workstation. The first FPGA chosen was a Xilinx
XC4025 based on its vast amount of gates with additional
benefits of re-programmability and on-board RAM. After
working on the design for several months with help from the
vendor’s application staff, it was realized that the
implementation of this particular design would only yield a
clock speed of about 12.5 MHz.

The benefits of this design flow were realized when a second
FPGA vendor was selected. As stated before, the short design
cycle in this highly competitive market required that the vast
amount of work done on the first FPGA be transferred to a
second FPGA as seamlessly as possible. The second FPGA
chosen was the Actel ACT 3 A14100 because of its fine
grained and “Synthesis Friendly” architecture. The Actel part
had an additional benefit of flip-flops in the pad ring. The I/Os
were hand instantiated (“Verilog Wrapper”) to take
advantage of these features. The Synopsys script files also
needed to be modified to take advantage of technology
specific features like various clock drivers and inter-connect
delays.

When the core Verilog was about to be written, the choice
was made to use Verilog because at a high level of abstraction
the user can conceptually design a system without regard to a
specific technology. There was also the future consideration
of turning this design into a gate array when the volumes
ramped up and it was desired to keep the core Verilog as
stable as possible. During this design it was discovered that it
was not necessary to select the target technology before the
system design was fully functioning and simulated through
high level Verilog simulation. The desire was to avoid
technology specific code. This would allow the design to be
migrated from one technology to another without core Verilog
changes. The core Verilog was written as generic as possible
in hope that the design tools would ultimately make smart
technology specific choices.

In general, technology mappers want one thing—small
homogenous building blocks. It is for that reason that most
ASICs are mapped reasonably well when it comes to speed

6-2

and density. The basic building block is typically an
equivalent of a 2 input NAND gate. Also, the ASIC
interconnect is a metal to metal “via” that doesn’t represent a
significant amount of circuit delay. Therefore the mapper can
produce less than optimal solutions and the ASIC technology
will be much more forgiving. FPGAs, on the other hand are
much less forgiving. This FPGA design pushed both the speed
and density envelope and required two additional steps: The
first was the Synopsys script file, the second was the hand
instantiation of the complex I/Os.

The power of the Synopsys compiler is it’s flexibility through
scripts. The core Verilog code need not be modified to change
a design from a small, medium speed, compact design to a
much faster but larger design. This was accomplished
through design constraints. In this design two types of
constraints were set for each of the chosen technologies:
“design rule” and “optimization.” In general, “design rule”
constraints reflect technology-specific restrictions that must
be met for a functional design (such as maximum loading on
a net). “Optimization” constraints represent design goals that
are desirable, but not crucial to the operation of a design
(such as maximum circuit area or delay).

The Synopsys Compiler tries to meet both types of constraints
with an emphasis on “design rule” constraints as they are
requirements for a functional design. The Synopsys Compiler
uses these constraints to guide optimization and
implementation of a design. Constraints define the goals of
the synthesis process. The constraints for the
technology-specific target can be put into a script file to help
keep the core Verilog code untouched.

The amount of constraints that can be put into a Synopsys
script are virtually unlimited. However, with the described
design task in hand, the following assortment of constraints
were found to be quite useful. The “max_area” constraint
specifies the maximum allowable area for the current design.
When the Synopsys Compiler sees this “max_area” constraint
it computes the area of a design by adding together the areas
of each of its components on the lowest level of the design
hierarchy. The area of a cell is obtained from the specific
technology file. The constant put after the “max_area”
constraint represents the total amount of cells available in
the target part.

The most important optimization constraint is maximum
delay (max_delay). There are four types of delay categories:
Clock to Q (Tcq), Set Up (Tsu), Clock to Out (Tco), and In to
Out (Tio). Since the I/Os were hand instantiated, the only
delays of concern were internal synchronous paths (register
to register). The “max_delay” constraint was carefully set so
the longest path from clock to out of one register, through
logic to the input setup time of the next register was less than
the target clock period of 62.5 ns (16 MHz). The Synopsys
Compiler has a built-in static timing analyzer for evaluating

timing constraints. A static timing analyzer calculates path
delays from local gate and interconnect delays but does not
simulate the design. That is to say, it does not check the
design for functionality. The Synopsys Compiler timing
analyzer performs critical path tracing to check minimum
and maximum delay for every timing path in the design.

The last constraint that was found useful was the
“dont_touch” constraint. FPGAs have special features like
high drive resources (e.g., CLKBUF macro) used for driving
high fanout clock nets and special complex I/Os that were
hand instantiated in this design. To prevent the Synopsys
Compiler from breaking up and adding buffers to the clock
net the “dont_touch” constraint was added to this net. After
instantiating the I/O cells, the “dont_touch” constraint was
added to keep these elements intact.

The final step of the design process was to hand instantiate
the complex I/Os. The idea of this final step was to hand
instantiate the I/Os and wrap them around the simulated
core Verilog. This is known as a “Verilog Wrapper.” When it
came time to change technologies, it was a simple matter to
change “wrappers”. The I/O ring was manually instantiated
and connected to the top-level of the core Verilog code. When
the “Verilog Wrapper” was written, “Direct Instantiation” of
the complex I/Os was used and the port order was automatic.
For example, when it came time to instantiate a high speed
I/O flip-flop like the BRECTH cell (shown in Figure 1) from
the Actel ACT 3 family, it was instantiated as follows:

BRECTH
I2(.D(<n1>),.PAD(<p1>),.E(<n2>).Y(<n3>),.
CLK(n5>),.IOPCL(<n6>));

When all the I/Os were instantiated, the “dont_touch”
constraint was added in the Synopsys script file.

When all the above mentioned steps were performed, the
design was smoothly transitioned from one FPGA technology
to another and the desired speed of 16 MHz was achieved.
The next step of this process is to convert the design to a
conventional gate array. Although this process has not yet
begun, it is certain that by following the process described
here, the transition will go smoothly.

Figure 1 •

BRETCH Actel ACT 3 I/O Macro

D

CLR

Q

BRETCH

ODE

CLK

HIGH SLEW

