
Application Note
Using Synplify to Design in Actel
Radiation-Hardened FPGAs

Introduction

Actel’s RadHard and RadTolerant FPGAs offer advantages
for applications in commercial and military satellites, deep
space probes, and all types of military and high reliability
equipment.

Synplify version 5.31 and later provides designers of
radiation-hardened FPGAs an automatic means of steering
synthesis away from standard commercial sequential
elements (flip-flops). Synplify automatically infers either
C-C, TMR, or TMR_CC implementations in place of the
normal flip-flops, instead of post-processing the netlist for
flip-flop substitution.

This application note is intended to help designers
understand the design flow required when using Synplify to
design in Actel’s radiation-hardened FPGAs.

Actel Register Implementation
Techniques

Actel recommends three techniques for implementing the
logic of the sequential elements in radiation-hardened
FPGAs (C-C, TMR, and TMR_CC).

The C-C technique uses combinatorial cells with feedback
(instead of flip-flop or latch primitives) to implement
storage. For example, a DFP1 (comprised of two
combinational modules) would be used in place of a DF1.

TMR is an acronym for triple-module-redundancy (or triple
voting). It is a register implementation technique; each
register is implemented by three flip-flops (or latches) that
“vote” to determine the state of the register.

TMR_CC is also a triple-module-redundancy technique.
Each voting register is composed of combinatorial cells with
feedback (instead of flip-flop or latch primitives).

Some techniques are not available or appropriate for all
Actel families. Please contact Actel technical support for
more information.

Synpl ify Attribute syn_radhardlevel

Synplify provides an attribute called “syn_radhardlevel” to
specify the register implementation technique for designs
that use Actel’s radiation-hardened FPGAs. You can apply
this attribute to a module, architecture, or a register output
signal (inferred register in VHDL). If necessary, you can
apply it globally to the top-level module or architecture of

your design and then selectively override it for different
portions. You can also control the design technique you
apply on a register by register basis.

The values for “syn_radhardlevel” are:

• “none” - Use standard design techniques

• “cc” - Use C-C implementation

• “tmr” - Use TMR implementation

• “tmr_cc” Use TMR_CC implementation

SEU Resistant Design Techniques

You can influence a device’s resistance to SEU (single event
upset) effects by using certain logic design techniques. The
default technique, using S-FFs, produces designs that are
the most susceptible to SEU effects. Because ACT 1 and
40 MX devices do not have S-modules, S-FFs cannot be
implemented in these devices.

There are two SEU resistant design techniques (in addition
to the default) that can be used in Actel devices with
Synplicity. The techniques are, in order of increasing
resistance to SEU effects, CC-FFs and triple voting.
Synplicity also enables custom implementations. A single
design may incorporate any or all of these design
techniques.

Using CC-FFs

CC-FFs produce designs that are more resistant to SEU
effects than designs that use S-FFs. ACT 1 and 40MX devices
use CC-FFs by default. CC-FFs cannot be implemented in
54SX devices at this time. CC-FFs typically use twice the
area resources of S-FFs.

Using Triple Voting

Triple voting, or triple module redundancy (TMR), produces
designs that are most resistant to SEU effects. Instead of a
single flip-flop, triple voting uses three flip-flops leading to a
majority gate voting circuit. This way, if one flip-flop is
flipped to the wrong state, the other two override it and the
correct value is propagated to the rest of the circuit.
Because of the cost (three to four times the area and two
times the delay required for S-FF implementations), triple
voting is usually implemented using S-FFs. However, you
can implement triple voting using only CC-FFs in Synplicity.
May 2000 1
© 2000 Actel Corporation

Figure 1 displays some examples of the register
implementation described above after using the
“syn_radhardlevel” attribute.

The attribute is only effective if the corresponding Actel
Verilog (*.v) or VHDL (*.vhd) macro file(s) for the design
technique(s) you use is included in the Source Files list of
your Synplify Project. The first Actel file specified in the list
determines the default (global) design technique. Then you
can use “syn_radhardlevel” to override your defaults on a
register by register basis or at the sub-module level.

Using Attributes

You can use the “syn_radhardlevel” attribute in different
ways. The following “syn_radhardlevel” examples describe
its use in a design constraint, Verilog, and VHDL file.

Constraints Fi le
define_attribute {dataout[3:0]}
syn_radhardlevel {“cc”}

Veri log
module top (clk, dataout, a, b);
input clk;
input a;
input b;
output dataout [3:0];
reg [3:0] dataout

/* synthesis syn_radhardlevel="tmr" */ ;
/* Other coding */

VHDL
library synplify;
use synplify.attributes.all;
architecture top of top isattribute
syn_radhardlevel of top: architecture is
“tmr_cc”;
-- Other coding

Design Example

The design example is not an actual design. It illustrates
and example flow for Actel radiation-hardened design and
the use of the attribute “syn_radhardlevel.” The design is
written in Verilog. All source code files are listed in the
Appendix. The design has two levels of hierarchies, as shown
in Figure 2 on page 3.

The design requirements for the radiation hardened
example design are as follows:

1. Default (global) implementation for the registers must
be “tmr”.

2. Register “b1_int” in “top” module must be implemented
as “tmr_cc”.

3. All registers in “module_b” module must be
implemented as “cc”.

Figure 1 • Logic Implementations of Radiation-Hardened Register

TMR TMR_CC

CC

d

clk

clr

pre

sum\[6\].u1

dfpc

q

2

Using Synpli fy to Design in Actel Radiation-Hardened FPGAs
4. All registers in “module_d” module must be
implemented as “tmr_cc”

Use the following steps to complete the design and satisfy
the requirements:

1. Bring “top.v” to your favorite editor and make the
following edit:

reg [15:0] a1_int, b1_int /* synthesis
syn_radhardlevel="tmr_cc" */;

Note: Step 1 is for design requirement B.

2. Edit “module_b.v” to the following:

module module_b (a, b, sub, clk, rst) /*syn-
thesis syn_radhardlevel=”cc” */;

Note: Step 2 is for design requirement C.

3. Edit “module_d.v” to the following:

module module_d (a, b, sum, clk, rst) /*syn-
thesis syn_radhardlevel="tmr_cc" */;

Note: Step 3 is for design requirement D.

4. Bring up Synplify and create a new project.

5. In the Synplify “Set Device Options” window, select an
Actel device that is RadHard or RadTolerant.

6. Add the Actel Verilog macro files (“cc.v,” “tmr.v,” and
“tmr_cc.v”) to the project, with “tmr.v” listed as the first
file.

Note: Since you use all three register implementations,
all three Verilog macro files need to be included in
the project. With “tmr.v” listed as the first file, it
ensures that the global register implementation is
“tmr” (requirement A).

7. Add all design modules to the project.

8. Click RUN.

9. Click the “Technology View” button to confirm the
implementations.

Summary

By using the Synplify attribute “syn_radhardlevel” in
conjunction with Actel macro files, Synplify enables you to
design in Actel’s radiation-hardened FPGAs with little
effort. However, it allows you precise control of the register
implementation. You only need to focus on controlling
designs, not on controlling the tool. The easy and clean flow
helps you reduce design cycle and improve productivity.

.

Figure 2 • Example Hierarchy of Design

top

module_dmodule_a

module_b module_c
3

Appendix
This appendix lists all five modules used in the Design Example section of the application note.

/*********************************** top.v*********************************/
module top (a1, b1, sel_byte0, clk, sum_out, sum_carry, sub_out, sub_carry, shft_out, rst);

input [15:0] a1, b1;
input clk,rst,sel_byte0;

output [7:0] sum_out, sub_out;
output sum_carry, sub_carry;

output [8:0] shft_out;

wire [7:0] sum_out, sub_out;
wire sum_carry, sub_carry;

wire [8:0] sum_out_int, sub_out_int, shft_out_int;

reg [15:0] a1_int, b1_int /* synthesis syn_radhardlevel="tmr_cc" */;
reg [7:0] a_byte, b_byte;
regsel_byte0_int;

always @ (posedge clk or posedge rst)
begin

if (rst) begin
a1_int <= 0;
b1_int <= 0;
sel_byte0_int <= 0;

end
else begin

a1_int <= a1;
b1_int <= b1;
sel_byte0_int <= sel_byte0;

end
end

always @ (a1_int or b1_int or sel_byte0_int)
begin

if (sel_byte0_int) begin
a_byte <= a1_int [7:0];
b_byte <= b1_int [7:0];

end
else begin

a_byte <= a1_int [15:8];
b_byte <= b1_int [15:8];

end
end

module_a i1 (a_byte, b_byte, sub_out_int, shft_out, clk, rst);
module_d i2 (a_byte, b_byte, sum_out_int, clk, rst);

assign sum_out = sum_out_int[7:0];
assign sum_carry = sum_out_int[8];

assign sub_out = sub_out_int[7:0];
assign sub_carry = sub_out_int[8];

assign shft_out = shft_out_int;
endmodule
4

Using Synplify to Design in Actel Radiation-Hardened FPGAs
/*********************************** module_a.v*********************************/
module module_a (a, b, sub, shft, clk, rst);

input [7:0] a, b;
input clk, rst;

output [8:0] sub, shft;

module_b i2 (a, b, sub, clk, rst);
module_c i3 (a, shft, clk, rst);

endmodule

/*********************************** module_b.v*********************************/
module module_b (a, b, sub, clk, rst) /*synthesis syn_radhardlevel="cc" */;

input [7:0] a, b;
input clk, rst;

output [8:0] sub;
reg [8:0] sub;

reg [7:0] a_int, b_int;

always @ (posedge clk or posedge rst)

if (rst) begin
a_int <= 0;
b_int <= 0;
sub <= 0;
end

else begin
a_int <= a;
b_int <= b;
sub <= a_int - b_int;
end

endmodule

/*********************************** module_c.v*********************************/
module module_c (a, shft, clk, rst);

input [7:0] a;
input clk, rst;

output [8:0] shft;
reg [8:0] shft;

reg [7:0] a_int;

always @ (posedge clk or posedge rst)

if (rst) begin
a_int <= 0;
shft <= 0;
end

else begin
a_int <= a;
shft <= a_int >> 2;
end

endmodule
5

/*********************************** module_d.v*********************************/
module module_d (a, b, sum, clk, rst) /*synthesis syn_radhardlevel="tmr_cc" */;

input [7:0] a, b;
input clk, rst;

output [8:0] sum;
reg [8:0] sum;

reg [7:0] a_int, b_int;

always @ (posedge clk or posedge rst)

if (rst) begin
a_int <= 0;
b_int <= 0;
sum <= 0;
end

else begin
a_int <= a;
b_int <= b;
sum <= a_int + b_int;
end

endmodule
6

Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

http://www.actel.com

Actel Europe Ltd.
Daneshill House, Lutyens Close
Basingstoke, Hampshire RG24 8AG
United Kingdom
Tel: +44-(0)125-630-5600
Fax: +44-(0)125-635-5420

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668

5192665-0/5.00

	Using Synplify to Design in Actel Radiation-Hardened FPGAs
	Introduction
	Actel Register Implementation Techniques
	Synplify Attribute syn_radhardlevel
	SEU Resistant Design Techniques

	Using Attributes
	Constraints File
	Verilog
	VHDL

	Design Example
	Summary

