
Synopsys®
Synthesis Methodology Guide

UNIX ® Environments

Actel Corporation, Sunnyvale, CA 94086
© 1998 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5579009-2

Release: April 1999

No part of this document may be copied or reproduced in any form or by
any means without prior written consent of Actel Corporation.

Actel makes no warranties with respect to this documentation and disclaims
any implied warranties of merchantability or fitness for a particular pur-
pose. Information in this document is subject to change without notice.
Actel assumes no responsibility for any errors that may appear in this
document.

This document contains confidential proprietary information that is not to
be disclosed to any unauthorized person without prior written consent
from Actel Corporation.

Trademarks
Actel and the Actel logotype are registered trademarks of
Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of
Adobe Systems, Inc.

Cadence is a registered trademark of Cadence Design Systems, Inc.

Mentor Graphics is registered trademark of Mentor Graphics, Inc.

Synopsys, Design Compiler, VHDL Compiler, HDL Compiler, and Library
Compiler are trademarks or registered trademarks of Synopsys, Inc.

UNIX is a registered trademark of X/Open Company Limited.

Verilog is a registered trademark of Open Verilog International.

Viewlogic is a registered trademark and MOTIVE is a trademark of
Viewlogic Systems, Inc.

All other products or brand names mentioned are trademarks or registered
trademarks of their respective holders.
ii

Table of Contents

Introduction . xi
Document Organization xi

Document Assumptions xii

Document Conventions xii

HDL Keywords and Naming Conventions xiii

Actel Manuals . xv

On-Line Help . xviii

1 Setup . 1
Software Requirements . 1

System Setup . 1

User Setup . 2

2 Actel-Synopsys Design Flow 7
Design Flow Illustrated . 7

Design Flow Overview . 8

3 Actel-Synopsys Coding Considerations 11
Multiplexer Encoding . 11

Finite State Machine Design 24

DesignWare Module Coding 31

4 Synthesis Constraints 51
Operating Conditions . 51

Design Constraints. . 51

Design Hierarchy . 55

Internal Tri-State. . 59

Inferring Buffers . 60

Reducing the Maximum Fanout Value 61

Register Type Preferences 62

Avoid Using Certain Cells 62

Register Balancing . 62

Removing Attributes . 64
iii

Table of Contents
Using (Q)CLKINT . 64

Wide Decode Cells in 3200DX and 42MX 65

5 Actel-Synopsys Design Considerations 67
Compiling Designs with DesignWare Components 67

Translating Designs from Other Technologies 68

Translating a Design from one Actel family to another 69

Translating Timing Constraints into Designer 70

Assigning Pins in Synopsys. 70

Using ACTmap to Optimize I/O Placement 70

Bus Array Syntax . 71

Script Mode Place and Route 71

Control Flow Commands. 72

Complex Act 3 I/O Mapping 73

Instantiating ACTgen Macros 81

Generating an EDIF Netlist 85

Generating a Structural HDL Netlist 86

Designing for Radiation Environments 87

Maintaining Technology Independence 87

A Synthesis Library Information 89
Timing Parameters. . 89

Attributes . 89

Max Fanout . 93

ACT 3 Specific Information. 94

54SX Specific Information 94

Additional Information . 95

Synthesis Library Operating Conditions 96

B DesignWare Library Information 99
DesignWare Library Description 99

DesignWare Library Adders 100

DesignWare Library Subtractors 101
iv

Table of Contents
DesignWare Library Comparators 102

DesignWare Library Counters 103

DesignWare Library Incrementer 104

DesignWare Library Decrementer. 105

Improving Compilation Time. 106

Module Count and Performance 106

C Common Problems 117
Library Errors . 117

Inferring DesignWare . 118

Internal Tri-State. . 118

Multiplexer Inferencing 119

D Product Support . 121
Actel U.S. Toll-Free Line 121

Customer Service . 121

Customer Applications Center 122

Guru Automated Technical Support 122

Web Site . 122

FTP Site. . 123

Electronic Mail . 123

Worldwide Sales Offices 124

Index . 125
v

List of Figures

DesignWare Libraries Directory Structure 4

Synthesis Libraries Directory Structure 5

Actel-Synopsys Design Flow . 7

Multiplexer Diagram . 13

FSM Diagram . 24

Compile-Characterize-Recompile Methodology Diagram 57

Schematic Before Register Balancing 62

Schematic after Register Balancing 63

ACT 3 I/O Macros Directory Structure 74

IOPCLBUF and IOCLKBUF driven sequential cells 74

Compilation Results . 76

Script Execution Results . 77

“CLK” Pad Driving Sequential I/O Cells and Other Logic 77

Corrected Design After Script Implementation 78

Sequential I/O Cell to ACT 3 I/O Cell Link 79

ACTgen Generated 32 x 32 bit Dual Port RAM 83

ACTgen Generated 32 x 32 bit FIFO 84

DesignWare Adder Symbol 100

DesignWare Subtractor Symbol 101

DesignWare Comparator Symbol 102

DesignWare Counter Symbol 103

DesignWare Incrementer Symbol 104

DesignWare Decrementer Symbol 105

Adder Module Count . 107

Adder Logic Level . 108

54SX Adder Module Count 108

54SX Adder Logic Level . 109

Subtractor Module Count . 110

Subtractor Logic Level . 110

54SX Subtractor Module Count 111

54SX Subtractor Logic Level 111

Comparator Module Count 112
vii

List of Figures
Comparator Logic Levels . 112

Counter Module Count . 113

Counter Logic Levels . 113

Incrementer Module Count 114

Incrementer Logic Levels . 114

Decrementer Module Count 115

Decrementer Logic Levels . 115
viii

List of Tables

FSM Table . 24

Sequential Input Cells Available for Synthesis 75

Sequential Output Cells Available for Synthesis 75

ACT 1/40MX “dont_touch” and “dont_use” Macros 90

ACT 2/1200XL “dont_touch” and “dont_use” Macros 90

3200DX/42MX “dont_touch” and “dont_use” Macros 91

ACT 3 “dont_touch” and “dont_use” Macros 91

54SX “dont_touch” and “dont_use” Macros 93

Macros that Cannot be Connected to HCLKBUF 94

Default Operating Conditions 96

Synthesis Library Operating Conditions 97

Supported Modules . 99

Adder Pin Description . 100

Subtractor Pin Description . 101

Comparator Pin Description 102

Counter Pin Description . 103

Counter Operation Truth Table 103

Incrementer Pin Description 104

Decrementer Pin Description 105
ix

Introduction

The Synopsys Synthesis Methodology Guide contains information about
using Synopsys UNIX synthesis tools with the Actel Designer Series
FPGA development software to create designs for Actel devices. Refer
to the Designing with Actel manual for additional information about
using the Designer series software and the Synopsys documentation
for additional information about using Synopsys software.

Document Organization
The Synopsys Synthesis Methodology Guide is divided into the following
chapters:

Chapter 1 - Setup contains information and procedures about setting
up Synopsys software for use in creating Actel designs.

Chapter 2 - Actel-Synopsys Design Flow illustrates and describes
the design flow for creating Actel designs using Synopsys and Designer
Series software.

Chapter 3 - Actel-Synopsys Coding Considerations describes Actel-
Synopsys specific HDL coding techniques.

Chapter 4 - Synthesis Constraints contains descriptions, examples,
and procedures for using design constraints on Actel designs.

Chapter 5 - Actel-Synopsys Design Considerations contains
information and procedures to assist you in creating Actel designs with
Synopsys and Designer Series software.

Appendix A - Synthesis Library Information describes the features
of the Actel synthesis libraries available for use in design synthesis.

Appendix B - DesignWare Library Information describes the
features of the Actel DesignWare libraries available for use in design
synthesis.

Appendix C - Common Problems describes problems that may
occur during synthesis and the solution to the problem.

Appendix D - Product Support provides information about
contacting Actel for customer and technical support.
xi

Introduction
Document Assumptions
The information in this manual is based on the following assumptions:

1. You have installed the Designer Series software.

2. You have installed the Synopsys software.

3. You are familiar with UNIX workstations and operating systems.

4. You are familiar with FPGA architecture and FPGA design software.

Document Conventions
The following conventions are used throughout this manual.

Information that is meant to be input by the user is formatted as
follows:

keyboard input

The contents of a file is formatted as follows:

file contents

HDL code appear as follows, with HDL keywords in bold:

entity actel is
port (

a: in bit;
y: out bit);

end actel;

Messages that are displayed on the screen appear as follows:

Screen Message
xii

Introduction
The <act_fam> variable represents Actel device family library
directories and files. To reference an actual family library directory or
file, substitute the actual name of the family when you see this
variable. Available families are act1, act2 (for ACT 2 and 1200XL
devices), act3, 3200dx, 40mx, 42mx, and 54sx.

HDL Keywords and Naming Conventions
There are naming conventions you must follow when writing Verilog
or VHDL code. Additionally, Verilog and VHDL have reserved words
that cannot be used for signal or entity names. This section lists the
naming conventions and reserved keywords for each.

VHDL The following naming conventions apply to VHDL designs:

• VHDL is not case sensitive.

• Two dashes “--” are used to begin comment lines.

• Names can use alphanumeric characters and the underscore “_”
character.

• Names must begin with an alphabetic letter.

• You may not use two underscores in a row, or use an underscore as
the last character in the name.

• Spaces are not allowed within names.

• Object names must be unique. For example, you cannot have a
signal named A and a bus named A(7 downto 0).
xiii

Introduction
The following is a list of the VHDL reserved keywords that cannot be
used in your design:

Verilog The following naming conventions apply to Verilog HDL designs:

• Verilog is case sensitive.

• Two slashes “//” are used to begin single line comments. A slash and
asterisk “/*” are used to begin a multiple line comment and an
asterisk and slash “*/” are used to end a multiple line comment.

• Names can use alphanumeric characters, the underscore “_”
character, and the dollar “$” character.

• Names must begin with an alphabetic letter or the underscore.

• Spaces are not allowed within names.

abs downto library postponed subtype

access else linkage procedure then

after elsif literal process to

alias end loop pure transport

all entity map range type

and exit mod record unaffected

architecture file nand register units

array for new reject until

assert function next rem use

attribute generate nor report variable

begin generic not return wait

block group null rol when

body guarded of ror while

buffer if on select with

bus impure open severity xnor

case in or shared xor

component inertial others signal

configura-
tion inout out sla

constant is package sra

disconnect label port srl
xiv

Introduction
The following is a list of the Verilog reserved keywords that cannot be
used in your design:

Actel Manuals
The Designer Series software includes printed and on-line manuals.
The on-line manuals are in PDF format on the CD-ROM in the “/
manuals” directory. These manuals are also installed onto your system
when you install the Designer software. To view the on-line manuals,
you must install Adobe® Acrobat Reader® from the CD-Rom.

always endfunction macromodule realtime tran

and endmodule medium reg tranif0

assign endprimitive module release tranif1

attribute endspecify nand repeat tri

begin endtable negedge rnmos tri0

buf endtask nmos rpmos tri1

bufif0 event nor rtran triand

bufif1 for not rtranif0 trior

case force notif0 rtranif1 trireg

casex forever notif1 scalared unsigned

casez fork or signed vectored

cmos function output small wait

const highz0 parameter specify wand

deassign highz1 pmos specparam weak0

default if posedge strength weak1

defparam ifnone primitive strong0 while

disable initial pull0 strong1 wire

edge inout pull1 supply0 wor

else input pulldown supply1 xnor

end integer pullup table xor

endattribute join remos task

endcase large real time
xv

Introduction
The Designer Series includes the following manuals, which provide
additional information on designing Actel FPGAs:

Designing with Actel. This manual describes the design flow and user
interface for the Actel Designer Series software, including information
about using the ACTgen Macro Builder and ACTmap VHDL Synthesis
software.

Actel HDL Coding Style Guide. This guide provides preferred coding
styles for the Actel architecture and information about optimizing your
HDL code for Actel devices.

ACTmap VHDL Synthesis Methodology Guide. This guide contains
information, optimization techniques, and procedures to assist
designers in the design of Actel devices using ACTmap VHDL.

Silicon Expert User’s Guide. This guide contains information and
procedures to assist designers in the use of Actel’s Silicon Expert tool.

DeskTOP Interface Guide. This guide contains information about using
the integrated VeriBest® and Synplicity® CAE software tools with the
Actel Designer Series FPGA development tools to create designs for
Actel Devices.

Cadence® Interface Guide. This guide contains information and
procedures to assist designers in the design of Actel devices using
Cadence CAE software and the Designer Series software.

Mentor Graphics® Interface Guide. This guide contains information
and procedures to assist designers in the design of Actel devices using
Mentor Graphics CAE software and the Designer Series software.

MOTIVE Static Timing Analysis Interface Guide. This guide contains
information and procedures to assist designers in the use of the
MOTIVE software to perform static timing analysis on Actel designs.

Synopsys® Synthesis Methodology Guide. This guide contains preferred
HDL coding styles and information and procedures to assist designers
in the design of Actel devices using Synopsys CAE software and the
Designer Series software.

Viewlogic Powerview® Interface Guide. This guide contains
information and procedures to assist designers in the design of Actel
xvi

Introduction
devices using Powerview CAE software and the Designer Series
software.

Viewlogic Workview Office Interface Guide. This guide contains
information and procedures to assist designers in the design of Actel
devices using Workview Office CAE software and the Designer Series
software.

VHDL Vital Simulation Guide. This guide contains information and
procedures to assist designers in simulating Actel designs using a Vital
compliant VHDL simulator.

Verilog Simulation Guide. This guide contains information and
procedures to assist designers in simulating Actel designs using a
Verilog simulator.

Activator and APS Programming System Installation and User’s Guide.
This guide contains information about how to program and debug
Actel devices, including information about using the Silicon Explorer
diagnostic tool for system verification.

Silicon Sculptor User’s Guide. This guide contains information about
how to program Actel devices using the Silicon Sculptor software and
device programmer.

Silicon Explorer Quick Start. This guide contains information about
connecting the Silicon Explorer diagnostic tool and using it to perform
system verification.

Designer Series Development System Conversion Guide UNIX®

Environments. This guide describes how to convert designs created in
Designer Series versions 3.0 and 3.1 for UNIX to be compatible with
later versions of Designer Series.

Designer Series Development System Conversion Guide Windows
Environments. This guide describes how to convert designs created in
Designer Series versions 3.0 and 3.1 for Windows to be compatible
with later versions of Designer Series.

Actel FPGA Data Book. This guide contains detailed specifications on
Actel device families. Information such as propagation delays, device
package pinout, derating factors, and power calculations are found in
this guide.
xvii

Introduction
Macro Library Guide. This guide provides descriptions of Actel library
elements for Actel device families. Symbols, truth tables, and module
count are included for all macros.

A Guide to ACTgen Macros. This Guide provides descriptions of
macros that can be generated using the Actel ACTgen Macro Builder
software.

On-Line Help
The Designer Series software comes with on-line help. On-line help
specific to each software tool is available in Designer, ACTgen,
ACTmap, Silicon Expert, Silicon Explorer, Silicon Sculptor, and APSW.
xviii

1
Setup

This chapter contains information about setting up UNIX Synopsys
tools to create Actel designs. This includes setting environment
variables and information about setting up a system to access the Actel
macro and synthesis libraries. Refer to the Synopsys documentation for
additional information about setting up Synopsys tools.

Software Requirements
The information in this guide applies to the Actel Designer Series
software release R1-1999 or later and Synopsys DC Compiler and FPGA
Compiler. For specific information about which versions are supported
with this release, go to the Guru automated technical support system
on the Actel Web site (http://www.actel.com/guru) and type the
following in the Keyword box:

third party

System Setup
After installing Synopsys, make sure the proper environment variables
are set in your UNIX shell script. The following are C shell variables. If
you are using another shell, adjust the syntax accordingly.

setenv SYNOPSYS <synopsys_install_directory>
source $SYNOPSYS/admin/install/sim/bin/environ.csh
setenv ALSDIR <actel_install_directory>
setenv ACT_SYNOPDIR $ALSDIR/lib/synop
set path=($ALSDIR/bin $path)
set path=($SYNOPSYS/<operating_system>/syn/bin $path)

Replace the <operating_system> variable in the “set path” line with
“sparc” if you use SunOS, “sparcOS5” if you use Solaris, or “hp700” if
you use HP-UX.

If you use SunOS or Solaris, the following variable must also be set:

setenv LD_LIBRARY_PATH $ALSDIR/lib

If you use HP-UX, the following variable must also be set:

setenv SHLIB_PATH $ALSDIR/lib
1

Chapter 1: Setup
Refer to the Designing with Actel manual and the Synopsys
documentation for additional information about setting environment
variables.

User Setup
If you use Actel macros or synthesis libraries when creating designs in
Synopsys, you must setup your system to access them. This section
describes how to access Actel DesignWare and synthesis libraries.

Reanalyzing
DesignWare
Libraries

Before creating a design in Synopsys, you must reanalyze the
encrypted DesignWare and simulation libraries to achieve compatibility
with your version of Synopsys. During reanalysis, the existing
DesignWare libraries are overwritten. If you wish to retain the old
libraries for use with earlier Synopsys versions, copy the “$ALSDIR/lib/
synop” tree to a new location before you reanalyze the libraries.

To reanalyze all installed Actel DesignWare libraries:

1. Acquire write permission.

2. Go to the “scripts” directory. Type the following command at the
prompt:

cd $ACT_SYNOPDIR/scripts

3. Reanalyze the DesignWare libraries. Type:

update_all_dw

To reanalyze a specific Actel family DesignWare library:

1. Acquire write permission.

2. Go to the “scripts/<act_fam>” directory. Type the following
command at the prompt:

cd $ACT_SYNOPDIR/scripts/<act_fam>
2

User Setup
3. Reanalyze the DesignWare library. Type the following
command at the prompt:

update_dwact

Accessing
DesignWare
Libraries

To access the DesignWare libraries, set the search path in the
“.synopsys_dc.setup” file to include the “actsetup.scr” file of the Actel
device family you want to access and include the “DWACT” library and
component package in your VHDL description each time you infer or
instantiate a synthetic component from the DesignWare libraries. Add
the following lines to the “.synopsys_dc.setup” file to access the
“actsetup.scr” file:

script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr

Add the following lines to your VHDL description to include the
“DWACT” library and component package each time you infer or
instantiate a synthetic component from the DesignWare libraries:

library dwact;
use dwact.dwact_components.all;
3

Chapter 1: Setup
Figure 1-1 shows the directory structure for the DW libraries1.

The “dwact.sldb” file is a compiled description of the Actel synthetic
libraries and “DWACT_COMPONENTS.syn” is a “compile_package”
file. An ASCII version of the package file can also be found in the same
directory. Refer to “DesignWare Module Coding” on page 31 for
information about using the DesignWare library modules.

1. DesignWare libraries are not available for ACT 1 and 40MX devices.

C
O

M
PO

N
EN

TS
.S

IM

dwact

dw
ac

t_
C

O
M

PO
N

EN
TS

.
vh

d

D
W

AC
T_

*.M
ra

dwact.sldb

D
W

AC
T_

*.S
yn

ac
t_

co
m

po
ne

nt
s

.v
hd

D
W

AC
T_

*.S
im

C
O

M
PO

N
EN

TS
.S

YN

syn scriptstutorial

$ACT_
SYNOPDIR

<act_fam>

Figure 1-1. DesignWare Libraries Directory Structure
4

User Setup
Accessing
Synthesis
Libraries

To access the synthesis libraries, set the search path in the
“.synopsys_dc.setup” file to include the “actsetup.scr” file of the Actel
device family you want to access. Add the following lines to the
“.synopsys_dc.setup” file to access the “actsetup.scr” file:

actlib = get_unix_variable (“ACT_SYNOPDIR”)
include actlib + /scripts/<act_fam>/actsetup.scr

Note: To target the 1200XL family, synthesize using the ACT 2 library
and use the “XL” operating conditions for timing. Refer to
“Synthesis Library Operating Conditions” on page 96 for
additional information.

Figure 1-2 shows the directory structure for the Synthesis libraries.

To verify the library version:

Type the following command at the prompt:

$ACT_SYNOPDIR/scripts/version

syn scriptstutorial

$ACT_
SYNOPDIR

act.db actsym.sdb

<act_fam>

Figure 1-2. Synthesis Libraries Directory Structure
5

2
Actel-Synopsys Design Flow

This chapter illustrates and describes the design flow for creating Actel
designs using Synopsys tools and the Designer Series software.

Design Flow Illustrated
Figure 2-1 illustrates the design flow for creating an Actel device using
Synopsys Designer Series software1.

1. Actel-specific utilities/tools are denoted by the grey boxes in Figure 2-1.

Design Creation/Verification

Silicon Explorer

Data I/O

System General

Fuse
File

Actel
Device

BP Microsystems

SMS Sprint

Design Implementation

System Verification

Compile

Layout

DT Edit PinEdit

DT Analyze ChipEdit

ExportFuse

Programming

APS Software
Activator 2/2s Programmer

Silicon Sculptor

I/O Library
ACT3

Library
Synthesis

Library
DW

Synopsys Simulation Tool
Behavioral/Structural/Timing

Simulation

Behavioral
HDL

Libraries
VITAL/Verilog

ACTgen
Macro Builder

EDIF
Netlist

DCF
File

edn2vlog/
edn2vhdl

Netlist Translation
(Optional)

SDF
File

Structural
HDL

Netlist

Figure 2-1. Actel-Synopsys Design Flow
7

Chapter 2: Actel-Synopsys Design Flow
Design Flow Overview
The Actel-Synopsys design flow has four main steps; design creation/
verification, design implementation, programming, and system
verification. These steps are described in the following sections.

Design
Creation/
Verification

During design creation/verification, a design is captured in an RTL-
level (behavioral) HDL source file. After capturing the design, a
behavioral simulation of the HDL file can be performed to verify that
the HDL code is correct. The code is then synthesized into an Actel
gate-level (structural) netlist. After synthesis, a structural simulation of
the design can be performed. Finally, an EDIF netlist is generated for
import into Designer from which an HDL structural netlist is generated
for structural and timing simulation.

HDL Design Source Entry
Enter your HDL design source using a text editor or a context-sensitive
HDL editor. Your HDL design source can contain RTL-level constructs,
as well as instantiations of structural elements, such as ACTgen macros.

Behavioral Simulation
You may perform a behavioral simulation of your design before
synthesis. Behavioral simulation verifies the functionality of your HDL
code. Typically, unit delays are used and a standard HDL test bench
can be used to drive simulation. Refer to the VHDL VITAL Simulation
Guide or Verilog Simulation Guide for information about performing
behavioral simulation.

Synthesis
After you have created your HDL design source, you must synthesize it
before placing and routing it in Designer. Synthesis transforms the
behavioral HDL file into a gate-level netlist and optimizes the design
for a target technology. Refer to the Synopsys documentation for
information about performing design synthesis.
8

Design Flow Overview
EDIF Netlist Generation
After you have created, synthesized, and verified your design, you
must generate an EDIF netlist for place and route in Designer. This
EDIF netlist is also used to generate a structural HDL netlist. Refer to
“Generating an EDIF Netlist” on page 85 for information about
generating an EDIF netlist.

Structural HDL Netlist Generation
Generate a structural HDL netlist from your EDIF netlist for use in
structural and timing simulation by either exporting it from Designer or
by using the Actel “edn2vlog” or “edn2vhdl” program. Refer to
“Generating a Structural HDL Netlist” on page 86 for information about
generating a structural netlist.

Structural Simulation
You may perform a structural simulation of your design before placing
and routing it. Structural simulation verifies the functionality of your
post-synthesis structural HDL netlist. Default unit delays included in
the Actel libraries are used for every gate. Refer to the VHDL VITAL
Simulation Guide or Verilog Simulation Guide for information about
performing structural simulation.

Design
Implementation

During design implementation, a design is placed and routed using
Designer. Additionally, static timing analysis can be performed on a
design in Designer with the DT Analyze tool. After place and route,
post-layout (timing) simulation may be performed.

Place and Route
Use Designer to place and route your design. Make sure to specify
GENERIC as the EDIF Flavor and Verilog or VHDL as the Naming Style
when importing the EDIF netlist into Designer. Refer to the Designing
with Actel manual for information about using Designer.

Static Timing Analysis
Use the DT Analyze tool in Designer to perform static timing analysis
on your design. Refer to the Designing with Actel manual for
information on using DT Analyze.
9

Chapter 2: Actel-Synopsys Design Flow
Timing Simulation
You may perform a timing simulation of your design after placing and
routing it. Timing simulation requires timing information exported
from Designer, which overrides default unit delays in the Actel
libraries. Refer to the Designing with Actel manual for information
about exporting timing information from Designer. Refer to the VHDL
VITAL Simulation Guide or Verilog Simulation Guide for information
about performing structural simulation.

Programming Program a device with programming software and hardware from Actel
or a supported 3rd party programming system. Refer to the Designing
with Actel manual and the Activator and APS Programming System
Installation and User’s Guide or Silicon Sculptor User’s Guide for
information about programming an Actel device.

System
Verification

You can perform system verification on a programmed device using
the Actel Silicon Explorer diagnostic tool. Refer to the Activator and
APS Programming System Installation and User’s Guide or Silicon
Explorer Quick Start for information about using the Silicon Explorer.
10

3
Actel-Synopsys Coding Considerations

This chapter describes preferred coding styles for the Actel architecture
when using Synopsys synthesis and simulation tools. Examples of HDL
code are also given. Included in this chapter is information about
multiplexer encoding, finite state machine design, and DesignWare
module coding. Refer to the Actel HDL Coding Style Guide for
additional information about HDL coding for Actel devices.

Multiplexer Encoding
The multiplexer based Actel architecture provides area and speed
efficient implementations if multiplexers are inferred using case
statements. Multiplexer inference using case statements is more
efficient than inference of priority encoders using the if-then-else
statements. This coding style provides the synthesis tool a good
starting point because case statements imply that all conditions are
mutually exclusive.

You can synthesize a multiplexer using a case statement in your HDL
code. However, current synthesis technology is based on
“reconstruction of logic” where the logic is broken into boolean terms,
optimized, and mapped to gates. Often, it is difficult to reconstruct a
multiplexer when it is broken down.

Use the Synopsys directive, “full_case parallel_case” to force
multiplexer inference. You should also embed an attribute,
“infer_mux,” in the HDL code to instruct (V)HDL Compiler that certain
case statements should be inferred as generic multiplexer cells
(MUX_OPs). (V)HDL Compiler maps these MUX_OPs in the design to
multiplexers in the technology.

Multiplexer
Inferencing
Variables

Three “hdlin” attributes determine how and when MUX_OPs are
inferred by (V)HDL compiler. These variables can be set in the
“.synopsys_dc.setup” file or in a compile script during compilation. In
the following examples, the attributes have been set in a compile
script. After setting the “hdlin” and compile variables, constraints are
set on the design. Typical constraints are delay constraints (such as
“max_delay”) and fanout constraints (such as “max_fanout”). Failure to
set the “max_fanout” constraint can result in a design that has
excessive fanout on nets (>24) resulting in errors during compilation in
Designer. The three “hdlin” variables are described below with
recommended settings when targeting the Actel architecture.
11

Chapter 3: Actel-Synopsys Coding Considerations
hdlin_infer_mux
The “hdlin_infer_mux” variable controls MUX_OP inferencing for the
current design and all subsequent designs unless the variable is
changed. This variable can be set to three values: “default” (MUX_OPs
are inferred for case statements that have the “infer_mux” attribute or
directive attached), “none” (no MUX_OPs are inferred) and “all”
(MUX_OPs are inferred for every case statement in the design). For
best results when targeting the Actel architecture, set this variable to
“all.”

hdlin_dont_infer_mux_for_resoruce_sharing
The “hdlin_don_infer_mux_for_resoruce_sharing” variable determines
whether MUX_OPs are inferred when two or more synthetic operators
drive the inputs of the MUX_OP. The default setting of “true” prevents
the inference of MUX_OPs when synthetic operators drive the inputs
of the MUX_OP. Setting the variable to “false” allows a MUX_OP to be
inferred. For best results when targeting the Actel architecture, set this
variable to “false.”

hdlin_mux_size_limit
The “hdlin_mux_size_limit” variable sets the maximum size of the
MUX_OP to be inferred. The default value is 32. This variable should
be set to a larger value when multiplexers with more than 32 inputs
are inferred. However, this results in longer compilation time.

Compilation
Variables

In addition to the “hdlin” variables, two compile variables are used to
control multiplexer logic. These are described below with
recommended settings for best results when targeting the Actel
architecture:

compile_create_mux_op_hierarchy
When the “compile_create_mux_op_hierarchy ” variable is set to “true”
(default), (V)HDL Compiler creates MUX_OPs with their own level of
hierarchy. When “false,” (V)HDL Compiler removes this level of
hierarchy. For best results when targeting the Actel architecture, set this
variable to “true.”
12

Multiplexer Encoding
compile_mux_no_boundary_optimization
When the “compile_mux_no_boundary_optimization” variable is set to
“false” (default), (V)HDL Compiler performs boundary optimization on
all MUX_OP implementations. When “true,” no boundary optimization
is performed. Boundary optimization can result in sub-optimal
implementations when inferred multiplexers have inputs connected to
constant values. For best results when targeting the Actel architecture,
set this variable to “true.”

Multiplexer
Inferencing

MUX_OPs are only inferred for case statements contained in processes
(VHDL) or always blocks (Verilog). MUX_OPs are not inferred for if-
then-else statements or case statements contained within if-then-else
statements. Consequently, case statements should be always be used
when describing multiplexers in Verilog or VHDL. The following
examples describe the behavioral syntax for inferring a 4 to 1
multiplexer using a case statement. Figure 3-1 illustrates the
multiplexer.

Verilog
module mux4_1 (c, d, e, f, s, mux_out);
input c, d, e, f;
input [1:0] s;
output mux_out;
reg mux_out;
always @(c or d or e or f or s)
begin

case (s)
2’b00 : mux_out = c;
2’b01 : mux_out = d;
2’b10 : mux_out = e;
default : mux_out = f;

endcase
end
endmodule

Figure 3-1. Multiplexer Diagram

d
e

c

f

mux_out

s [1:0]
13

Chapter 3: Actel-Synopsys Coding Considerations
VHDL
library ieee;
library synopsys;
use ieee.std_logic_1164. all ;
use synopsys.attributes. all ;
entity mux4_1 is
port (c, d, e, f : in std_logic;

 s : in std_logic_vector(1 downto 0);
 mux_out : out std_logic);

end mux4_1;

architecture behave of mux4_1 is
begin

mux1: process (s, c, d, e, f)
begin

case s is
when “00” => mux_out <= c;
when “01” => mux_out <= d;
when “10” => mux_out <= e;
when others => mux_out <= f;

end case ;
end process mux1;
end behave;

Synopsys Script
To force (V)HDL Compiler to infer multiplexers, the compile variables
and “hdlin” variables must be set properly. This can be done in the
“.synopys_dc.setup” file or in a compile script. The following is an
example compile script.

/* Script file for mux4_1 design */
/* read Actel Synopsys setup script and set Mux inferencing
Switches*/
/* this could also be done in the .synopsys_dc.setup file */

actlib = get_unix_variable (“ACT_SYNOPDIR”)
include actlib + /scripts/<act_fam>/actsetup.scr

/* Set Mux inferencing switches */
hdlin_infer_mux = all;
compile_mux_no_boundary_optimization = true
hdlin_dont_infer_mux_for_resource_sharing = false

/* read design file - use this for Verilog design*/
read -f verilog mux4_1.v
14

Multiplexer Encoding
/* read design file - use this for VHDL design */
read -f VHDL mux4_1.vhd

current_design = mux4_1
/* set max_fanout constraint*/
max_fanout 12
/* set delay constraint on mux4_1 from S[1:0] to output */
set_max_delay 20 -to { "mux_out" } -from { "s<1>" }
set_max_delay 20 -to { "mux_out" } -from { "s<0>" }

set_operating_conditions COMWCSTD

compile -map_effort medium

set_port_is_pad all_inputs()
set_port_is_pad all_outputs()

insert_pads
/* write out EDIF netlist */
write -f edif -h -o mux4_1.edn

Wide
Multiplexers

When the number of multiplexer inputs is larger than four, effective
use of the Synopsys multiplexer inference attributes, variables, and
delay constraints are required to produce an optimal implementation
in the Actel architecture. When the number of multiplexer inputs is not
a power of four (such as 11) the implementation created by (V)HDL
Compiler may use multiplexers with all the inputs tied to logic 1 or
logic 0. These multiplexers are removed by the Actel Designer
software during design compilation to produce a more area efficient
implementation. The following examples describe the behavioral
syntax for inferring an 11 to 1 multiplexer.

Verilog
module mux11 (s, a, b, c, d, e, f, g, h, i, j, k, mux_out);
input [3:0] s;
input a, b, c, d, e, f, g, h, i, j, k;
output mux_out;
reg mux_out;

// create an 11:1 mux using a case statement
always @ ({s[3:0]} or a or b or c or d or e or f or g or h or
i or j or k)
begin : mux_blk

case ({s[3:0]}) // synopsys full_case parallel_case
15

Chapter 3: Actel-Synopsys Coding Considerations
4'b0000 : mux_out = a;
4'b0001 : mux_out = b;
4'b0010 : mux_out = c;
4'b0011 : mux_out = d;
4'b0100 : mux_out = e;
4'b0101 : mux_out = f;
4'b0110 : mux_out = g;
4'b0111 : mux_out = h;
4'b1000 : mux_out = i;
4'b1001 : mux_out = j;
4'b1010 : mux_out = k;
default : mux_out = 1’b1;

endcase
end
endmodule

VHDL
library ieee;
library synopsys;
use ieee.std_logic_1164. all ;
use synopsys.attributes. all ;
entity mux11 is
port (a, b, c, d, e, f, g, h, i, j, k: in std_logic;

 s : in std_logic_vector(3 downto 0);
 mux_out : out std_logic);

end mux11;

architecture behave of mux11 is
begin

mux1: process (s, a, b, c, d, e, f, g, h, i, j, k)
begin

case s is
when “0000” => mux_out <= a;
when “0001” => mux_out <= b;
when “0010” => mux_out <= c;
when “0011” => mux_out <= d;
when “0100” => mux_out <= e;
when “0101” => mux_out <= f;
when “0110” => mux_out <= g;
when “0111” => mux_out <= h;
when “1000” => mux_out <= i;
when “1001” => mux_out <= j;
when “1010” => mux_out <= k;
when others => mux_out <= ‘1’;

end case ;
end process mux1;
end behave;
16

Multiplexer Encoding
Synopsys Script
The following example compile script sets the compile and “hdlin”
variables. A “max_delay” constraint has been set from the select lines
S[3:0] to “mux_out.” A tight constraint was placed on S[3:2] while a
looser constraint was placed on S[1:0] to ensure that the low order bits
are driven by S[1:0]. This causes (V)HDL compiler to build a 16 to 1
mux with five inputs connected to logic 1.

/* Script file for 11:1 multiplexer design */
actlib = get_unix_variable (“ACT_SYNOPDIR”)
include actlib + /scripts/<act_fam>/actsetup.scr

/* Set Mux inferencing switches */
hdlin_infer_mux = all
compile_mux_no_boundary_optimization = true
hdlin_dont_infer_mux_for_resource_sharing = false

/* read design files - use the following for VHDL*/
read -f verilog mux11.vhd
/* read design files - use the following for Verilog */
read -f verilog mux11.v
current_design = mux11
max_fanout = 12
/* force short delay on SEL[3:2] so designer will remove
unneeded mux */
set_max_delay 5 -to { "mux_out" } -from { "S<3>" }
set_max_delay 5 -to { "mux_out" } -from { "S<2>" }
/* set longer delay from SEL[1:0] */
set_max_delay 20 -to { "mux_out" } -from { "S<1>" }
set_max_delay 20 -to { "mux_out" } -from { "S<0>" }

set_operating_conditions COMWCSTD

compile -map_effort medium
report_area > mux11.rpt

set_port_is_pad all_inputs()
set_port_is_pad all_outputs()
insert_pads
write -f edif -h -o mux11.edn
17

Chapter 3: Actel-Synopsys Coding Considerations
Registered
Multiplexers

In a datapath application, multiplexers drive registers. These structures
can quickly be inferred using the MUX_OP attributes. As in the
previous examples, a combination of compile variables and constraints
is required to get the optimum implementation.

Verilog
module reg_mux11 (rst, clk, s, a, b, c, d, e, f, g, h, i, j, k,
mux_out);
input [3:0] s;
input a, b, c, d, e, f, g, h, i, j, k;
input clk, rst;
output mux_out;
reg mux_out;
out
// synopsys infer_mux "mux_blk"
// create a registered 11:1 mux using a case statement
always @ (posedge clk or negedge rst)
begin : mux_blk

if (~rst)
mux_out = 1’b0;

else
case ({s[3:0]}) // synopsys full_case parallel_case

4'b0000 : mux_out = a;
4'b0001 : mux_out = b;
4'b0010 : mux_out = c;
4'b0011 : mux_out = d;
4'b0100 : mux_out = e;
4'b0101 : mux_out = f;
4'b0110 : mux_out = g;
4'b0111 : mux_out = h;
4'b1000 : mux_out = i;
4'b1001 : mux_out = j;
4'b1010 : mux_out = k;
default : mux_out = 1’b1;

endcase
end
endmodule
18

Multiplexer Encoding
VHDL
library ieee;
library synopsys;-- for synopsys mux inferencing
use ieee.std_logic_1164. all ;
use synopsys.attributes. all ;-- for synopsys mux inferencing

entity reg_mux11 is
port (s: in std_logic_vector (3 downto 0);-- mux select

 a, b, c, d, e, f, g, h, i, j, k : in std_logic;
 clk, rst : in std_logic;
 mux_out : out std_logic); -- mux output

end reg_mux11;

architecture synth of reg_mux11 is
begin
proc1: process (rst, clk)

begin
if (rst = '0') then

mux_out <= '0';
elsif (clk 'event and clk = '1') then

case s is
when "0000" => mux_out <= a;
when "0001" => mux_out <= b;
when "0010" => mux_out <= c;
when "0011" => mux_out <= d;
when "0100" => mux_out <= e;
when "0101" => mux_out <= f;
when "0110" => mux_out <= g;
when "0111" => mux_out <= h;
when "1000" => mux_out <= i;
when "1001" => mux_out <= j;
when "1010" => mux_out <= k;
when others => mux_out <= '1';

end case ;
end if ;

end process proc1;
end synth;
19

Chapter 3: Actel-Synopsys Coding Considerations
Synopsys Script
The following example compile script sets the compile and “hdlin”
variables. A “max_delay” constraint has been set from the select lines
S[3:0] to the MUX_OUT register. A tight constraint was placed on S[3:2]
while a looser constraint was placed on S[1:0] to ensure that the low
order bits are driven by S[1:0]. This causes (V)HDL compiler to build a
16 to 1 mux with five inputs connected to logic 1. One of the
multiplexers is removed during compile phase in Designer.

/* Script file for reg_mux11.v design*/
actlib = get_unix_variable (“ACT_SYNOPDIR”)
include actlib + /scripts/<act_fam>/actsetup.scr

/* Set Mux inferencing switches*/
hdlin_infer_mux = all
compile_mux_no_boundary_optimization = true
hdlin_dont_infer_mux_for_resource_sharing = false

/* read design files - use the following for VHDL*/
read -f vhdl reg_mux11.vhd
/* read design files - use the following for Verilog*/
read -f verilog reg_mux11.v

current_design = reg_mux11
max_fanout 12
/* force short delay on S[3:2] so designer will remove
unneeded mux*/
set_max_delay 5 -to find(cell, mux_out_reg) -from { "S<3>" }
set_max_delay 5 -to find(cell, mux_out_reg) -from { "S<2>" }
/* set longer delay from S[1:0] */
set_max_delay 20 -to find(cell, mux_out_reg) -from { "S<1>" }
set_max_delay 20 -to find(cell, mux_out_reg) -from { "S<0>" }

/* set clock constraint*/
create_clock -name "clk" -period 25 -waveform { "0" "12.5" }
{ "clk" }

set_operating_conditions COMWCSTD

compile -map_effort medium

set_port_is_pad all_inputs()
set_port_is_pad all_outputs()
insert_pads
write -f edif -h -o reg_mux11.edn
20

Multiplexer Encoding
Under Utilized
Case

If a case statement is not fully specified, i.e., when the number of data
inputs specified for the MUX_OPs is not the same as the number of
data inputs required based on the number of selected lines, (V)HDL
Compiler may not create an efficient implementation. In the example
below, there should be 32 independent cases because the select line is
5-bits wide. However, when the most significant bit of the select s4 is
logic 1, the output is always logic 0 and only 16 cases are specified.
Proper use of multiplexer inferencing variables and constraints result
in an efficient implementation for the Actel architecture. For Example:

Verilog
module org_mux_32_1 (data, s, y);
input [4:0] s;
input [31:0] data;
output y;
reg y;
//synopsys infer_mux “mux”
always @(data or s)
begin : mux

case (s)
5'h00 : y = data[0];
5'h01 : y = data[1];
5'h02 : y = data[2];
5'h03 : y = data[3];
5'h04 : y = data[4];
5'h05 : y = data[5];
5'h06 : y = data[6];
5'h07 : y = data[7];
5'h08 : y = data[8];
5'h09 : y = data[9];
5'h0a : y = data[10];
5'h0b : y = data[11];
5'h0c : y = data[12];
5'h0d : y = data[13];
5'h0e : y = data[14];
5'h0f : y = data[15];
default : y = 1'd0;

endcase
end
endmodule
21

Chapter 3: Actel-Synopsys Coding Considerations
VHDL
library ieee;
library synopsys;
use ieee.std_logic_1164. all ;
use synopsys.attributes. all ;

entity org_mux_32_1 is
port (data: in std_logic_vector(31 downto 0);

 s : in std_logic_vector(4 downto 0);
 y : out std_logic);

end org_mux_32_1;

architecture behave of org_mux_32_1 is
-- include the next line to use mux_op inferencing
attribute infer_mux of mux1: label is "true";

begin
mux1: process (s, data)

begin
case s is

when "00000" => y <= data(0);
when "00001" => y <= data(1);
when "00010" => y <= data(2);
when "00011" => y <= data(3);
when "00100" => y <= data(4);
when "00101" => y <= data(5);
when "00110" => y <= data(6);
when "00111" => y <= data(7);
when "01000" => y <= data(8);
when "01001" => y <= data(9);
when "01010" => y <= data(10);
when "01011" => y <= data(11);
when "01100" => y <= data(12);
when "01101" => y <= data(13);
when "01110" => y <= data(14);
when "01111" => y <= data(15);
when others => y <= '0';

end case ;
end process ;

end behave;
22

Multiplexer Encoding
Synopsys Script
To force (V)HDL Compiler to infer an area efficient multiplexer, the
compile constraints must be set properly. The following example
compile script sets the constraints.

/* Script file for org_mux_32_1.vhd design */

sh date

actlib = get_unix_variable (“ACT_SYNOPDIR”)
include actlib + /scripts/<act_fam>/actsetup.scr

/* Set Mux inferencing switches */
compile_mux_no_boundary_optimization = true
hdlin_dont_infer_mux_for_resource_sharing = false /* allows
best implementation of mux */

/* read design files - use the following for VHDL */
read -f vhdl org_mux_32_1.vhd
/* read design files - use the following for Verilog */
read -f vhdl org_mux_32_1.v

current_design = org_mux_32_1
/* force shortest delay on s[4]*/
set_max_delay 5 -to { "y "} -from { "s<4>" }
/* force short delay on s[3:2] so designer will remove
unneeded mux */
set_max_delay 9 -to { "y" } -from { "s<3>" }
set_max_delay 9 -to { "y" } -from { "s<2>" }
/* set longer delay from s[1:0] */
set_max_delay 20 -to { "y" } -from { "s<1>" }
set_max_delay 20 -to { "y" } -from { "s<0>" }

set_operating_conditions COMWCSTD

compile -map_effort medium

set_port_is_pad all_inputs()
set_port_is_pad all_outputs()

insert_pads

write -f edif -h -o org_mux_32_1.edn
23

Chapter 3: Actel-Synopsys Coding Considerations
Finite State Machine Design
Because of sequential element abundance in the Actel architecture, the
one-hot encoding for state machines can generate an area and speed
optimized design.

You must code the state machine as a regular compact encoding, and
the Finite State Machine (FSM) optimization must be used to extract the
states and generate the bit per state methodology. If you code the bit
per state technique in the HDL code, Synopsys does not generate an
area and performance optimized state machine. For example, consider
a simple Mealy FSM illustrated in Figure 3-2 and Table 3-1.

Table 3-1. FSM Table

Present State Next State Output (z)

a=0 a=1 a=0 a=1

S0 S0 S1 0 0

S1 S1 S2 1 0

S2 S0 S1 0 1

S0

S2 S1

reset

0/0

0/0 1/0

1/0

1/1

0/1

Figure 3-2. FSM Diagram
24

Finite State Machine Design
The state machine is described with two processes. One process
defines the next state assignments (state registers) and the other
process describes the combinatorial portion of the design that
determines the state assignment.

In the following examples, the signal type, “pres_state,” defines the
current state of the state machine and the signal, “next_state,” defines
the next state of the state machine, depending on the current state and
input. A reset assignment sets the state machine to the state “S0.”

Verilog
module mealy_ent (a, clock, reset, z);

input a, clock, reset;
output z;

reg [1:0] pres_state, next_state;
reg z;

parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10;

always @ (posedge clock or negedge reset)
if (!reset) pres_state = 2'b00;

else
pres_state = next_state;

always @ (pres_state)

begin
case (pres_state) //synopsys parallel_case full_case
S0 : if (a)

begin
next_state = S1;
z = 1'b0;
end

else
begin
next_state = S0;
z = 1'b0;
end

S1 : if (a)
begin
next_state = S2;
z = 1'b0;

else
begin
25

Chapter 3: Actel-Synopsys Coding Considerations
next_state = S1;
z = 1'b1;
end

S2 : if (a)
begin
next_state = S1;
z = 1'b1;
end

else
begin
next_state = S0;
z = 1'b0;
end

endcase
end

endmodule

VHDL
library ieee;
use ieee.std_logic_1164. all ;

entity mealy_ent is

port (
a : in std_logic;
clock : in std_logic;
reset : in std_logic;
z : out std_logic);

end mealy_ent;

architecture mealy_arc_d of mealy_ent is

type state_type is (s0, s1, s2);
signal pres_state, next_state :state_type;

begin

--next state assignment; synchronizing process
sync: process (reset, clock)
begin

if (reset = '0') then
 pres_state <= s0;--async reset

else
if (clock'event and clock='1') then

 pre_state <= next_state;--assign next state
end if ;

end if ;
26

Finite State Machine Design
end process sync;

--process to hold combinatorial logic that determines the
--next_state
comb: process (pres_state, a)
begin

case pres_state is
when s0 =>

if (a='0') then
 z <='0';
 next_state <= S0;

else
 z <= '0';
 next_state <= s1;

end if ;
when s1 =>

if (a='0') then
 z <= '1';
 next_state <= s1;

else
 z <= '0';
 next_state <= s2;

end if ;
when s2 =>

if (a='0') then
 z <= '0';
 next_state <= s0;

else
 z <= '1';
 next_state <= 1;

end if ;
end case ;

end process comb;

end mealy_arc_d;
27

Chapter 3: Actel-Synopsys Coding Considerations
Extracting an
FSM from a
Sequential
Design

After completing the behavioral description of the state machine, you
must select the state machine style. Use the following procedure to
extract and optimize designs. You can use this procedure when the
entire design is the state machine or when the state machines registers
are buried within the context of a larger design:

1. Read design. Type one of the following commands at the prompt:

read -f vhdl state . vhd /* for vhdl */
read -f verilog state . v /* for verilog */

2. Set the current design to your state machine. Type the
following command at the prompt:

current_design = mealy_ent

3. Set the clock constraints. Type the following commands at the
prompt:

create_clock -period 10 -waveform {0 5} clock
dont_touch_network clock
set_drive 0 clock

4. Map the design. If the design is not mapped, run compile to map
the design to gates. Type the following command at the prompt:

compile -map_effort medium

5. Define variables. Define the variables that identify the state
register names and find the state registers in the design. Type the
following commands at the prompt:

state_reg_name = pres_state
state_regs = find (cell, state_reg_name + ”*”)

6. Group the FSM. If the entire design is a state machine, this step is
optional. Grouping the FSM section of a circuit produces a new
level of hierarchy containing just the FSM state vector flip-flops and
their associated logic. The new design is still in netlist format. If all
flip-flops in the design are not part of the state machine, Type the
following command at the prompt to allow the compiler to identify
the state registers:

set_fsm_state_vector state_regs
28

Finite State Machine Design
7. Group the FSM subset of the design. Type the following
command at the prompt:

group -fsm -design_name mealy_ent_fsm

8. Set the current design to the FSM section of the design. Type
the following command at the prompt:

current_design = mealy_ent_fsm

9. Extract FSM. Extracting an FSM from a circuit changes the
representation from a netlist format to FSM “state_table” format. For
specific optimization methods, refer to the Design Compiler
Reference Manual. Type the following command at the prompt:

extract

The remaining steps only describe the one-hot encoding methods.

10. Specify the state vector flip-flops. Type the following command
at the prompt:

set_fsm_state_vector state_regs

The order of the flip-flops must agree with the order of the state
vector bits (i.e., each bit in the state vector represented by one flip-
flop order).

11. (Optional) Set the state encoding. Type the following command
at the prompt:

set_fsm_encoding “s0=0”, “s1=1”, ...

State encoding provides the Design Compiler with the names and
values of each state.

12. Extract the FSM. Extracting the FSM converts the circuit into an
FSM. Type the following command at the prompt:

extract

13. Minimize the state-transition logic. Type the following
command at the prompt:

reduce_fsm
29

Chapter 3: Actel-Synopsys Coding Considerations
Manual One-
Hot State
Encoding

Actel does not recommend using the manual one-hot encoding in
HDL. This method produces inefficient state machines.

Automatic FSM
Encoding Styles

The (V)HDL Compiler can automatically select the most appropriate
encoding style by selecting auto as the encoding style. Type the
following commands to let (V)HDL Compiler select the encoding style:

set_fsm_encoding { }
set_fsm_encoding_style auto

This encoding style uses a proprietary algorithm. This algorithm’s
primary objective is to determine a set of encoding that reduces the
complexity of the combinatorial logic while using minimum number of
encoding bits. Consequently, this encoding style is targeted for area
optimization as smaller area reduces delay. The maximum supported
state vector length for automatic encoding is 30 bits.

Multiple Resets
in FSM

The FSM compiler may not generate optimal results with multiple
resets in the FSM. If you are using multiple resets, add “AND”
statements to the reset signals in a separate module so that the state
machine has a single reset.

Moore is Less The Moore state machine includes fewer states than the Mealy state
machine because the outputs are derived solely from the present state
of the flip-flops. The Mealy state machine’s outputs are determined by
the state of the flip-flops and the inputs.

Power On and
Reset

For simulation, the state machine initializes into the left most value of
the enumeration type. However, for synthesis, the state where the
machine powers on is not clear. Because (V)HDL Compiler performs
state encoding on the machine’s enumeration type, the state machine
may power on in a state not defined in HDL. Therefore, to achieve
simulation and synthesis consistency, it is important to supply a reset
to the state machine.
30

DesignWare Module Coding
If you want to perform one-hot encoding, you must supply the state
machine with a reset. Remember that only one register must be active.
All other registers must be reset or inactive. Make sure that no logic
exists on the reset network. You can use the “dont_touch_network”
command to ensure that no logic is generated for the reset network.

DesignWare Module Coding
Through inference, Synopsys can synthesize efficient design modules
from HDL operators. However, in most cases the designs are not
optimal implementations for the Actel architecture. To maximize
performance, use the Actel DesignWare libraries.

The Actel DesignWare libraries support synthetic modules such as
adders, subtractors, comparators, incremeters, decremeters and
counters. These modules are optimized for the Actel architecture.

Note: To target the 1200XL family, synthesize using the ACT 2 library
and use the “XL” operating condition for timing Refer to
“Synthesis Library Operating Conditions” on page 96 for
information.

You can use Actel DesignWare library components in the following
ways.

Method A: You can allow Synopsys to infer the best implementation
for the HDL operator. Synopsys makes a decision based on the
design’s area and timing constraints. Actel DesignWare library modules
are selected only if there are strict timing constraints and if the
modules are in the critical path.

Method B: You can select a specific arithmetic implementation (+, -) or
logical operator (<, <, >, >) by explicit statements enclosed within
comment characters.

Method C: You can manually instantiate the DesignWare library
modules by name. You must already know the parameters for module
instantiation. Currently, Actel only offers counters for instantiation.
31

Chapter 3: Actel-Synopsys Coding Considerations
The following examples show how Method A, Method B, and Method
C are applied to select the Actel DesignWare library modules. The
examples in this chapter are located in the following directory:

$ACT_SYNOPDIR/tutorial/designware

Refer to “DesignWare Library Information” on page 99 for additional
information.

Adders There are three types of DesignWare adders: RIPADD (ripple carry
adder), MFADD (medium fast adder), and FADD (fast adder). Bit
vectors range from 2 to 32.

Method A
The following example shows how to implement a Verilog 16-bit adder
using Method A.

// verilog/add16.v
module adder (c, a, b);

input [15:0]a, b;
output [15:0]c;

wire [15:0]a, b, c;

assign c=a+b;

endmodule

The following example shows how to implement a VHDL 8-bit adder
with carry in “cin” and carry out “cout” using Method A:

-- vhdl/add_c.vhd
library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use ieee.std_logic_unsigned. all ;

entity adder is
generic (width : integer := 8);
port (a, b: in unsigned (width-1 downto 0);

cin: in std_logic;
cout: out std_logic;
32

DesignWare Module Coding
y: out unsigned (width-1 downto 0));
end adder;

architecture rtl of adder is
begin

process (a,b,cin)
variable temp_a,temp_b,temp_y:unsigned(a'length downto 0);

begin
temp_a := '0' & a;
temp_b := '0' & b;
temp_y := temp_a + temp_b + cin;
y <= temp_y(a'length-1 downto 0));
cout <= temp_y(a'length);

end process;
end rtl;

The following design script file compiles the preceding HDL
descriptions. The constraint forces Synopsys to use a Actel DesignWare
adder instead of a Synopsys adder:

/* adder.scr */
script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog add16.v
/* use the following line to read VHDL source code */
read -format vhdl add_c.vhd
current_design = adder

set_max_delay 10 -from all_inputs() -to all_outputs()

set_operating_conditions MILBC-3

compile

write -hierarchy -format db -output adder.db

exit

Method B
The following example shows how to implement a Verilog 32-bit adder
using Method B. The text enclosed in the comment line (/* */) allows
Synopsys to choose the adder’s FADD implementation. You can select
“a1” as the arithmetic operation of the FADD description
(DWACT_ADD).
33

Chapter 3: Actel-Synopsys Coding Considerations
module adder (clk, reset, dataa, datab, sum, cout);

output [31:0] sum;
output cout;

input [31:0] dataa, datab;
input clk, reset;

// **********declare output types**********
wire [31:0] sum;
wire cout;

// **********declare internal types*********
reg [31:0] suminternal;

assign sum[31:0] = suminternal[31:0];
assign cout = suminternal[31]

always @(posedge clk or negedge reset)
begin

if (reset == 0)
suminternal[31:0] <= 32'b0;

else
begin : lab_1

/* synopsys resource r0:
map_to_module = “DWACT_ADD”
implementation = “FADD”
ops = “lab_2”;
*/

suminternal[31:0] <= dataa[31:0] + datab[31:0];
//synopsys label lab_2

end
end

endmodule

The following example shows how to implement a VHDL 4-bit adder
using Method B:

-- vhdl/fadd4.vhd
library ieee, dwact, synopsys;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use synopsys.attributes. all ;
use dwact.dwact_components. all ;

entity adder is
port (a, b : in unsigned (3 downto 0);
34

DesignWare Module Coding
c : out unsigned (3 downto 0)
);

end adder;

architecture impl1 of adder is
begin

process (a,b)
constant r0: resource :=0;
attribute map_to_module of r0: constant is “dwact_add”;
attribute implementation of r0: constant is “fadd”;
attribute ops of r0: constant is “a1”;

begin
c <= a+b; -- pragma label a1

end process ;
end impl1;

The following design script file compiles the preceding HDL
descriptions:

/* fadd.scr */
script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog fadd32.v
/* use the following line to read VHDL source code */
read -format vhdl fadd4.vhd
current_design = adder

set_operating_conditions INDTC-2

compile

report_area > adder.area
write -hierarchy -format db -output adder.db

exit
35

Chapter 3: Actel-Synopsys Coding Considerations
Subtractors There are three types of DesignWare subtractors: RIPSUB (ripple carry
subtractor), MFSUB (medium fast subtractor), and FSUB (fast
subtractor). Bit vectors range from 2 to 32.

Method A
The following example show how to implement a Verilog 16-bit
subtractor using Method A:

// verilog/sub16.v
module sub (c, a, b);

input [15:0]a,b;
output [15:0]c;

wire [15:0]a,b,c;

assign c = a-b;

endmodule

The following example shows how to implement a VHDL 10-bit
subtractor using Method A.

-- vhdl/sub10.vhd
library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;

entity sub is
port (in1, in2: unsigned (9 downto 0);

diff: out std_logic_vector (9 downto 0));
end sub;

architecture impl1 of sub is

begin

diff <= in1 - in2 ;

end impl1;

The following design script file compiles the preceding HDL
descriptions. This script file allows timing constraint on input to
output. The constraint forces synthesis of an Actel DesignWare
subtractor instead of a Synopsys subtractor.
36

DesignWare Module Coding
/* subt.scr */
script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog sub16.v
/* use the following line to read VHDL source code */
read -format vhdl sub10.vhd
current_design = sub

set_max_delay 10 -from all_inputs() -to all_outputs()

set_operating_conditions COMWCSTD

compile

write -hierarchy -format db -output sub.db

exit

Method B
The following example shows how to implement a Verilog 16-bit
subtractor using Method B. The text enclosed in the comment line
(/* */) allows Synopsys to choose the subtractor’s FSUB
implementation. You can select “a1” as the arithmetic operation of the
FSUB description (DWACT_SUB).

// verilog/fsub16.v
module sub (c, a, b);

input [15:0]a, b;
output [15:0]c;

wire [15:0]a, b;
reg [15:0]c;
always @ (a or b)

begin : blk01
/* synopsys resource r0:
map_to_module = “DWACT_SUB”,
implementation = “FSUB”,

ops = “a1”;
*/

c = a - b; //synopsys label a1
end

endmodule
37

Chapter 3: Actel-Synopsys Coding Considerations
The following example shows how to implement a VHDL 4-bit
subtractor using Method B.

-- vhdl/fsub4.sub
library ieee, dwact, synopsys;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use synopsys.attributes. all ;
use dwact.dwact_components. all ;

entity sub is
port (a, b : in unsigned (3 downto 0);

c : out unsigned (3 downto 0)
);

end sub;

architecture impl1 of sub is
begin

process (a,b)
constant r0: resource :=0;
attribute map_to_module of r0: constant is “dwact_sub”;
attribute implementation of r0: constant is “mfsub”;
attribute ops of r0: constant is “a1”;

begin
c <= a-b; -- pragma label a1

end process ;
end impl1;

The following design script file compiles the preceding HDL
descriptions:

/* fsub.scr */
script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog fsub16.v
/* use the following line to read VHDL source code */
read -format vhdl fsub4.vhd
current_design = sub

set_operating_conditions COMWCSTD

compile
write -hierarchy -format db -output sub.db
exit
38

DesignWare Module Coding
Comparators There are four types of DesignWare comparators available for different
HDL operations: less than, greater than, less than equal to, and greater
than equal to. Refer to “DesignWare Library Comparators” on page 102
for additional information.

Method A
The following example shows how to implement a Verilog 16-bit
comparator using Method A:

// verilog/comp16.v
module comp (c, a, b);

input [15:0]a, b;
output c;

wire [15:0]a,b;
wire c;

assign c = (a < b);

endmodule

The following design script file compiles the preceding HDL
descriptions. The constraint forces synthesis of an Actel DesignWare
comparator instead of a Synopsys comparator.

/* comp16.scr */
script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr
read -format verilog comp16.v
current_design = comp

set_max_delay 10 -from all_inputs() -to all_outputs()

set_operating_conditions COMWCSTD

compile

write -hierarchy -format db -output comp.db

exit
39

Chapter 3: Actel-Synopsys Coding Considerations
Method B
The following example shows how to implement a Verilog 16-bit
comparator using Method B. The text enclosed in the comment line
(/* */) allows Synopsys to choose the comparator’s FCOMP
implementation. You can select “a1” as the arithmetic operation of the
FCOMP description (DWACT_CMPLT).

// verilog/fcomp16.v
module comp (c, a, b);

input [15:0]a,b;
output c;

wire [15:0]a, b;
reg c;
always @ (a or b)
begin : blk01

/* synopsys resource r0:
map_to_module = “DWACT_CMPLT”,
implementation = “FCOMP”,
 ops = “a1”
*/
c <= (a < b); //synopsys label a1

end
endmodule

The following design script file compiles the preceding HDL
descriptions:

/* fcomp16.scr */
script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr
read -format verilog fcomp16.v

current_design = comp

set_operating_conditions COMWCSTD

compile

write -hierarchy -format db -output comp.db

exit
40

DesignWare Module Coding
Counters Counters are only available for instantiation. Refer to “DesignWare
Library Counters” on page 103 for names and descriptions of the
available DesignWare counters.

Method C
The following example shows how to instantiate a Verilog 8-bit up
counter using Method C.

// verilog/count8.v
module count (data, q, sload, enable, aclr, clock);

input [7:0]data;
input sload, enable, aclr, clock;

output [7:0]q;
dwact_up_ctr #(8) u0(data, q, sload, enable, aclr, clock);

endmodule

Note: The variable “# (8)” defines the counter’s bit width. Refer to
“DesignWare Library Counters” on page 103 or the
“DWACT_components.vhd” file located in the
“$ACT_SYNOPDIR/syn/<act_fam>/dwact” directory for pin
ordering information.

The following example shows how to implement a VHDL 10-bit
counter using Method C.

-- vhdl/count10.vhd
library ieee, dwact, synopsys;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use synopsys.attributes. all ;
use dwact.dwact_components. all ;

entity count is
port (data : in std_logic_vector (9 downto 0);

load, cen, reset, clk: in std_logic;
q : out std_logic_vector (9 downto 0)

);
end count;

architecture impl1 of count is
attribute implementation of u0: label is “tlacnt”;

begin
u0: dwact_dn_ctr
41

Chapter 3: Actel-Synopsys Coding Considerations
generic map (width => 10)
port map (

data => data,
q => q,
load => load,
cen => cen,
reset => reset,
clk => clk

);

end impl1;

The following design script file compiles the preceding HDL
descriptions:

/* counter.scr */
script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog count8.v
/* use the following line to read VHDL source code */
read -format vhdl count10.vhd
current_design = count

dont_touch count

set_operating_conditions COMTC-1

compile

write -hierarchy -format db -output count.db
exit
42

DesignWare Module Coding
Incrementers There is one type of DesignWare incrementer: FINC (fast incrementer).
Bit vectors range from 2 to 32.

Method A
The following example shows how to implement a Verilog 16-bit
incrementer using Method A.

// verilog/inc16.v
module incrementer (c, a) ;

input [15:0]a;
output [15:0]c;

wire [15:0]a, c;

assign c=a+1;

endmodule

The following example shows how to implement a VHDL 8-bit
incrementer using Method A:

-- vhdl/incrementer8.vhd
library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use ieee.std_logic_unsigned. all ;

entity incrementer is
port (a: in unsigned (7 downto 0) ;

 y: out unsigned (7 downto 0)) ;
end incrementer;

architecture imp1 of incrementer is
begin

y <= a + 1 ;
end imp1;
43

Chapter 3: Actel-Synopsys Coding Considerations
The following design script file compiles the preceding HDL
descriptions. The constraint forces Synopsys to use an Actel
DesignWare incrementer instead of a Synopsys incrementer:

/* incrementer.scr */
script_lib = get_unix_variable ("ACT_SYNOPDIR")
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog inc16.v
/* use the following line to read VHDL source code */
read -format vhdl incrementer8.vhd
current_design = incrementer

set_max_delay 10 -from all_inputs () -to all_outputs ()
set_operating_conditions MILBC-3

compile

write -hierarchy -format db -output incrementer.db
exit

Method B
The following example shows how to implement a Verilog 32-bit
incrementer using Method B. The text enclosed in the comment line (/
**/) allows Synopsys to choose the incrementer's FINC implementation.
You can select “a1” as the arithmetic operation of the FINC description
(DWACT_INC).

// verilog/finc32.v
module incrementer (clk, reset, dataa, sum, cout) ;

output [31:0] sum;
output cout;

input [31:0] dataa;
input clk, reset;

// **********declare output types**********
wire [31:0] sum;
wire cout;

// **********declare internal types**********
reg [31:0] suminternal ;

assign sum [31:0] = suminternal [31:0];
assign cout = suminternal [31]
44

DesignWare Module Coding
always @ (posedge clk or negedge reset)
begin

if (reset == 0)
suminternal [31:0] <= 32'b0;

else
begin : lab_1

/* synopsys resource r0:
map_to_module = "DWACT_INC"
implementation = "FINC"
ops = "lab_2";
/*

suminternal [31:0] <= dataa[31:0] + 1;
//synopsys label lab_2

end
end

endmodule

The following example shows how to implement a VHDL 4-bit
incrementer using Method B:

-- vhdl/finc4.vhd
library ieee, dwact, synopsys;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use synopsys.attributes. all ;
use dwact.dwact_components. all ;

entity incrementer is
port (a : in unsigned (3 downto 0) ;

c : out unsigned (3 downto 0)
);

end incrementer;

architecture impl1 of incrementer is
begin

process (a)
constant r0: resource :=0;
attribute map_to_module of r0: constant is "dwact_inc";
attribute implementation of r0: constant is "finc";
attribute ops of r0: constant is "a1";

begin
c <= a+1; -- pragma label a1

end process ;
end impl1;
45

Chapter 3: Actel-Synopsys Coding Considerations
The following design script file compiles the preceding HDL
descriptions:

/* incrementer.scr */
script_lib = get_unix_variable ("ACT_SYNOPDIR")
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog finc32.v
/* use the following line to read VHDL source code */
read -format vhdl finc4.vhd
current_design = incrementer

set_operating_conditions INDTC-2

compile

report_area > incrementer.area
write -hierarchy -format db -output incrementer.db

exit

Decrementers There is one type of DesignWare decrementer: FDEC (fast
decrementer). Bit vectors range from 2 to 32.

Method A
The following example shows how to implement a Verilog 16-bit
decrementer using Method A.

// verilog/dec16.v
module decrementer (c, a) ;

input [15:0]a;
output [15:0]c;

wire [15:0]a, c;

assign c=a-1;

endmodule
46

DesignWare Module Coding
The following example shows how to implement a VHDL 8-bit
decrementer using Method A:

-- vhdl/decrementer8.vhd
library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use ieee.std_logic_unsigned. all ;

entity decrementer is
port (a: in unsigned (7 downto 0) ;

 y: out unsigned (7 downto 0)) ;
end decrementer;

architecture imp1 of decrementer is
begin

y <= a - 1 ;
end imp1;

The following design script file compiles the preceding HDL
descriptions. The constraint forces Synopsys to use an Actel
DesignWare decrementer instead of a Synopsys decrementer:

/* decrementer.scr */
script_lib = get_unix_variable ("ACT_SYNOPDIR")
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog dec16.v
/* use the following line to read VHDL source code */
read -format vhdl decrementer8.vhd
current_design = decrementer

set_max_delay 10 -from all_inputs () -to all_outputs ()

set_operating_conditions MILBC-3

compile

write -hierarchy -format db -output decrementer.db

exit
47

Chapter 3: Actel-Synopsys Coding Considerations
Method B
The following example shows how to implement a Verilog 32-bit
decrementer using Method B. The text enclosed in the comment line (/
**/) allows Synopsys to choose the decrementer's FDEC
implementation. You can select “a1” as the arithmetic operation of the
FDEC description (DWACT_DEC).

// verilog/fdec32.v
module decrrementer (clk, reset, dataa, sum, cout) ;

output [31:0] sum;
output cout;

input [31:0] dataa;
input clk, reset;

// **********declare output types**********
wire [31:0] sum;
wire cout;

// **********declare internal types**********
reg [31:0] suminternal ;

assign sum [31:0] = suminternal [31:0];
assign cout = suminternal [31]

always @ (posedge clk or negedge reset)
begin

if (reset == 0)
suminternal [31:0] <= 32'b0;

else
begin : lab_1

/* synopsys resource r0:
map_to_module = "DWACT_DEC"
implementation = "FDEC"
ops = "lab_2";

*/
suminternal [31:0] <= dataa[31:0] - 1;
//synopsys label lab_2

end
end

endmodule
48

DesignWare Module Coding
The following example shows how to implement a VHDL 4-bit
decrementer using Method B:

-- vhdl/fdec4.vhd
library ieee, dwact, synopsys;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use synopsys.attributes. all ;
use dwact.dwact_components. all ;

entity decrementer is
port (a : in unsigned (3 downto 0);

c : out unsigned (3 downto 0)
);
end decrementer;

architecture impl1 of decrementer is
begin

process (a)
constant r0: resource :=0;
attribute map_to_module of r0: constant is "dwact_dec";
attribute implementation of r0: constant is "fdec";
attribute ops of r0: constant is "a1";

begin
c <= a-1; -- pragma label a1

end process ;
end impl1;

The following design script file compiles the preceding HDL
descriptions:

/* decrementer.scr */
script_lib = get_unix_variable ("ACT_SYNOPDIR")
include script_lib + /scripts/<act_fam>/actsetup.scr
/* use the following line to read Verilog source code */
read -format verilog fdec32.v
/* use the following line to read VHDL source code */
read -format vhdl fdec4.vhd
current_design = decrementer

set_operating_conditions INDTC-2

compile

report_area > decrementer.area
write -hierarchy -format db -output decrementer.db

exit
49

4
Synthesis Constraints

This chapter contains descriptions and usage examples of design
constraints that can be applied to Actel designs to improve
performance. This includes information about using constraints to
remove attributes, set operating conditions, and meet design goals.
Also included are methodologies for using constraints to maintain or
flatten design hierarchy.

This chapter discusses using constraints to infer buffers and to reduce
the maximum fanout value. Information about using constraints to set
the register type for a design, to avoid certain cells, to balance
registers, and to use wide decode cells in 3200DX or 42MX is also
provided. Finally, this chapter contains information about where to
find internal tri-state and (q)clkint usage recommendations. Refer to
the Synopsys Command Reference Manual for additional information.

Operating Conditions
Actel silicon is characterized for temperature, voltage and speed grade
information. The characterization information is included in the Actel
libraries so that Synopsys uses proper modeling during compilation.
You should always set an operating condition to instruct Synopsys to
use the correct timing models. For example, if your device is designed
to operate at 3.0V and 85º C, type the following command:

set_operating_condition INDWCSTDV

Refer to “Synthesis Library Operating Conditions” on page 96 for
information about default and available operating conditions.

Design Constraints
Design goals, such as area and performance, determine the constraints
and compile options of a design. This section lists some design
constraints and gives usage examples of the constraint.
51

Chapter 4: Synthesis Constraints
Clock
Constraint

The clock constraint is specified by the clock in a sequential design
and determines the maximum register to register delay in the design.
The clock must be specified after reading in the HDL description. The
following is an example command for specifying a clock:

create_clock -name clk -period 20 -waveform {0 10} clk

Delay
Constraints

The delay constraint sets the path delay on ports relative to a clock
edge. The following are delay constraint compile options.

set_input_delay
Input ports have zero input delay unless specified. Path delays can be
specified for both input and output modes on bidirectional ports. The
following is an example command for setting input delays:

set_input_delay -clock clock 5 all_inputs()

set_output_delay
Output ports have zero output delay unless specified. Path delays can
be specified for both input and output modes on bidirectional ports.
The following is an example command for setting output delays:

set_output_delay -clock clock 4 all_outputs()

No Buffering on
Reset Network

The “set_dont_touch_network” constraint assigns a “dont_touch”
attribute to all cells and nets on the specified network to prevent
objects from being modified or replaced during optimization. The
following is an example command for setting a “dont_touch” network:

set_dont_touch_network find(port, reset)

Logic Level
Constraints

The optimization style is determined by the compile attributes and
options. The following are the logic level compile attributes.
52

Design Constraints
set_flatten
The “set_flatten” constraint attempts to create a 2-level sum of product
implementation. It does not remove hierarchy. Existing structure is
removed and the constraint can be used when you have timing goals
and “dont_care” attributes in the design. The constraint is off by default
and has three options: effort, minimize, and phase.

Effort - The effort option has three settings: low, medium, and high.

Minimize - The minimize option has three settings: none, single, and
multiple. The single setting works on each output individually, does
not share terms, but may produce the fastest implementation. The
multiple setting is area efficient since it shares terms between outputs.

Phase - The phase option has two settings: false and true. The true
setting evaluates both the “1” and “0” of the Karnaugh map and uses
the best solution.

Note: You must only flatten random logic. Do not flatten structured
blocks such as adders, subtracters, etc.

The following is an example of the “set_flatten” constraint for
performance optimization:

set_flatten true -effort medium -minimize single -phase true

set_structure
The “set_structure” constraint maintains the structure of the design and
is on by default. The constraint has two options: timing and boolean.
Never set timing and boolean to “true” at the same time.

Timing - The timing option has two settings: true and false. The true
setting allows timing-driven structuring.

Boolean - The Boolean option has two settings: true and false. The
true setting uses Boolean algebra to reduce the size of the design.

The following is an example of the “set_structure” compile attribute for
performance optimization:

set_structure true -timing true -boolean false
53

Chapter 4: Synthesis Constraints
The following is an example of the “set_flatten” compile attribute for
area optimization:

set_structure true -timing false -boolean true

Note: The attribute may provide better results if applied on a gate-level
netlist.

Compile
Options

The following are some common compile options:

-only_design_rule
The “-only_design_rule” option instructs Synopsys to only check
design rules during compile. The following is an example command
for compiling with the option set:

compile -only_design_rule

set_map_effort
The “set_map_effort” option sets the effort level of Synopsys during
compile. There are three options: “low” for low effort, “medium” for
medium effort, and “high” for high effort. The following command is
an example command that would instruct Synopsys to perform a
medium (default) effort compile:

compile -map_effort medium

The quality of results for some Actel families (e.g. 54SX) can be
improved using a high effort. Using a high effort on a second compile
is recommend if you use a two compile design methodology.

boundary_optimization
The “boundary_optimization” option allows Synopsys to optimize a
design on the boundaries of the design. The following is an example
command of setting the boundary optimization option during compile:

compile -boundary_optimization
54

Design Hierarchy
Area Constraint The area constraint, “set_max_area” is default to 0. For best results, use
realistic area and timing constraints.

Design Hierarchy
This section discusses methodologies for maintaining and flattening
design hierarchy and recommendations for when to use each.

Maintaining the
Design
Hierarchy

Maintaining the hierarchy of a design is always preferable because the
schematics are easier to read for debugging. The four hierarchical
compile strategies are:

• top-down compile

• bottom-up compile

• compile-characterize-write script-recompile

• time budget-compile

Top-Down Compile Methodology
The top-down approach is an easy, push button approach without
inter-module dependencies. The following example script compiles a
design using a top-down methodology:

actlib = get_unix_variable (“ACT_SYNOPDIR”)
include actlib + /scripts/<actel_fam>/actsetup.scr

read -f vhdl lower1.vhd
read -f vhdl lower2.vhd
read -f vhdl top.vhd

current_design top
set_max_fanout 12 top
set_max_fanout 12 find(design, -hier, “*”)

current_design top
uniquify
create_clock CLK25 -period 40 -waveform {0 20}
set_dont_touch_network CLK25
set_operating_condition COMWCSTD
compile -map_effort high -boundary_optimization
55

Chapter 4: Synthesis Constraints
/* Optional - Will flatten design hierarchy */
/* ungroup -all -flatten
compile -map_effort high */

set_port_is_pad top
insert_pads

write -f db -h -o top.db
write -f edif -h -o top.edn
write -f vhdl -h -o top.vhd

report_timing >> report.timing
report_area >> report.area

Bottom-Up Compile Methodology
The bottom-up approach gives users more control over the design
hierarchy and allows for module-based constraints. The following
example script compiles a design using a bottom-up methodology:

actlib = get_unix_variable (“ACT_SYNOPDIR”)
include actlib + /scripts/<actel_fam>/actsetup.scr

read -f vhdl lower1.vhd
read -f vhdl lower2.vhd
read -f vhdl top.vhd

current_design top
set_max_fanout 12 top
set_max_fanout 12 find(design, -hier, “*”)

current_design top
create_clock CLK25 -period 40 -waveform {0 20}
set_dont_touch_network CLK25

current_design lower1
create_clock CLK25 -period 40 -waveform {0 20}
set_dont_touch_network CLK25
compile -boundary_optimization
current_design lower2
create_clock CLK25 -period 40 -waveform {0 20}
set_dont_touch_network CLK25
compile -boundary_optimization

current_design top
uniquify

set_operating_condition INDWCSTDV
56

Design Hierarchy
compile -map_effort high -boundary_optimization

set_port_is_pad top
insert_pads

write -f db -h -o top.db
write -f edif -h -o top.edn

report_timing >> report.timing
report_area >> report.area

Compile-Characterize-Write Script Recompile Methodology
This approach characterizes the module with a loading problem and
recompiles it with the actual requirements. In the following example,
and procedure, illustrated in Figure 4-1, the module “Top” is
recompiled and characterized:

1. Invoke your synthesis tool.

2. Read in the entire compiled design hierarchy. Type the
following command:

current_design Top
report_timing

3. Characterize the instance “U1.” Type the following command:

characterize -constraints {U1}

4. Set the “current_design” to “A.” Type the following command:

current_design A

5. Write script. Type the following command:

write_script > A_1.wscr

A B
U1 U2

TOP

Figure 4-1. Compile-Characterize-Recompile Methodology Diagram
57

Chapter 4: Synthesis Constraints
6. Remove all designs from memory. Type the following command
at the prompt:

remove_design -all

7. Analyze the module, “A.” Type the following command at the
prompt:

analyze -format verilog A.v

8. Elaborate the module, “A.” Type the following command at the
prompt:

elaborate A

9. Include the script, “A_1.wscr.” Type the following command at
the prompt:

include A_1.wscr

10. Compile the module, “A.” Type the following command at the
prompt:

compile

Time-Budget Methodology
A time-budgeting approach defines the accurate timing specification
for each module, creates a script file containing the attributes and
constraints to implement this specification, and compiles each module
with its corresponding script file.

Flattening the
Design
Hierarchy

When both timing and area are critical, you may want to collapse the
hierarchy of the design before optimization. This is only recommended
for designs with a gate count less than 10,000, since the compile is
CPU and memory intensive. The command for collapsing the hierarchy
after invoking Design Compiler or FPGA Compiler before compile is:

ungroup -all -flatten
58

Internal Tri-State
You may also see further timing and area improvements by
ungrouping the design after compiling and then recompiling the
design. For example:

compile
ungroup -all -flatten
compile

Reporting all
Cells in the
Hierarchy

Use the following procedure to report all cells in the hierarchy:

1. Set the “current_design” path to top level.

2. Execute the following:

m = find (design,“*”)
foreach (m1,m)
{current_design m1}
report_cell >> cells

Removing all
Designs from
Hierarchy

To remove all designs from the hierarchy, execute the following
command:

remove_design find(design,”*”)

Internal Tri-State
The antifuse technology does not support internal tri-states. All tri-
states must be connected to pads and internal tri-states should be re-
coded to map to multiplexors. Refer to the Actel HDL Coding Style
Guide for additional information about internal tri-state usage.
59

Chapter 4: Synthesis Constraints
Inferring Buffers
This section describes the methods to use when inferring input/output
buffers in your design.

Input and
Output Buffers

You can infer the INBUF, OUTBUF, TRIBUF, BIBUF, and CLKBUF
macros using one of the following commands:

set_port_is_pad
insert_pads

Note: These commands infer BIBUFs and TRIBUFs if the “Z” state is
defined in your HDL.

Clock Buffer
Macro

You can use the CLKBUF macro to drive clock, preset, and clear inputs
of registers and latches. To force the inference of a CLKBUF macro,
identify the clock port name and use the following command:

set_port_is_pad <portname>
set_pad_type -exact CLKBUF <portname>
insert_pads

HCLKBUF
Macro

Use the following commands to infer an HCLKBUF macro. Remember
that this macro has a “dont_use” attribute attached to it.

remove_attribute act3/HCLKBUF dont_use
set_port_is_pad clk
/* clk is the name of the clock port */
set_pad_type -clock clk -exact HCLKBUF
insert_pads
set_dont_use act3/HCLKBUF
dont_touch HCLKBUF

Note: You must instantiate complex I/O buffers in a gate level format
in your HDL file. Refer to “Complex Act 3 I/O Mapping” on page
73 for information about inferring specific ACT 3 I/O cells.
60

Reducing the Maximum Fanout Value
Reducing the Maximum Fanout Value
By default, the ACT 1 and 40MX family fanout limits are set to 10. The
ACT 2, ACT 3, 3200DX, 42MX and 54SX family limits are set to 16. You
can change a design’s maximum fanout value using the
“set_max_fanout” constraint.

You can specify your design’s maximum fanout limit to “n.” However,
Synopsys ignores this limit for logic blocks that have a “dont_touch”
attribute. This procedure only fixes design rules violations such as
“max_fanout.” The design is not re-optimized. Use the following
procedure to force Synopsys to apply the “max_fanout” constraint to
blocks with a “dont_touch” attribute:

Note: You should not apply the new fanout limit to the clock buffer
network.

1. Remove the “dont_touch” attribute from blocks that do not
obey the fanout constraints.

2. Specify the maximum fanout value for your top level design.
Use the “set_max_fanout” attribute:

set_max_fanout <value> <design_name>
set_dont_touch_network <name_of_clock_port>

You can specify the maximum fanout value for your complete
design with the following command:

set_max_fanout <value> find (design, -hier, “*”)
set_dont_touch_network find(port, clock)

3. Apply fanout constraints to “dont_touch” blocks. Because
fanout constraints are not applied to blocks with a “dont_touch”
attribute, you must remove the “dont_touch” attribute by using the
following command:

remove_attribute <block_name> dont_touch

4. Perform a “design_rule” compile for your top level design.
Type the following command at the prompt:

compile -only_design_rule
61

Chapter 4: Synthesis Constraints
Register Type Preferences
The “set_register_type” command can be used to select your desired
flip-flops. The following example specifies “DFC1B” as the flip-flop:

...
current_design = top
set_register_type -flip_flop DFC1B

Avoid Using Certain Cells
Use the “set_dont_use” command to select cells that you do not wish
(V)HDL Compiler to infer. The following commands force the (V)HDL
Compiler to ignore all “DFP*” cells:

read act.db
set_dont_use act3/DFP*

Register Balancing
Retiming a design for pipelining moves registers to achieve minimum
cycle time. The “balance_registers” command balances delays on
sequential designs that can accept a latency and continuously get data.
Figure 4-2 illustrates a schematic before register balancing.

The following Verilog example shows sample code and script:

module mult_pipe (clock, ain, bin, qout);
input clock;
input [3:0] ain, bin;
output [7:0] qout;
reg [7:0] pipe1, pipe2, pipe3, qout;

always @ (ain or bin)
pipe1 <= ain * bin;

n

clk

bin

ain qout

Figure 4-2. Schematic Before Register Balancing
62

Register Balancing
// DO NOT USE ASYNCHRONOUS RESET
always @ (posedge clock) begin

pipe2 <= pipe1;
pipe3 <= pipe2;
qout <= pipe3;

end
endmodule

The following design script file compiles the preceding HDL
description and forces Synopsys to perform register balancing. Figure
4-3 illustrates the schematic after register balancing.

include actsetup.scr
read -f verilog mult_pipe.v

/* Specify the number of pipeline stages */
/* In this case, there are 3 pipeline stages */
create_clock clock -period 3

/* Compile at low effort before balance_registers */
/* because balance_registers rearranges the gates */
/* and performs another map */
compile -map_effort low

/* Specify the desired post-pipelining clock period */
create_clock clock -period 10

/* Issue the balance_registers command */
balance_registers

/* Perform a high map effort compile */
compile -map_effort high

/* Always insert_pads after balance_registers */
set_port_is_pad
insert_pads

/* Write the db and edif netlist */
write -f db -h -o mult_pipe1.db
write -f edif -h -o mult_pipe1.edn

n+1 n+1 n+2

clk

Figure 4-3. Schematic after Register Balancing
63

Chapter 4: Synthesis Constraints
Limitations The main limitations of this command are listed below:

• The “balance_registers” command cannot perform retiming between
flip-flops that have a “dont_touch” attribute.

• The “balance_registers” command treats any asynchronous set/reset
flip-flop as “dont_touch” and does not move it. This is because
“balance_registers” does not determine the initial state of the flip-flop
when it is asynchronously set through the set and reset pins.

• The “balance_registers” command cannot perform retiming if the
design has gated clocks. For example, if you use the “insert_pads”
command before the “balance_registers” command, Synopsys
considers the CLKBUF as a gate and issues errors.

• Use only edge triggered D flip-flops when you use the
“balance_registers” command, not latches. All clock inputs of the flip-
flops in the design must be connected to the same edge of the same
clock.

Refer to the Synopsys documentation for additional information about
register balancing.

Removing Attributes
The “dont_use” attribute is attached to several Actel sequential macros
that use one sequential or one combinational logic module. You can
remove the “dont_use” attribute from these modules by using the
“remove_atrribute” command.

Using (Q)CLKINT
At times, designs may need to use high fanout drivers to drive
internally generated clocks, reset networks, enable networks, etc. Refer
to the Actel HDL Coding Style Guide for additional information about
using (Q)CLKINT drivers.
64

Wide Decode Cells in 3200DX and 42MX
Wide Decode Cells in 3200DX and 42MX
All 3200DX devices and some 42MX devices have a limited number of
wide decode cells. To utilize these cells efficiently and to avoid excess
usage, compile your design hierarchically and set or remove the
“dont_use” attribute from these cells before compiling selected
modules. Refer to the Integrator Series FPGAs: 40MX and 42MX
Families Data Sheet for information about which 42MX devices have
wide decode cells.

By default, the cells in the 3200DX family do not have the “dont_use”
attribute set and the cells in the 42MX family do have the “dont_use”
attribute set. Actel has provided scripts in the “$ACT_SYNOPDIR/
sctipts/<act_fam>” directory that toggle the wide decode “dont_use”
and “dont_touch” attributes. The “WD_use” script sets wide decode
cells as usable. The “WD_dont_use” script sets the cells as not usable.

To use wide decode cells:

Run the “WD_use” script on the design.

To not use wide decode cells:

Run the “WD_dont_use” script on the design.

You can also instantiate these cells in Verilog or VHDL, or use ACTgen
to generate macros that use these wide decode cells.

Note: These cells are located on the periphery of the device, thereby
reducing output delay.
65

5
Actel-Synopsys Design Considerations

This chapter contains information and procedures to assist you in
creating Actel designs with Synopsys tools. This includes information
about compiling designs that use DesignWare components, translating
designs and timing constraints, and assigning pins in Synopsys. Also
included is information about using ACTmap to optimize I/O
placement, correcting bus array syntax, and running Designer in batch
mode through Synopsys.

Other sections include using control flow commands, complex ACT 3
I/O mapping, and how to instantiate ACTgen macros. Procedures to
generate EDIF and structural HDL netlists are also provided. Finally,
information about where to find radiation environment design
techniques and where to find information about maintaining
technology independence is included.

Compiling Designs with DesignWare Components
Actel recommends that you do not ungroup and flatten the DWACT
library components before compiling a design. Ungrouping and
flattening before compilation can offset gains in area or timing you
expect from using the DWACT library. If you must flatten the design
before compiling it, you must use the following command:

current_design <design_name>
ungroup -all -flatten

If you do not want to use the Actel DesignWare library, you can add
the following lines to your compile script:

script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr
read dwact.sldb
set_dont_use dwact.sldb/DWACT*

If you do not wish to use the Synopsys DesignWare library, you can
add the following lines to your script:

Verilog
read dw01.sldb
read -f verilog design.v
dont_use standard.sldb/DW0*
67

Chapter 5: Actel-Synopsys Design Considerations
VHDL
read dw01.sldb
read -f vhdl design.vhd
dont_use standard.sldb/DW0*

Translating Designs from Other Technologies
You may have EDIF netlists or a Synopsys design database for other
technologies that you wish to translate to an Actel design. If the
behavioral HDL is not available, you cannot compile your design.
However, you can translate your design using the following procedure:

1. Set the target library of the other vendor. Type the following
command at the prompt:

target_library = ASICLIB.db
link_library = ASICLIB.db

2. Read the design netlist or database. Type one of the following
commands at the prompt:

read -f edif <design_name>.edif
read -f db <design_name>.db

3. Set the current design. Type the following command at the
prompt:

current_design = <design_name>

4. Point to the Actel library. Type the following commands at the
prompt:

actlib = get_unix_variable (“ACT_SYNOPDIR”) + “/syn”
search_path = search_path +{actlib +/<act_fam>}
target_library = {act.db}
symbol_library = {actsym.sdb}

5. Translate the design. Type the following command at the prompt:

translate -verify -verify_effort high
68

Translating a Design from one Actel family to another
6. Write a new netlist. Type one of the following commands at the
prompt:

write -f edif -h -o <name>.edn
write -f db -h -o <name>.db

Translating a Design from one Actel family to another
You can Translate a design from one Actel family to another. The first
step involves setting-up the link_library to the old family. This should
be be done before reading-in the structural netlist.

1. Setup your Synopsys environment.

This is the most critical step.

If you are planning on reading in a structural VHDL netlist (i.e. one
that contains a "use a40mx.components.all;" stmt.), make sure the
version of Synopsys you run is the same as the one used to compile
the COMPONENTS packages in $ACT_SYNOPDIR (i.e. when the
analyze_all_comp script was run) or error messages will appear when
you try to read it.

2. Create a dc_shell script.

For example:

actlib = get_unix_variable (“ACT_SYNOPDIR”)
include actlib + /scripts/40mx/actsetup.scr
read -f edif <design>.edn
current_design = <design>
target_library = {actlib + /42mx/act.db}
translate -verify -verify_effort high
write -f edif -h -o <design>_42mx.edn

The first step sets the link_library to the old family. This step should
be completed before reading the structural netlist. The second step sets
the target_library to the new family. The translate step is then run to
map to the new family. The verify option makes sure the new
implementation is the same as the old.
69

Chapter 5: Actel-Synopsys Design Considerations
Translating Timing Constraints into Designer
The “synop2dcf” program is an Actel interface program that converts
Synopsys timing constraints to DCF format. This program can only
convert top-level Synopsys design constraints. If you specify design
constraints at a lower level and you want to specify the constraints for
a layout tool, use DirectTime Edit or edit the DCF file. Refer to the
Designing with Actel manual for information about using DirectTime
Edit. The “synop2dcf” program uses your EDIF netlist to generate
timing constraints. To translate timing constraints using “synop2dcf,”
type the following command at the prompt:

synop2dcf fam:<act_fam> ednin:<design_name>.edn <design_name>

Note: Make sure that you have established reasonable constraints when
compiling your design. An over-constrained design may not
improve layout results.

Assigning Pins in Synopsys
After inserting pads and compiling the design, use the following
command to assign pin locations in Synopsys:

set_attribute find(net, en3) “ALSPIN” -type string “4”

The “en3” is the net/port name and “4” is the pin location. When
generating your EDIF netlist, make sure the following switches are set
in your “.synopsys_dc.setup” file:

edifout_dc_script_flag = “als”
edifout_write_attributes = “true”
edifout_write_properties_list = {ALSPIN}

When you import the EDIF netlist into Designer, the port/net “en3” is
automatically assigned to pin number “4.”

Using ACTmap to Optimize I/O Placement
You may be able to improve your Synopsys design results by
optimizing your netlist using the ACTmap VHDL Synthesis tool.
70

Bus Array Syntax
ACTmap performs the following features to optimize a Synopsys
generated netlist:

• automatic absorption of internal flip-flops into ACT 3 I/O flip-flops

• netlist optimization for either area or speed

Refer to the Designing with Actel manual and the ACTmap VHDL
Synthesis Methodology Guide for additional information.

Bus Array Syntax
The “read_array_naming_style” script reads in Verilog and VHDL
description languages. This script converts the square brackets ([]) to
angle brackets (< >). However, Synopsys can only recognize script files
that use “[]” in array notation. To read in script files that include “< >,”
use the following script:

define_name_rules ARRAY -restricted “<“ -replacement_char “[“
define_name_rules ARRAY -restricted “>” -replacement_char “]”
change_names -rules ARRAY -hierarchy

Use the following command to list the rules that are applied:

report_name_rules ARRAY

Script Mode Place and Route
You can run Designer in the Synopsys environment by creating a DSF
script and invoking Designer in batch mode through Design Compiler.
Use the following procedure to invoke Designer in Design Compiler:

1. Invoke dc_shell. Type the following command at the prompt:

dc_shell

2. Generate an EDIf netlist. Type the following command at the
prompt:

write -f edif -h -o <design_name>.edn
71

Chapter 5: Actel-Synopsys Design Considerations
3. Run Designer in batch mode. Type the following command at
the prompt:

sh “designer script_file:<design_name>.dsf
script_mode:batch”

The following is an example DSF file:

/*Session script file*/
main()
{
new_design();
setup_design(“<design_name>”,”ACT3”);
import_netlist(“<design_name>.edn”,”EDIF”);
set_device(“DIE = A1415A, PACKAGE = 100 PQFP”);
compile();
import_aux_file(“<design_name>.dcf”,”DCF”);
set(“LAYOUT_MODE”,”TIMING_DRIVEN);
layout();
save_as(“<design_name>.adb”);
}

Control Flow Commands
This section contains example control flow commands. These
examples demonstrate how to check the dc shell status and how to use
a string variable inside a “foreach” statement.

Testing the DC
Shell Status

To test the dc shell status, add the following lines to your compile
script:

check_design
if (dc_shell_status == 0)

{
quit

} else {
 rest of script ...

}

72

Complex Act 3 I/O Mapping
Using String
Variables
Inside a
Foreach
Statement

To use a string variable inside a “foreach” statement, add the following
lines to your compile script:

all_modules = {..............}
foreach (module, all_modules)
{
current_design = module
create_clock -name
dont_touch_network
compile
}

Complex Act 3 I/O Mapping
For fast clock to out times, or if you have depleted array resources, you
can synthesize ACT 3 sequential I/O macros that contain registers with
asynchronous preset or clear. Inference of these cells is limited to a
small subset of cells and is only successful if the HDL code and scripts
match the examples provided in this section. You must make sure that
these macros are driven by the dedicated buffers, such as IOCLKBUF
and IOPCLBUF. The sequential macros’ IOPCL pin and CLK pin must
be driven by IOPCLBUF and IOCLKBUF, respectively. This section
provides you with information regarding synthesizing ACT 3 sequential
I/O macros.
73

Chapter 5: Actel-Synopsys Design Considerations
act3

act3io_
linklib.

db

act3io.
db

$ACT_
SYNOPDIR

act3io.
script

act3

syn scriptstutorial

Figure 5-1 shows the directory structure for the ACT 3 I/O macros.

The “act3io.db” file is a sequential I/O library file. The
“act3io_linklib.db” file is the link library file.

Synthesizing
ACT 3 I/O
Macros

You can synthesize ACT 3 I/O macros from HDL descriptions using a
script file provided by Actel when working with Synopsys tools.
Synopsys inserts the relevant I/O pads and connects them to the
macros. This process infers the sequential macros and connects them
to the IOPCLBUF and IOCLKBUF. Figure 5-2 is an example of an ACT
3 macro with sequential macros driven by IOPCLBUF and IOCLKBUF.

Figure 5-1. ACT 3 I/O Macros Directory Structure

IOCLK_NEW

IOPCL_NEW

IOCLKBUF

IOPCLBUF

CLK
CLR

ODE

D
E

Y

Figure 5-2. IOPCLBUF and IOCLKBUF driven sequential cells
74

Complex Act 3 I/O Mapping
Synthesizing macros involves reading the design into Synopsys,
executing commands before compilation, and executing a script after
compilation.

Table 5-1 and Table 5-2 illustrate the sequential I/O cells that Synopsys
can synthesize. These cells are mapped onto Actel macros through a
link library named “act3io_linklib.db.”

Table 5-1. Sequential Input Cells Available for Synthesis

Cells Description

IREC_SY An input register with clear

IREP_SY An input register with preset

Table 5-2. Sequential Output Cells Available for Synthesis

Cells Description

ORECTH_SY An output register with clear, tri-enable, high slew

ORECTL_SY An output register with clear, tri-enable, low slew

OREPTH_SY An output register with preset, tri-enable, high slew

OREPTL_SY An output register with preset, tri-enable, low slew

ORECTH_NO_TRI An output register with clear, high slew

ORECTL_NO_TRI An output register with clear, low slew

OREPTH_NO_TRI An output register with preset, high slew

OREPTL_NO_TRI An output register with preset, low slew
75

Chapter 5: Actel-Synopsys Design Considerations
To automatically synthesize sequential cells:

1. Configure your “.synopsys_dc.setup” file. Make sure your
“.synopsys_dc.setup” file includes the following lines. These lines
add the sequential I/O library file “act3io.db” to the target and link
libraries:

link_library = {act3.db, act3io.db}
target_library = {act3.db, act3io.db}

2. Read the HDL design into Synopsys. Refer to the Synopsys
Command Reference Manual for additional information.

3. Set pad types and insert pads. Type the following commands at
the prompt:

set_port_is_pad <design_name>
set_pad_type -clock clk
insert_pads -thru_hierarchy

In this command, the “clk” variable is the clock pin name in the
design. The “-thru_hierarchy” option forces Synopsys to insert pads
at the hierarchy level where the flip-flops exist. Otherwise, the
sequential I/O cell synthesis may not occur.

4. Set switches and compile the design. Figure 5-3 shows the
compilation results. This example illustrates that the pad that drives
the CLK inputs of the sequential output cells does not drive any
other non-sequential I/O cells.

5. Ungroup and flatten the design. The following command
ungroups and flattens the design, and removes the hierarchy. This
command also allows the “act3io.script” script to automatically
perform net connections for the sequential I/O cells.

ungroup -all -flatten

clk

data

reset

CLKBUF

INBUF

INBUF

ORECTH_NO_TRI

q

76

Complex Act 3 I/O Mapping
6. Run automatic insertion. The following command runs the script
“act3io.script” for performing IOPCLBUF and IOCLKBUF automatic
insertion, and for setting proper net connections to sequential I/O
cells:

include act3io.script

Figure 5-4 shows the design results after executing the script:

Note: The port names are not changed when the IOCLKBUF and
the IOPCLBUF are inserted. However, if a design has the “clk”
pad driving cells other than the sequential I/O cells, as shown
in Figure 5-5, then the script creates additional ports, namely
IOPCL_NEW and IOCLK_NEW. These new ports are
connected to IOPCLBUF and IOCLKBUF that drive the
sequential I/O cells. The I/O cells that are not sequential are
driven by the user defined ports, as shown in Figure 5-6.

clk

data

reset

IOCLKBUF

INBUF

IOPCLBUF

ORECTH_NO_TRI

q

Figure 5-4. Script Execution Results

clk

reset

data

CLKBUF

INBUF

INBUF

AND2

ORECTH_NO_TRI

OUT

q

Figure 5-5. “CLK” Pad Driving Sequential I/O Cells and Other Logic
77

Chapter 5: Actel-Synopsys Design Considerations
7. Set links to local link library in your file. This command sets a
link to the local link library:

set_local_link_library act3io_linklib.db
link

clk

reset

IOCLK_NEW

data

IOPCL_NEW

CLKBUF

INBUF

IOCLKBUF

INBUF

IOPCLBUF

AND2

ORECTH_NO_TRI

OUT

q

Figure 5-6. Corrected Design After Script Implementation
78

Complex Act 3 I/O Mapping
This command maps the sequential I/O cells to ACT 3 I/O macros,
and links the design. The link that maps the sequential I/O cells on
to ACT 3 I/O cells is shown in Figure 5-7.

8. Write and Save your design.

Automatic
Synthesis

The following script demonstrates how to automatically synthesize the
ACT 3 I/O cells. You can insert more Synopsys commands without
offsetting the control flow.

search_path = seach_path + {.}
search_path =search_path + {<path to act3 library>}

/* Stage 1 */
link_library = {act.db, act3io.db}
target_library = {act.db, act3io.db}

/* Stage 2 */
read -format verilog your_design.v
current_design = your_design

/* Stage 3 */
set_port_is_pad <design_name>
set_pad_type -clock CLK /*clock port CLK*/
insert_pads -thru_hierarchy

/* Stage 4 */
max_area 0

clk

reset

data

IOCLK_NEW

IOPCL_NEW

CLKBUF

IBUF

IBUF

IOCLKBUF

IOPCLBUF

VCC

ORECTH

OUT

q

AND2

Figure 5-7. Sequential I/O Cell to ACT 3 I/O Cell Link
79

Chapter 5: Actel-Synopsys Design Considerations
create_clock -period 40 clk
compile

/* Stage 5 */
ungroup -all -flatten

/* Stage 6 */
include act3io.script

/* Stage 7 */
set_local_link_library act3io_linklib.db
link

/* Stage 8 */
report_reference > your_design.ref
write -format edif -hierarchy -output your_design.edn
report_hierarchy > your_design.hierarchy
report_cell > your_design.cell

quit

Inferring a
Sequential Cell

The following example is a flip-flop model with active low reset. If an
input pad is attached to this flip-flop and the design is compiled, the
inference result is the “IREC_SY,” a sequential input cell. This cell can
be mapped on to the ACT 3 I/O cell “IREC,” with the link library. Actel
recommends that you follow the procedure for automatically
synthesizing sequential cells described on page 76.

module your_design (data, clk, reset, q);

input data, clk, reset;
output q;

reg q;

always @ (posedge clk or negedge reset)
if (!reset)

q = 1'b0;

else
q = data;

endmodule
80

Instantiating ACTgen Macros
ACT 3 I/O
Synthesis Notes

This section describes notes to remember when synthesizing the
design:

• The script “act3io.script” will work only if all the IOPCL pins of
the sequential I/O cells are driven by a single net. You must make
sure that the reset or preset net names you chose in the HDL
description are the same. This ensures that all the IOPCL pins are
driven by one signal IOPCLBUF.

Note: This also applies to sequential I/O cell CLK pins. All CLK
pins must be driven by the same net.

• The flip-flops modeling must be done so they can be easily
inferred by Synopsys and must use an active high clock. The
Synopsys HDL Reference Manuals provide you with few examples
to model the flip-flops and to achieve the desired results. In some
cases, because of Synopsys limitations, bus logic or vectors may
not be inferred. Refer to the Synopsys HDL Coding Styles:
Sequential Devices Application Note for additional information.

• A sequential input macro is inferred when an input pad drives a
flip-flop.

• A sequential output macro is inferred when a flip-flop drives an
output pad.

• In order for the “act3io.script” script to function, you must
ungroup and flatten your design. This script is located in the
“$ACT_SYNOPDIR/scripts/act3” directory.

• There should be no logic gates present between the IOPCLBUF
and IOPCL pin of the sequential I/O cells, and between the
IOCLKBUF and the CLK pins of the sequential I/O cells.

Instantiating ACTgen Macros
The ACTgen Macro Builder can create macros to be instantiated into a
Verilog or VHDL design that effectively use the Actel architecture to
achieve optimum performance and minimal module count to improve
designer productivity. Recommendations on when to instantiate and
the procedure for instantiating an ACTgen macro are described in this
section.
81

Chapter 5: Actel-Synopsys Design Considerations
When to
Instantiate

ACTgen can generate optimized macros for the Actel architecture for
several functions. Actel recommends that you instantiate the following
functions:

• RAM cells

• FIFOs

• Multipliers

• Counters

Generate an
ACTgen Macro

Use the following procedure to generate an ACTgen macro that can be
instantiated into a design:

1. Invoke ACTgen.

2. Select the family, macro type, and macro options.

3. Generate your macro as an HDL description. Make sure you
specify VHDL or Verilog as the Netlist/CAE Format when generating
the macro.

Instantiate the
Macro

After you have generated the macro, you must instantiate it into your
HDL design. The following examples show how to instantiate the
macro.

Verilog
Verilog provides two instantiation methods. One method is explicit
port name specification that allows signals to be defined in any order.
The second method is implied port reference by position, where the
instantiation ports correspond to the library cell pins by the order the
port names given in the instantiation. The following is and example of
82

Instantiating ACTgen Macros
a 32 x 32 bit dual-port RAM macro. This example uses explicit port
name specification. The macro is illustrated in Figure A-8.

RAM32x32 U0 (.RAddress[4:0](read[4:0]),.WE(writeen),
.RClock(clk1), .WAddress[4:0](write[4:0]), .RE(readen),
.WClock(clk2), .Data[31:0](d[31:0]), .Q[31:0](q[31:0]));

In the example, the pins “RAddress[4:0],” “WAddress[4:0],” “RE,” “WE,”
“RClock,” “WClock,” “Data[31:0],” “Q[31:0]” are connected to nets
“read[4:0],” “write[4:0],” “readen,” “writen,” “clk1,” “clk2,” “d[31:0],”
“q[31:0],” respectively. “U0” is the instance name.

read[4:0]

write[4:0]

readen

writeen

clk1

clk2

d[31:0]

RAddress[4:0]

WAddress[4:0]

RE

WE

RClock

WClock

Q[31:0]

Data[31:0]

q[31:0]

U0
RAM32x32

Figure A-8. ACTgen Generated 32 x 32 bit Dual Port RAM
83

Chapter 5: Actel-Synopsys Design Considerations
VHDL
The following is an example of a 32 x 32 bit FIFO macro. The macro is
illustrated in Figure A-9.

/*DECLARATION*/
component FIFO32x32

port (RE, WE, Aclr, Clock, REF, WEF: in std_logic;
Data: in std_logic_vector(31 downto 0);
FF, EF: out std_logic;
Q: out std_logic_vector (31 downto 0);

end component ;

/*CONCURRENT STATEMENT*/
U1: FIFO32x32 port map (RE => renable,

WE => wenable,
Aclr => asynclr,
Clock => clkin
REF => refin,
WEF => wefin,
Data => din
Q => qout,
FF => ffout,
EF => efout);

In the example, “/*DECLARATION*/” is the macro declaration, and “/
CONCURRENT STATEMENT/ is the macro concurrent statement. U1

renable

wenable

asynclr

clkin

refin

wefin

din[31:0]

RE

WE

Aclr

Clock

REF
Q[31:0]

FF

EF

WEF

Data[31:0]

ffout

efout

qout[31:0]

U1
FIFO32x32

Figure A-9. ACTgen Generated 32 x 32 bit FIFO
84

Generating an EDIF Netlist
is the instance name. Pins “Data0” through “Data31,” “Q0” through
“Q31,” “RE,” “WE,” “Aclr,” “Clock,” “REF,” “WEF,” “FF,” and “EF” are
connected to nets “din0” through “din31,” “q0” through “q31,”
“renable,” “wenable,” “asynclr,” “clkin,” “refin,” “wefin,” “ffout,” and
“efout” respectively.

Add
“dont_touch”
Attributes

You must add the “dont_touch” attribute to the instantiated macro to
make sure that Synopsys does not attempt to synthesize the code. To
verify that the “dont_touch” attribute has been added to the macro,
type the following command:

report -cell <macro_name>

Compile the
Design

After you have compiled the design, the macro is instantiated into your
design.

Generating an EDIF Netlist
Use the following procedure to generate an EDIF netlist from
Synopsys:

1. Configure your “.synopsys_dc.setup” file. Make sure your
“.synopsys_dc.setup” file includes the appropriate Actel family
“actsetup.scr” file. Add the following lines to your
“.synopsys_dc.setup” file:

script_lib = get_unix_variable (“ACT_SYNOPDIR”)
include script_lib + /scripts/<act_fam>/actsetup.scr

If you have assigned pins in your design, you must also include the
following lines to your “.synopsys_dc.setup” file:

edifout_dc_script_flag = “als”
edifout_write_attributes = “true”
edifout_write_properties_list = {ALSPIN}

2. Generate the EDIF netlist. Type the following command at the
prompt:

write -f edif -h -output <design_name>.edn
85

Chapter 5: Actel-Synopsys Design Considerations
Generating a Structural HDL Netlist
Generate a structural HDL netlist from your EDIF netlist by either
exporting it from Designer or by using the “edn2vhdl” or “edn2vlog”
program. The structural HDL netlist generated by Designer and
“edn2vhdl” use std_logic for all ports. The bus ports are in the same bit
order as they appear in the EDIF netlist. You can also generate a
structural VHDL netlist directly from Synopsys. Actel does not support
the use of structural Verilog netlists generated by Synopsys.

To generate a netlist using Designer:

1. Invoke Designer.

2. Import your EDIF netlist. Select the Import Netlist command from
the File menu. The Import Netlist dialog box is displayed. Specify
EDIF as the Netlist Type, GENERIC as the Edif Flavor, and VHDL or
Verilog as the Naming Style. Type the full path name of your EDIF
netlist or use the Browse button to select your design. Click OK.

3. Export a structural HDL netlist. Select the Export command from
the File menu. The Export dialog box is displayed. Specify Netlist
File as the File Type and VHDL or Verilog as the Format. Click OK.

To generate a structural HDL netlist using edn2vhdl or edn2vlog:

Type the following command at the prompt:

VHDL

edn2vhdl fam:<act_fam> <design_name>

Verilog

edn2vlog fam:<act_fam> <design_name>

To generate a structural VHDL netlist using Synopsys:

Execute the following commands in Synopsys:

default_name_rules = “sge_vhdl”
change_names -hierarchy
vhdlout_write_components = FALSE
vhdlout_write_top_configuration = TRUE
vhdlout_use_package = {IEEE.std_logic_1164 <act_fam>}
write -f vhdl -h -o <design_name>.vhd
86

Designing for Radiation Environments
Designing for Radiation Environments
Actel has macros and scripts that allow designers to create Actel
designs for radiation environments. Refer to Enhanced Tools for
Minimizing Single Event Upset Effects and the Using Synopsys to Design
Actels Radiation-Hardened FPGAs Application Note on the Actel Web
site (http://www.actel.com) for additional information.

Maintaining Technology Independence
Instantiating a macro implies that you are limited to a particular
technology. However, you can remain technology independent by
creating a behavioral model of the instantiated function. Refer to the
Actel HDL Coding Style Guide for additional information about dual
architecture coding.
87

A
Synthesis Library Information

This appendix contains information about the Actel Synopsys synthesis
libraries. This includes information about timing parameters in the
libraries and about which cells in the libraries have been marked with
certain attributes. The maximum fanout value, and how to change it, is
provided as well. Also included in this appendix are sections with
ACT 3 and 54SX specific information, some guidelines to remember
when using the synthesis libraries, and information about the synthesis
library operating conditions.

Timing Parameters
The libraries include temperature and voltage derating factors. The
library default operating are not reliable. Always set an operating
condition before synthesizing. All sequential modules include setup
and clock pulse width specifications according to the Actel FPGA.
Refer to “Synthesis Library Operating Conditions” on page 96 for a list
of operating conditions for Actel family devices.

Attributes
Some macros in the synthesis libraries have been marked with a
“dont_use” or “dont_touch” attribute. Use the “remove_attribute”
command to map to one of these cells. For example, if to remap to an
ACT 2 DFC1 cell, use the following command:

remove_attribute act2/DFC1 dont_use

Clock buffer Interface macros (Gxxxx) are marked with “dont_use”
and “dont_touch” attributes. “Dont_touch” stops the compiler from
removing these macros from existing designs. “Dont_use” stops the
compiler from using clock buffer Interface macros. Gating the clock is
not a recommended design practice.

A “dont_use” attribute is attached to the CLKINT macro so that
Synopsys does not infer this macro instead of a regular buffer. The
CLKINT macro must only be used for driving the high fanout global
clock networks. A “dont_use” attribute is attached to all complex I/Os,
as Synopsys may not map them efficiently. A “dont_use” attribute is
also attached to inefficient register and latch implementations. The
following tables list the macros in each Actel device family with the
“dont_touch” and “dont_use” attribute attached.
89

Appendix A: Synthesis Library Information
ACT 1/40MX Table A-1 lists the ACT1/40MX macros that have the “dont_touch” and
“dont_use” attribute attached.

ACT 2/1200XL Table A-2 lists the ACT 2/1200XL macros that have the “dont_touch”
and “dont_use” attribute attached.

Table A-1. ACT 1/40MX “dont_touch” and “dont_use” Macros

“dont_touch” Macros “dont_use” Macros

CLKBIBUF GMX4 HA1B CLKBIBUF

DFPCA GNAND2 HA1C GAND2

FA1 GNOR2 GMX4

FA1A GOR2 GNAND2

FA1B GXOR2 GNOR2

FA2A HA1 GOR2

GAND2 HA1A GXOR2

Table A-2. ACT 2/1200XL “dont_touch” and “dont_use” Macros

“dont_touch” Macros “dont_use” Macros

BBDLHS GMX4 HA1B BBDLHS GAND2 OBDLHS

CLKINT GNAND2 HA1C BUF GMX4 TBDLHS

CY2B GNOR2 IBDL CLKINT GNAND2

FA1A GOR2 OBDLHS DFC1 GNOR2

FA1B GXOR2 TBDLHS DFC1A GOR2

FA2A HA1 DLC1 GXOR2

GAND2 HA1A DLC1A IBDL
90

Attributes
3200DX/42MX Table A-3 lists the 3200DX/42MX macros that have the “dont_touch”
and “dont_use” attribute attached.

ACT 3 The following table lists the ACT 3 macros that have the “dont_touch”
and “dont_use” attribute attached.

Table A-3. 3200DX/42MX “dont_touch” and “dont_use” Macros

“dont_touch” Macros “dont_use” Macros

BBDLHS GOR2 RAM4FR BBDLHS GXOR2 RAM8FF

CLKBIBUF GXOR2 RAM4RA CLKBIBUF IBDL RAM8FR

CLKINT HA1 RAM4RF CLKINT OBDLHS RAM8RA

CY2B HA1A RAM4RR DFC1 QCLKBUF RAM8RF

DXAX7 HA1B RAM8FA DFC1A QCLKINT RAM8RR

FA1A HA1C RAM8FF DLC1 RAM4FA TBDLHS

FA1B IBDL RAM8FR DLC1A RAM4FF

FA2A OBDLHS RAM8RA GAND2 RAM4RF

GAND2 QCLKBUF RAM8RF GMX4 RAM4FR

GMX4 QCLKINT RAM8RR GNAND2 RAM4RA

GNAND2 RAM4FA TBDLHS GNOR2 RAM4RR

GNOR2 RAM4FF GOR2 RAM8FA

Table A-4. ACT 3 “dont_touch” and “dont_use” Macros

“dont_touch” Macros “dont_use” Macros

BIECTH FEPTMH BIECTH DLC1G IOCLKBUF
91

Appendix A: Synthesis Library Information
BIECTL FEPTML BIECTL DLE2C IODFE

BIEPTH GAND2 BIEPTH DLE3B IODFEC

BIEPTL GMX4 BIEPTL DLE3C IODFEP

BRECTH GNAND2 BRECTH DLP1 IOPCLBUF

BRECTL GNOR2 BRECTL DLP1A IREC

BREPTH GOR2 BREPTH DLP1B IREP

BREPTL GXOR2 BREPTL DLP1C OBUFTL

CLKBIBUF HA1 CLKBIBUF FECTH ORECTH

CLKINT HA1A CLKINT FECTL ORECTL

CS2 HA1B DECETH FECTMH OREPTH

CY2B HA1C DECETL FECTML OREPTL

DECETH IBUF DEPETH FEPTH

DECETL IODFE DEPETL FEPTL

DEPETH IODFEC DFC1 FEPTMH

DEPETL IODFEP DFC1A FEPTML

FA1A IREC DFC1E GAND2

FA2A IREP DFC1G GMX4

FECTH OBUFTL DFP1 GNAND2

FECTL ORECTH DFP1A GNOR2

FECTMH ORECTL DFP1B GOR2

FECTML OREPTH DFP1D GXOR2

FEPTH OREPTL DLC1A HCLKBUF

FEPTL DLC1F IBUF

Table A-4. ACT 3 “dont_touch” and “dont_use” Macros

“dont_touch” Macros “dont_use” Macros
92

Max Fanout
54SX Table A-5 lists the 54SX macros that have the “dont_touch” and
“dont_use” attribute attached.

Max Fanout
The “max_fanout” attribute can be added to input ports or designs.
You can set the “max_fanout” attribute on ports or designs using the
“set_max_fanout” command. For example, to set the max_fanout
globally to 12, execute the following command:

set_max_fanout 12 <design_name>

The maximum fanout for the ACT 1 and 40MX family libraries is 10.
The maximum fanout for the ACT 2, 1200XL, ACT 3, 3200DX, 42MX,
and 54SX family libraries is 16. The maximum fanout for any cell is less
than or equal to 16. The clock buffer has a maximum fanout of 2000.

Table A-5. 54SX “dont_touch” and “dont_use” Macros

“dont_touch” Macros “dont_use” Macros

CLKINT GNOR2 CLKINT DLP1A HCLKBUF

DFPCA GOR2 CM8F DLP1B

FA1 GXOR2 CM8INV DLP1C

FA1A HA1 DFPCA GAND2

FA1B HA1A DLC1A GMX4

FA2A HA1B DLE2C GNAND2

GAND2 HA1C DLE3B GNOR2

GMX4 HCLKBUF DLE3C GOR2

GNAND2 DLP1 GXOR2
93

Appendix A: Synthesis Library Information
ACT 3 Specific Information
The following is a list of ACT 3 specifics within the Synthesis libraries:

• The IOCLKBUF cell is hardwired to the CLK input of the I/O modules.

• The IOPCLBUF cell is hardwired to the PRESET/CLEAR inputs of the
I/O modules.

• CLKBUF and HCLKBUF cannot drive I/O modules.

• HCLKBUF is a special clock buffer that is hard-wired to clock pins of
the sequential logic modules. Since Synopsys infers the HCLKBUF
macro every time a clock buffer is needed, a “dont_use” attribute is
attached to the HCLKBUF.

The sequential elements listed in Table A-6 cannot be connected to
HCKLBUF, as they are built from combinatorial modules.

All other sequential elements can connect to HCLKBUF. The macros
listed in previous table have a “dont_use” attribute attached to them in
the ACT 3 library. Refer to “Inferring Buffers” on page 60 for
information about how to use the ACT 3 library clock buffers.

54SX Specific Information
The HCLKBUF clock buffer can drive the clock pin of all flip flops, but
no latches. Since Synopsys infers the HCLKBUF macro every time a
clock buffer is needed, a “dont_use” attribute is attached to the
HCLKBUF. All other sequential elements can connect to HCLKBUF.
Refer to “Inferring Buffers” on page 60 for information about how to
use the 54SX library clock buffers.

Table A-6. Macros that Cannot be Connected to HCLKBUF

DFP1 DFPC DLC1G DLP2C DFP1A

DFP1B DLC1 DLE2C DLP1A

DFP1D DLC1A DLE3B DLP1B

DFPCA DLC1F DLE3C DLP1C
94

Additional Information
Additional Information
The following is a list of guidelines to remember when using the Actel
Synopsys Synthesis libraries:

• Design Compiler does not enforce fanout restrictions across
hierarchical boundaries and black boxed macros.

• Synopsys may create black boxes for some Actel cells due to their
complexity. These cells have the “removable” property and should
not be used by Synopsys.

• Inverter removal optimization is only available with FPGA Compiler.
It is not a feature of Synopsys DC Expert or DC Professional. This
feature may have the added benefit of improving your results by
removing unnecessary inverters.
95

Appendix A: Synthesis Library Information
Synthesis Library Operating Conditions
The operating condition is a concatenation of the application,
operation condition, speed grade, and (optionally) any family specific
conditions. For example, to set worst case commercial temperature and
voltage range (70°C, 4.75 V), standard speed grade conditions, type the
following command:

set_operating_conditions COMWCSTD

Default
Operating
Conditions

Default operating conditions have been set in each Actel device family.
The default operating condition has been set as the fastest common
speed grade for each device in the family. Table A-7 lists the default
operating condition for each family

Table A-7. Default Operating Conditions

Family Default Operating Condition

ACT 1 COMWC-3

ACT 2/1200XL COMWC-2

ACT 3 COMWC-3

3200DX COMWC-1

40MX COMWC-3

42MX COMWC-2

54SX COMWC-2
96

Synthesis Library Operating Conditions
Synthesis
Library
Operating
Conditions

Table A-8 describes the nomenclature and descriptions of the Synthesis
library operating conditions. Not all operating conditions are available
for all Actel devices or families.

Table A-8. Synthesis Library Operating Conditions

Condition Type Nomenclature Description

Application

COM Commercial Range

IND Industrial Range

MIL Military Range

RH0 Simulation at OKR Radiation

RH3 Simulation at 300KR Radiation

Operating
Conditions

BC Best Case

WC Worst Case

TC Typical Case

Speed Grade

-1 -1 Speed Grade

-2 -2 Speed Grade

-3 -3 Speed Grade

-F -F Speed Grade

STD Standard Speed Grade

Family Specific

XL 1200XL

XLV
1200XL with 3.3V Operating
Voltage

V 3.3V Operating Voltage

B
Mixed 3.3/5V Operating Voltage
(42MX only)

_D3265 3265DX Device Conditions

_D3265V
3265DX Device Conditions with
3.3V Operating Voltage
97

B
DesignWare Library Information

This appendix provides information about the Actel DesignWare
libraries. This includes a description of the DesignWare library, as well
as descriptions of DesignWare adders, subtractors, comparators,
counters, incrementers, and decrementers. This appendix also contains
guidelines for improving compilation time when using DesignWare
components and module and count performance for each of the
DesignWare modules. Refer to “DesignWare Module Coding” on page
31 for information about implementing DesignWare modules into a
design.

DesignWare Library Description
The Actel DesignWare libraries currently support the ACT 2, 1200XL,
3200DX, 42MX, ACT 3, and 54SX families. All modules except counters
can be inferred in Synopsys. Counters must be instantiated because
Synopsys does not yet support DesignWare counter inference.

When one of the inputs is a constant in cases such as c=a+1 or c=a-1,
there is a reduction in the number of modules. There could also be a
gain in area or time due to the constant pushing performed by
Synopsys. Table B-1 lists the Actel DesignWare library modules
supported for the Actel device families.

Table B-1. Supported Modules

Module Name Implementation Binding Operator Reference

DWACT_ADD
RIPADD, MFADD,
FADD

+ page 100

DWACT_SUB
RIPSUB, MFSUB,
FSUB

- page 101

DWACT_CMPGT
DWACT_CMPLT
DWACT_CMPLE
DWACT_CMPGE

FCOMP

>
<
<=
>=

page 102

DWACT_UP_CTR TLACNT, COMPCNT NA page 103

DWACT_DN_CTR TLACNT, COMPCNT NA page 103

DWACT_INC FINC + page 104

DWACT_DEC FDEC - page 105
99

Appendix B: DesignWare Library Information
DesignWare Library Adders
Figure B-1 shows an example DesignWare adder symbol. In this
example, “a” is the addend, “b” is the augend, “sum” signal is the
result, and “co” is the carry out. The DesignWare adder is defined as
“DWACT_ADD” and is available in three implementations:

• “RIPADD” - Ripple Adder

• “MFADD” - Medium Fast Adder

• “FADD” - Very Fast Adder

Table B-2. Adder Pin Description

Pin Name Size Type Function

a 2-32 bits input Input data bus

b 2-32 bits input Input data bus

co 1 output carry out

sum 2-32 bits output sum

Figure B-1. DesignWare Adder Symbol

+

co

a

b

sum
100

DesignWare Library Subtractors
DesignWare Library Subtractors
Figure B-2 shows an example DesignWare Subtractor symbol. In this
example, “a” is the minuend, “b” is the subtrahend, “diff” is the result,
and “co” is the carry out. The DesignWare subtractor is defined as
“DWACT_SUB” and is available in three implementations:

• “RIPSUB” - Ripple Subtractor

• “MFSUB” - Medium Fast subtractor

• “FSUB” - Very Fast Subtractor

Table B-3. Subtractor Pin Description

Pin Name Size Type Function

a 2-32 bits input Input data bus

b 2-32 bits input input data bus

co 1 output carry out

diff 2-32 bits output difference

Figure B-2. DesignWare Subtractor Symbol

co

a

b

– diff
101

Appendix B: DesignWare Library Information
DesignWare Library Comparators
Figure B-3 shows an example DesignWare comparator symbol. In this
example, “a” and “b” are the numbers that are compared. The output
“<fn>” represents the greater than, less than, less than or equal to, or
greater than or equal to function. The DesignWare Comparators are
defined as “DWACT_CMPGT” (greater than), “DWACT_CMPLT” (less
than), “DWACT_CMPGE” (greater than or equal to), or
“DWACT_CMPLE” (less than or equal to). All comparators are
implemented as “FCOMP.”

Table B-4. Comparator Pin Description

Pin Name Size Type Function

a 2-32 bits input Input data bus

b 2-32 bits input Input data bus

gt 1 output A>B

lt 1 output A<B

ge 1 output A>B

le 1 output A<B

Figure B-3. DesignWare Comparator Symbol

a

b

<=>
<fn>
102

DesignWare Library Counters
DesignWare Library Counters
Figure B-4 shows an example DesignWare counter symbol. This
symbol refers to both the up and down counters. The up counter is
defined as “DWACT_UP_CTR.” The down counter is defined as
“DWACT_DN_CTR.” The counter is available in two implementations:
TLACNT (toggle look ahead counter) and COMPCNT (compact
counter).

Table B-5. Counter Pin Description

Pin Name Size Type Function

data 2-32 bits Input Input data bus

count 2-32 bits Output Output count bus

load 1 Input Counter, asynchronous load enable, active high

cen 1 Input Counter enable, active high

reset 1 Input Asynchronous counter reset, active low

clk 1 Input Clock

Table B-6. Counter Operation Truth Table

reset load cen Operation

0 X X reset

1 1 X load

1 0 0 hold

1 0 1 down count or up count

Figure B-4. DesignWare Counter Symbol

data

load

cen

count

resetclk
103

Appendix B: DesignWare Library Information
DesignWare Library Incrementer
DesignWare Incrementers are only available for the 54SX family. Figure
B-5 shows an example DesignWare incrementer symbol. In this
example, “a” is the addend, “sum” is the incremented output, and “co”
is the carry out. The DesignWare incrementer is defined as
DWACT_INC and is available in the FINC (fast incrementer)
implementation.

Table B-7. Incrementer Pin Description

Pin Name Size Type Function

a 2-32 bits input Input data bus

co 1 output Carry out

sum 2-32 bits output sum

Figure B-5. DesignWare Incrementer Symbol

+ 1

co

a

sum
104

DesignWare Library Decrementer
DesignWare Library Decrementer
DesignWare decremeters are only available for the 54SX family. Figure
B-6 shows an example DesignWare decrementer symbol. In this
example, “a” is the minuend, “sum” is the decremented output, and
“co” is the carry out (or in the context of decrementing, the borrow
out). The DesignWare decrementer is defined as DWACT_DEC and is
available in the FDEC (fast decrementer) implementation.

Table B-8. Decrementer Pin Description

Pin Name Size Type Function

a 2-32 bits input Input data bus

co 1 output Carry out

sum 2-32 bits output sum

Figure B-6. DesignWare Decrementer Symbol

- 1

co

a

sum
105

Appendix B: DesignWare Library Information
Improving Compilation Time
To decrease the synthesis compilation time, you can selectively attach
a “dont_use” attribute to the DesignWare Library. If the Actel
DesignWare library provides better results than the Synopsys
DesignWare library, you may attach a “dont_use” attribute to the
Synopsys DesignWare library using the following command:

dont_use standard.sldb/DW02*
dont_use standard.sldb/DW01*

If you wish to use the Synopsys DesignWare library, you can attach a
“dont_use” attribute to the Actel DesignWare library using the
following command:

read dwact.sldb
set_dont_use dwact.sldb/*

Module Count and Performance
This section describes the performance of the DesignWare Library
Modules.

Adders The fast adder offers the shortest delay. If you require fewer modules
for your design, you can implement the medium fast adder. If you
implement the medium fast adder, you will increase the number of
logic levels. The ripple adder offers the least number of modules, but it
has a module delay that is proportional to the bit width.

Figure B-7 and Figure B-8 show module count and logic levels
required for a given bit for the ACT 1, ACT 2, 1200XL, ACT 3, 3200DX,
106

Module Count and Performance
40MX, 42MX families. Figure B-9 and Figure B-10 and show module
count and logic levels required for a given bit for the 54SX family.

Figure B-7. Adder Module Count
107

Appendix B: DesignWare Library Information
Figure B-8. Adder Logic Level

Figure B-9. 54SX Adder Module Count
108

Module Count and Performance
Subtractors The fast subtractor offers the shortest delay. If you require fewer
modules for your design, you can implement the medium fast
subtractor. If you implement the medium fast subtractor, you will
increase the number of logic levels. The ripple subtractor offers the
least number of modules, but it has a module delay that is proportional
to the bit width.

Figure B-11 and Figure B-12 show module count and logic levels
required for a given bit for the ACT 1, ACT 2, 1200XL, ACT 3, 3200DX,
40MX, 42MX families. Figure B-13 and Figure B-14 and show module
count and logic levels required for a given bit for the 54SX family.

Figure B-10. 54SX Adder Logic Level
109

Appendix B: DesignWare Library Information
Figure B-11. Subtractor Module Count

Figure B-12. Subtractor Logic Level
110

Module Count and Performance
Figure B-13. 54SX Subtractor Module Count

Figure B-14. 54SX Subtractor Logic Level
111

Appendix B: DesignWare Library Information
Comparators Figure B-15 and Figure B-16 show the logic levels and module count
required for a given bit for the ACT 1, ACT 2, 1200XL, ACT 3, 3200DX,
40MX, 42MX families. No information is currently available for the
54SX family.

Figure B-15. Comparator Module Count

Figure B-16. Comparator Logic Levels
112

Module Count and Performance
Counters Figure B-17 and Figure B-18 show the logic levels and module count
required for a given bit for the ACT 1, ACT 2, 1200XL, ACT 3, 3200DX,
40MX, 42MX families. No information is currently available for the
54SX family.

Figure B-17. Counter Module Count

Figure B-18. Counter Logic Levels
113

Appendix B: DesignWare Library Information
Incrementer DesignWare Incrementers are only available for the 54SX family. Figure
B-19 and Figure B-20 show module count and logic levels required for
a given bit.

Figure B-19. Incrementer Module Count

Figure B-20. Incrementer Logic Levels
114

Module Count and Performance
Decrementer DesignWare Decrementers are only available for the 54SX family.
Figure B-21 and Figure B-22 show module count and logic levels
required for a given bit.

Figure B-21. Decrementer Module Count

Figure B-22. Decrementer Logic Levels
115

C
Common Problems

This appendix describes problems that may occur during design and
synthesis, and solutions to the problems. This includes library error
messages, problems when inferring DesignWare, using internal tri-
states, and problems that may occur during multiplexer inferencing.

Library Errors
This section describes error messages that are displayed when there
are errors with the Actel synthesis libraries.

Unable to
Resolve
Reference

Problem: The library path is incorrect or the library does not exist and
the following error message is displayed:

Solution: Make sure the library references in your “.synopsys_dc.setup”
script are correct.

DWACT
Component

Problem: The target library has not been regenerated for the Synopsys
version you are using and the following error message is displayed:

Solution: Reanalyze the DesignWare library for the current Synopsys
version. Refer to “Reanalyzing DesignWare Libraries” on page 2 for
regeneration procedures.

Unable to resolve reference

The package ‘DWACT_components depends on the package
‘std_logic_1164’ which has been analyzed more recently. Please
re-analyze the source file for ‘DWACT_components’ and try again
(LBR-28)
117

Appendix C: Common Problems
Inferring DesignWare
Problem: Synopsys does not infer a DWACT FADD with Cin to
implement SUM = A + B + Cin. It uses 2 ripple adders, one adder to
implement X = A + B, and another adder to implement SUM = X + Cin.

Solution: The design has not been constrained, hence Synopsys is
using a ripple implementation. Apply a max delay constraint to the
adder using the following command:

set_max_delay 5 -from all_inputs() -to all_outputs()

You can also set the following switch in your .synopsys_dc.setup

hdlin_use_cin = true

Internal Tri-State
Problem: The antifuse architecture does not support internal tri-states.
The following message is displayed when you have described the
internal tri-states in HDL.

Solution: Modify your HDL to use multiplexor logic.

Mapping to **TSGEN**
118

Multiplexer Inferencing
Multiplexer Inferencing
This section describes problems that may occur during multiplexer
inferencing.

Compile
Switches

Problem: Setting the “compile_create_mux_op_hierarchy” switch to
“false” eliminates the MUX_OP hierarchy in the design as well as
removing the MX4 mapping and uses random logic to build the MUX
structure. This random logic mapping is inefficient for area and timing.
Why can’t Synopsys just remove the MUX_OP hierarchy and not touch
the MX4 mapping.

Cause: MUX_OPs are created when the infer_mux attribute is set to a
full case statement in the HDL code. For each full case statement with
infer_mux, a generic MUX_OP design is created. If
compile_create_mux_op_hierarchy is true, Design Compiler maps the
MUX_OP to a tree of multiplexers. Keeping the hierarchy is necessary
so that the multiplexer information is preserved for the next compile.
Once the multiplexer hierarchy is removed, i.e. setting
“compile_create_mux_op_hierarchy” switch to “false” all traces of the
multiplexer tree are gone and the next pass of compile could generate
a less optimal design.

Solution: By default “compile_create_mux_op_hierarchy” switch is
always set to “true.” Never set it to “false.” If you want to eliminate the
MUX_OP from the hierarchy, ungroup the MUX_OP hierarchy levels
and then save the design. Do not re-run compile after ungrouping the
MUX_OP hierarchy level.
119

Appendix C: Common Problems
Inefficient
Optimization

Problem: When the input signals or wires driving the inputs of muxes
are tied to logic 0 or 1, Synopsys does constant pushing and no longer
maps to the MX4 basic cell. The random logic implementation is not
efficient.

Cause: Since Synopsys does boundary optimization by default,
Synopsys will map to discrete gates when it sees muxes driven by
constants.

Solution: Turn off boundary optimization for multiplexors by adding
the following switch in the .synopsys_dc.setup (actsetup.scr) file:

compile_mux_no_boundary_optimization = "true"

If the design has input ports that are tied to logic 0 or 1, you should
remove port from the port list and use signals or wires to tie in the
constants.

EDIF Netlist
Errors

Problem: The EDIF netlist uses both angle and square brackets for
buses. How can one force Synopsys to use only angle brackets.

Solution: Set the following switch in your “.synopsys_dc.setup” or
“actsetup.scr” file:

bus_dimension_separator_style ="><"

With this setup you will get an EDIF netlist with the correct naming
style. For example:

(port (rename CFG_ADDR_MIN__1_ "CFG<ADDR_MIN><1>") (direction
INPUT))

instead of

(port (rename CFG_ADDR_MIN__1_ "CFG[ADDR_MIN][1]") (direction
INPUT))
120

D
Product Support

Actel backs its products with various support services including
Customer Service, a Customer Applications Center, a Web and FTP site,
electronic mail, and worldwide sales offices. This appendix contains
information about using these services and contacting Actel for service
and support.

Actel U.S. Toll-Free Line
Use the Actel toll-free line to contact Actel for sales information,
technical support, requests for literature about Actel and Actel
products, Customer Service, investor information, and using the Action
Facts service.

The Actel Toll-Free Line is (888) 99-ACTEL.

Customer Service
Contact Customer Service for non-technical product support, such as
product pricing, product upgrades, update information, order status,
and authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1256 305600.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.
121

Appendix : Product Support
Customer Applications Center
The Customer Applications Center is staffed by applications engineers
who can answer your hardware, software, and design questions.

All calls are answered by our Technical Message Center. The center
retrieves information, such as your name, company name, phone
number and your question, and then issues a case number. The Center
then forwards the information to a queue where the first available
application engineer receives the data and returns your call. The
phone hours are from 7:30 a.m. to 5 p.m., Pacific Standard Time,
Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305600.

Guru Automated Technical Support
Guru is a Web based automated technical support system accessible
through the Actel home page (http://www.actel.com/guru/). Guru
provides answers to technical questions about Actel products. Many
answers include diagrams, illustrations and links to other resources on
the Actel Web site. Guru is available 24 hours a day, seven days a
week.

Web Site
Actel has a World Wide Web home page where you can browse a
variety of technical and non-technical information. Use a Net browser
(Netscape recommended) to access Actel’s home page.

The URL is http://www.actel.com. You are welcome to share the
resources we have provided on the net.

Be sure to visit the “Actel User Area” on our Web site, which contains
information regarding: products, technical services, current manuals,
and release notes.
122

FTP Site
FTP Site
Actel has an anonymous FTP site located at ftp://ftp.actel.com. You
can directly obtain library updates, software patches, design files, and
data sheets.

Electronic Mail
You can communicate your technical questions to our e-mail address
and receive answers back by e-mail, fax, or phone. Also, if you have
design problems, you can e-mail your design files to receive assistance.
The e-mail account is monitored several times per day.

The technical support e-mail address is tech@actel.com.
123

Appendix : Product Support
Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL

Tel: 408.739.1010
Fax: 408.739.1540

US Sales
Offices

California

Bay Area
Tel: 408.328.2200
Fax: 408.328.2358

Irvine
Tel: 949.727.0470
Fax: 949.727.0476

San Diego
Tel: 619.938.9860
Fax: 619.938.9887

Thousand Oaks
Tel: 805.375.5769
Fax: 805.375.5749

Colorado

Tel: 303.420.4335
Fax: 303.420.4336

Florida

Tel: 407.677.6661
Fax: 407.677.1030

Georgia

Tel: 770.831.9090
Fax: 770.831.0055

Illinois

Tel: 847.259.1501
Fax: 847.259.1572

Maryland

Tel: 410.381.3289
Fax: 410.290.3291

Massachusetts

Tel: 978.244.3800
Fax: 978.244.3820

Minnesota

Tel: 612.854.8162
Fax: 612.854.8120

North Carolina

Tel: 919.376.5419
Fax: 919.376.5421

Pennsylvania

Tel: 215.830.1458
Fax: 215.706.0680

Texas

Tel: 972.235.8944
Fax: 972.235.965

International Sales
Offices

Canada
Suite 203
135 Michael Cowpland Dr,
Kanata, Ontario K2M 2E9

Tel: 613.591.2074
Fax: 613.591.0348

France
361 Avenue General de Gaulle
92147 Clamart Cedex

Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Bahnhofstrasse 15
85375 Neufahrn

Tel: +49 (0)8165.9584.0
Fax: +49 (0)8165.9584.1

Hong Kong
Suite 2206,
Parkside Pacific Place,
88 Queensway

Tel: +011.852.2877.6226
Fax: +011.852.2918.9693

Italy
Via Giovanni da Udine No. 34
20156 Milano

Tel: +39 (0)2.3809.3259
Fax: +39 (0)2.3809.3260

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150

Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668

Korea
135-090, 18th Floor,
Kyoung AmBldg
157-27 Samsung-dong
Kangnam-ku, Seoul

Tel: +82 (0)2.555.7425
Fax: +82 (0)2.555.5779

Taiwan
4F-3, No. 75, Sec. 1,
Hsin-Tai-Wu Road,
Hsi-chih, Taipei, 221

Tel: +886 (0)2.698.2525
Fax: +886 (0)2.698.2548

United Kingdom
Daneshill House,
Lutyens Close
Basingstoke,
Hampshire RG24 8AG

Tel: +44 (0)1256.305600
Fax: +44 (0)1256.355420
124

Index
(Q)CLKINT 64
.synopsys_dc.setup File 3, 5, 78, 85

A
Accessing Synthesis Libraries 5
ACT 3 I/O Macros

Automatic Synthesis 79–80
Inference 80
Synthesis 73–80
Synthesis Notes 81

act3io.script 77
Actel

FTP Site 123
Web Based Technical Support 122
Web Site 122

ACTgen
dont_touch attribute 85
Generating a Macro 82
Instantiating in Verilog 82
Instantiating in VHDL 84
Instantiation Recommendations 82
Macros 81

ACTmap 70
actsetup.scr File 3, 5
Adder, DesignWare 32
Assigning Pins 70
Assumptions xii
Attributes, Removing 64
Automatic

ACT 3 I/O insertion 77
Finite State Machine Encoding 30

Avoiding Cells 62

B
Balancing Registers 62

Limitations 64
Behavioral Simulation 8
BIBUF 60
Bottom-Up Compile 56
Buffering on a Reset Network 52
Bus Array Syntax 71

C
Capturing a Design 8
Case, Under Utilized 21
Cells

Avoiding 62
MUX_OP 11

CLKBUF 60
Clock Buffer 89

Inference 60
Coding

DesignWare Adder 32
DesignWare Comparator 39
DesignWare Counter 41
DesignWare Incrementer 43
DesignWare Subtractor 36
Technology Independent 87

Command
Control Flow 72
dc_shell_status 72
foreach 73

Common Problems
DesignWare 118
Internal Tri-State 118
Library Errors 117
Multiplexer Inferencing 119

Comparator, DesignWare 39
Compilation Variables 12

compile_create_mux_op_hierarchy 12
compile_mux_no_boundary_optimization 13

Compile Options 54
125

Index
Complex ACT 3 I/O Mapping 73–81
ACT 3 I/O Synthesis 74
ACT 3 I/O Synthesis Notes 81
Automatic I/O Synthesis 79–80
Inferring a Sequential Cell 80

Constraining a Design 51–65
(Q)CLKINT 64
Area 55
Avoiding Cells 62
Buffering on a Reset Network 52
Clock Buffers 60
Compile Options 54
Delays 52
Fanout 61
Flattening 53
Flattening Hierarchy 58
Hard Clock Buffers 60
Hierarchy 55–59
I/O Buffers 60
Inferring Buffers 60
Input Delays 52
Internal Tri-State 59
Logic Levels 52
Maintaining Hierarchy 55
Maintaining Structure 53
Output Delays 52
Register Balancing 62
Register Types 62
Removing Attributes 64
Removing Designs from Hierarchy 59
Reporting Cells in Hierarchy 59

Contacting Actel
Customer Service 121
Electronic Mail 123
Technical Support 122
Toll-Free 121
126
Web Based Technical Support 122
Conventions xii

Naming, Verilog xiv
Naming, VHDL xiii

Counter, DesignWare 41
Customer Service 121

D
dc_shell_status 72
dcf File 70
Delays 52

Input 52
Output 52

Design
Hierarchy 55–59
Layout 9
Optimization 70
Synthesis 8
Translating 68

Design Constraint 51–65, 70
(Q)CLKINT 64
Area 55
balance_registers 62
Buffering on Reset Networks 52
Clock Buffers 60
Clock Constraint 52
Compile Options 54
Delays 52
dont_use 64
Flattening Hierarchy 58
Hard Clock Buffers 60
Hierarchy 55–59
I/O Buffers 60
Inferring Buffers 60
Internal Tri-State 59
Logic Level 52

Index
Maintaining Hierarchy 55
Operating Condition 51
Removing Designs from Hierarchy 59
Reporting Cells in Hierarchy 59
set_dont_use 62
set_flatten 53
set_input_delay 52
set_output_delay 52
set_register_type 62
set_structure 53
set-max-fanout 61

Design Creation/Verification 8
Behavioral Simulation 8
EDIF Netlist Generation 9
HDL Source Entry 8
Structural Netlist Generation 9
Structural Simulation 9
Synthesis 8

Design Flow 8–??
Design Creation/Verification 8
Design Implementation 9
Programming 10
Schematic-Based ??–10

Design Implementation 9
Place and Route 9
Timing Analysis 9
Timing Simulation 10

Designer
DirectTime 70
DT Analyze Tool 9
Place and Route 9
Script Mode Place and Route 71
Software Installation Directory 1
Timing Analysis 9

DesignWare 67
Adder 32, 100
Coding 31–49
Comparator 39, 102
Compilation Time 106
Compiling Designs 67
Counter 41, 103
Errors 118
Incrementer 43
Instantiation 41
Libraries 2

Setup 3
Subtractor 36, 101

DesignWare Libraries 99–115
Accessing 3
Reanalyzing 2

DesignWare Module Count and Performance
106–115
Adder 106, 109
Comparator 112
Counter 113
Subtractor 106, 109

Device
Programming 10
Verification 10

Document
Assumptions xii
Conventions xii
Organization xi

DT Analyze 9
Dual Architecture Coding 87

E
EDIF Netlist Generation 9, 85
edn2vhdl 86
Electronic Mail 123
Extracting a FSM from a Sequential Design 28
127

Index
F
Fanout 61

Limit 89
Networks 64

File
.synopsys_dc.setup 3, 5, 78, 85
actsetup.scr 3, 5
dcf 70

Finite State Machine (FSM) Design 24–31
Automatic Encoding 30
Extracting from a Sequential Design 28
Mealy 24
Moore 30
Multiple Results 30
One-Hot Encoding 30
Power On and Reset 30

Flattening
Designs 53
Hierarchy 58

foreach statement 73

G
Gate-Level Netlist 8
Generating

ACTgen Macros 82
EDIF Netlist 9, 85
Gate-Level Netlist 8
Structural Netlist 9, 86

H
Hard Clock Buffer Inference 60
HCLK 60
HDL Source Entry 8
Hierarchy 55–59

Bottom-Up Methodology 56
Characterize Methodology 57
128
Flattening 58
Maintaining 55
Removing Designs 59
Reporting 59
Time-Budget Methodology 58
Top-Down Methodology 55

High Fanout Networks 64

I
I/O Buffer Inference 60
I/O Mapping 73
INBUF 60
Incrementer, DesignWare 43
Inference Variables 11

hdlin 12
Inferring

Buffers 60
Multipelxers 13

Inferring Buffers
Clock 60
Hard Clock 60
I/O 60

Installation Directory
Designer 1
Synopsys 1

Instantiating
ACTgen Macros 81

Instantiating DesignWare Counters 41
Internal Tri-State 59

Errors 118

K
Keywords

Verilog xiv
VHDL xiii

Index
L
Libraries

Verifying Version 5
Library

DesignWare 2, 99–115
Errors 117
Setup 3, 5
Synthesis 5, 89–97

Logic Level Constraints 52

M
Macros

(Q)CLKINT 64
ACT 3 I/Os 94
BIBUF 60
CLKBUF 60
Complex ACT 3 I/O Mapping 73–81
HCLK 60
INBUF 60
OUTBUF 60
TRIBUF 60

Maintaining Hierarchy 55
Bottom-Up Methodology 56
Characterize Methodology 57
Time-Budget Methodology 58
Top-Down Methodology 55

Maintaining Structure 53
Mapping I/Os 73
Maximum Fanout 61
Moore State Machine 30
Multiple Results 30
Multiplexer Encoding 11–23

Compilation Variables 12
compile_create_mux_op_hierarchy 12
compile_mux_no_boundary_optimization 13
Errors 119
hdlin Variable 12
Inference Variables 11
Inferencing 13
Registered Multiplexer 18
Under Utilized Case Statements 21
Wide Multiplexer 15

MUX_OP Cell 11

N
Naming Conventions

Verilog xiv
VHDL xiii

Netlist Generation
EDIF 9, 85
Gate-Level 8
Structural 9, 86

Networks, High Fanout 64

O
On-Line Help xviii
Operating Conditions

Setting 51
Synthesis Libraries 97

Optimizing a Design with ACTmap 70
OUTBUF 60

P
Pins, Assigning 70
Place and Route 9

DirectTime 70
Script Mode 71

Power On and Reset 30
Product Support 121–??

Customer Applications Center 122
Customer Service 121
Electronic Mail 123
129

Index
FTP Site 123
Technical Support 122
Toll-Free Line 121
Web Site 122

Programming a Device 10

R
Reanalyzing DesignWare Libraries 2
Register Balancing 62

Limitations 64
Register Types 62
Registered Multiplexer 18
Removing

Attributes 64
Designs from Hierarchy 59

Reporting Hierarchy 59
Required Software 1

S
Schematic-Based Design Flow ??–10

System Verification 10
Script

act3io.script 77
Place and Route 71
read_array_naming_style 71

Setting
Operating Conditions 51

Setting Environment Variables 1
Setup Procedures

Setting
Environment Variables 1

System Setup 1
User Setup 2–5

Simulation
Behavioral 8
Structural 9
130
Timing 10
Software Requirements 1
State Machine Design 24–31

Automatic Encoding 30
Extracting from a Sequential Design 28
Mealy 24
Moore 30
Multiple Results 30
One-Hot Encoding 30
Power On and Reset 30

Static Timing Analysis 9
String Variables 73
Structural Netlist Generation 9, 86

edn2vhdl 86
Structural Simulation 9
Structure 53
Subtractor, DesignWare 36
synop2dcf 70
Synopsys, Software Installation Directory 1
Syntax 71
Synthesis 8
Synthesis Libraries 89–97

Accessing 5
ACT 3 I/Os 94
Fanout Limit 89
Operating Conditions 97
Setup 5
Timing Constraints 89

Synthesizing ACT 3 I/Os 74
System Requirements 1
System Setup 1
System Verification 10

Silicon Explorer 10

T
Technical Support 122

Index
Technology Independent Coding 87
Time-Budget Compile 58
Timing Analysis 9
Timing Constraints 70

dcf file 70
synop2dcf 70
Synthesis Libraries 89

Timing Simulation 10
Toll-Free Line 121
Top-Down Compile 55
Translating

Designs 68
Timing Constraints into Designer 70

Translating Timing into Designer 70
TRIBUF 60
TroubleShooting

DesignWare 118
Internal Tri-State 118
Library Errors 117
Multiplexer Inferencing 119

U
Under Utilized Case Statement 21
Unit Delays 8
User Setup 2–5
Using (Q)CLKINT 64

V
Verilog

Naming Conventions xiv
Reserved Words xiv

VHDL
Naming Conventions xiii
Reserved Words xiii
W
Web Based Technical Support 122
Wide Multiplexer 15
131

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Document Organization
	Document Assumptions
	Document Conventions
	HDL Keywords and Naming Conventions
	Actel Manuals
	On-Line Help

	Setup
	Software Requirements
	System Setup
	User Setup

	Actel-Synopsys Design Flow
	Design Flow Illustrated
	Design Flow Overview

	Actel-Synopsys Coding Considerations
	Multiplexer Encoding
	Finite State Machine Design
	DesignWare Module Coding

	Synthesis Constraints
	Operating Conditions
	Design Constraints
	Design Hierarchy
	Internal Tri-State
	Inferring Buffers
	Reducing the Maximum Fanout Value
	Register Type Preferences
	Avoid Using Certain Cells
	Register Balancing
	Removing Attributes
	Using (Q)CLKINT
	Wide Decode Cells in 3200DX and 42MX

	Actel-Synopsys Design Considerations
	Compiling Designs with DesignWare Components
	Translating Designs from Other Technologies
	Translating a Design from one Actel family to another
	Translating Timing Constraints into Designer
	Assigning Pins in Synopsys
	Using ACTmap to Optimize I/O Placement
	Bus Array Syntax
	Script Mode Place and Route
	Control Flow Commands
	Complex Act 3 I/O Mapping
	Instantiating ACTgen Macros
	Generating an EDIF Netlist
	Generating a Structural HDL Netlist
	Designing for Radiation Environments
	Maintaining Technology Independence

	Synthesis Library Information
	Timing Parameters
	Attributes
	Max Fanout
	ACT 3 Specific Information
	54SX Specific Information
	Additional Information
	Synthesis Library Operating Conditions

	DesignWare Library Information
	DesignWare Library Description
	DesignWare Library Adders
	DesignWare Library Subtractors
	DesignWare Library Comparators
	DesignWare Library Counters
	DesignWare Library Incrementer
	DesignWare Library Decrementer
	Improving Compilation Time
	Module Count and Performance

	Common Problems
	Library Errors
	Inferring DesignWare
	Internal Tri-State
	Multiplexer Inferencing

	Product Support
	Actel U.S. Toll-Free Line
	Customer Service
	Customer Applications Center
	Guru Automated Technical Support
	Web Site
	FTP Site
	Electronic Mail
	Worldwide Sales Offices

	Index

