
ACTEL CORPORATION

ACTEL TRAINING

VHDL LAB GUIDE FOR LIBERO IDE ver2.3





A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

iiii

Introduction to the Actel VHDL Design Flow

Introduction
This guide will take you through the design flow for VHDL using Actel Libero IDE version 2.3. It
explains briefly how to use the software tools and provides information about the example design.

Actel VHDL Design Flow

Section



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

2222

Overview

Purpose
The purpose of this lab is to become familiar with the Actel VHDL design flow. For this exercise, we
will implement a 16-bit loadable counter with an asynchronous reset and synchronous enable in an
AX500 FPGA.

Tools
For this lab, you will use the following tools:

• Libero IDE ver 2.3

• WaveFormer Lite 8.9

• ModelSim for Actel ver 5.6b

• Synplicity ver 7.2

• Designer R1-2003

Function
16 bit synchronous counter triggered with the positive edge of the clock

Pin list
ENABLE = enable count active high

RESETn = asynchronous reset of the counter active low

CLK   = master clock

LOAD = parallel load of the counter active high

DATA = 16 bit data input to counter

COUNT = 16 bit counter output

Counter block diagram

COUNTER

LOAD

DATA

16

16

COUNT



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

3333

Creating a project in Libero IDE

Creating a Libero IDE Project and entering the source file
Start Libero IDE by double clicking on the Actel Libero IDE shortcut on your desktop or by clicking
Start > Programs > Libero IDE 2.3 > Libero IDE Design Environment.

From the File menu click New Project.  The New Project dialog box appears, as shown.

Enter the following in the New Project dialog box:

Project Name: Enter counter16 in the Project Name
field (note that a folder named counter16 will be
created under the specified project location)

Location: Browse to C:\Actelprj

Family: Select Axcelerator from the Family drop-
down list box

HDL: Select VHDL

Click OK. The project “counter16” is created and
opened in Libero IDE.

Creating the VHDL source file

From the file menu, click New.  In the New dialog
box, select VHDL Entity and enter counter16 as the
name.  Click OK to open the HDL editor.

In the HDL editor, enter the description of a 16 bit
counter as described in the overview section.

Note: you can copy the description of the counter
from Appendix A of this document and paste it into
the Libero IDE HDL editor.

Section



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

4444

Save the counter description by selecting Save from the Libero IDE File menu.  The counter
description will be visible in the HDL editor and on the Design Hierarchy tab as shown in the figure
below: 

Select the File Manager tab in the Libero IDE Design
Explorer window.  Select counter16 under HDL Files, then
right mouse click and select Check HDL file.  If your
counter description has no syntax errors,

“Syntax checking for
C:\Actelprj\counter16\hdl\counter16.vhd is
successful”
will appear  on the Output tab in the Libero IDE GUI.

Correct any syntax errors that exist in your counter
description and save the file.



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

5555

Performing functional simulation
In this section you will generate stimulus for the counter and perform a functional (pre-synthesis
simulation).

Creating Stimulus with WaveFormer Lite

WaveFormer Lite generates VHDL testbenches from drawn waveforms.  There are three basic steps
for creating test benches using WaveFormer Lite and Actel Libero IDE:

• Import Signal Information

• Draw WaveForms

• Export the VHDL Testbench

To launch WaveFormer Lite and import signal
information into it, go to the Design Hierarchy tab in
the Libero IDE Design Explorer Window and
highlight counter16. Right click and select “Create
Stimulus” to invoke WaveFormer Lite.

Note: if counter16 does not appear in bold font on the Design Hierarchy tab, highlight counter16,
right mouse click and select “Set As Root”.

WaveFormer Lite launches, with the port signals appearing in the Diagram window. 

For additional information on using WaveFormer Lite, refer to the WaveFormer Lite User’s Guide
(wflite.pdf) which is contained in the docs folder in your Libero IDE installation path.

Section



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

6666

Generating Stimulus for the Counter

In this step, you will generate stimulus and a testbench for the counter16 design using WaveFormer
Lite.

Create the clock signal by clicking the CLK signal in the diagram window then right mouse clicking
and selecting “Signal(s) <-> Clock(s)”.

A Clock waveform will appear in the diagram window.  Double click on the clock signal name in the
diagram window to open the Signal Properties window.  Click the Clock Properties button to open
the “Edit Clock Parameters” window.   Specify the clock parameters to generate clock signals.

Using the instructions above, create a clock signal with the following properties:

• CLK - 100 MHz

• Starting Offset: 0 (default)

• Duty Cycle: 50% (default)

• Invert (starts low) unchecked

Accept defaults for all other clock parameters. Click OK to close the Clock Properties dialog box.

Click Apply  then OK in the Signal Properties dialog box to create the clock waveform.

Draw waveforms for the other signals as listed below:

• RESETn - low 0 ns - 35 ns

      high 35 ns - 1.2 us

• Load - low 0 ns - 775 ns

             high 775 ns - 805 ns

      low 775 ns - 1.2 us

• Enable - low 0 ns - 65 ns

      high 65 ns - 1.2 us

• Data - 0000 0 ns - 765 ns

FFF8 765 ns - 1.2 us

Your waveforms should appear as shown in the figure on the next page.



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

7777

WaveFormer Lite Diagram Window

Save the timing diagram by clicking Save from the
WaveFormer Lite File menu.

In the Save As dialog box, enter counter16.btim as the
file name then click Save to save the timing diagram.

Generate the VHDL testbench by selecting Export
Timing Diagrams As (Export menu).  In the Save As
dialog box, select VHDL Wait with Top Level
TestBench (*.vhd) in the "Save As Type" pull-down
menu. Enter counter16_tb.vhd in the filename box and
click Save to generate the testbench.  After
WaveFormer Lite creates the file, it will display its
contents in the Report window so that you can
quickly verify that the file is correct.

Exit WaveFormer Lite by selecting Exit (File menu).
Select Yes when prompted about closing all text files.

The waveform file and the testbench will appear on
the File Manager tab in the Libero IDE Design
Explorer window.



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

8888

Performing pre-synthesis simulation with ModelSim for Actel
To perform pre-synthesis simulation, double click the ModelSim Simulation  button in the
Libero IDE Process window, or right mouse click on counter16 (Design Hierarchy tab) in the Design
Explorer Window and select Run Pre-Synthesis Simulation.

A dialog box will open indicating that no testbench
stimulus is associated with counter16.  Select the
Associate stimulus radio button and click OK.

In the Select Stimulus dialog box, highlight
counter16_tb.vhd and click Add to add the testbench
to the Associated Files box.

Click OK to close the Select Stimulus dialog box and
launch the ModelSim for Actel simulator.

The ModelSim for Actel VHDL Simulator will open and compile the source file and the testbench.



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

9999



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

10101010

When the compilation completes, the simulator will run for 1 us and a Wave window will open to
display the simulation results.

ModelSim for Actel Wave Window

Scroll in the wave window to verify the counter works correctly.  Use the zoom buttons to zoom in
and out as necessary.  The radix for the data and count signals can be changed to improve
readability.

Wave window Toolbar Buttons.

Exit the simulator by selecting Quit from the File menu in the ModelSim for ACTEL 5.6b window.
Enter Yes in the Quit VSIM dialog box.



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

11111111



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

12121212

Synthesizing the counter

Creating a Synplicity project

In this section, you will synthesize the counter design with Synplicity to create an EDIF netlist.

Invoke Synplify by double clicking the Synplify Synthesis button in the Libero IDE Process
Window or by right mouse clicking on counter16  in the Libero IDE Design Explorer Window and
selecting Synthesize.  The Synplicity main window will open.

Synplicity main window

Section



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

13131313

Change the target device by clicking the Change button.

The "Options for Implementation: counter16_syn: hdl" dialog box will open.  In the device tab,
confirm the following are set and click OK:

• Technology: Actel Axcelerator

• Part: AX500

• Speed Grade: -3

• Fanout Guide: 10 (default)

• Hard Limit to Fanout: off (unchecked)

• Disable I/O Insertion: off (default).

In Synplicity’s main window:

• Set the Frequency to 100 MHz

• Turn resource sharing off (unchecked)

• Symbolic FSM Compiler turned off (unchecked)

Click the RUN button. Synplify will now compile and
synthesize the counter16 design into a file called
counter16.edn. When the Ready… on the main user
interface in Synplify changes to Done… the design
has been successfully mapped to the Axcelerator
family.

The resultant EDIF file, counter16.edn, and a structural
VHDL netlist will be visible under Implementation
Files on the Libero IDE File Manager tab in the Design
Explorer Window.

Click on the View Log button and scroll through the log file to answer the following questions:

Utilization

Combinational Cells: ___________ Sequential Cells:       ________

Frequency

 Estimate Frequency:__________ MHz                                      _________ ns



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

14141414

Simulating the counter structural VHDL netlist
In this section, you will simulate the structural VHDL netlist of the counter using the VHDL
testbench that was created in section 2.

Click the ModelSim Simulation  button in the
Libero IDE Process window, or right mouse click on
counter (Design Hierarchy tab) in the Design Explorer
Window and select Run Post-Synthesis Simulation.

The ModelSim for Actel VHDL Simulator will open
and compile the source file and the testbench.

When the compilation completes, the simulator will run for 1 us and a Wave window will open to
display the simulation results.

Scroll in the wave window to verify the counter works correctly.  Use the zoom buttons to zoom in
and out as necessary.  The radix for the data and count signals can be changed to improve
readability.

Section



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

15151515



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

16161616

Place and Routing the COUNTER

The next step in the design flow is to use Actel’s Designer to implement the counter design in an
AX500.

Opening Designer R1-2003

Double click the Designer Place-and-Route 
button in the Libero IDE Process window, or right
mouse click on counter16 (Design Hierarchy tab) in the
Design Explorer Window and select Run Designer.
This starts the Designer place & route tool.

Click the Compile button to begin the process.  The
Device Selection Wizard will open.  Select the AX500
and the 484FBGA package.  Accept the default speed
grade and die voltage and click Next.

Next, the Device Selection Wizard – Variations
window opens.   Accept the default settings and click
Next.

The Device Selection Wizard – Operating
Conditions window opens.  Accept the default
settings and click Finish. Designer will then read the
netlist, checking for errors and compile it for the next
step.  Once completed, the Compile button will turn
green.

Section



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

17171717

Designer GUI after compiling the counter16 design



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

18181818

Assigning Pin locations
Next use the optional step and define the pin-out of the device prior to place and route.  The Pin
Editor can be used to make and edit I/O macro pin assignments and select I/O pin standards for
families which support multiple I/O standards.

 Click the PinEdit button to open the Pin Editor.

In the PinEdit window, the following color-coding scheme is used to denote pin type:

• Package pins shown in green with a black center are available for signals.

• Package pins shown in red are reserved for power and ground.

• Package pins shown in blue with a black center are for reserved pins (e.g. JTAG and Probe
pins) and for special pins such as clock inputs.

Selecting a signal pin will cause the pin outline to change from green to white.  After assigning
signals to a pin, the pin outline will change to yellow indicating a fixed pin assignment.

The Axcelerator Family supports multiple I/O standards and I/Os are grouped onto I/O banks. The
I/O banks are color coded for quick identification.  Colors can be customized using the Pin Editor
Color Manager if desired.



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

19191919

 Drag the Signal CLK from the Unassigned pane and drop it on the package pin labeled HCLKAP
(pin E10).  Note that CLK now moves to the Assigned pane and the spreadsheet below is updated to
reflect the assignment of the CLK signal.

Drag and drop the RESETn signal to the package pin labeled CLKEP (pin V13).  Note that each signal
moves to the Assigned pane and the spreadsheet is updated as it is placed.

Assign other signals to unused green pins.  When you are finished placing all the pins, click File >
Close, to quit PinEdit and return to Designer.   Answer Yes when prompted if you want to save
changes you made in Pin Edit.



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

20202020

Layout
Now you will place and route the counter design – 100% automatically.   To invoke the place & route
tool, click the Layout button.  Accept the default settings in the Layout Options window and click
OK.  If you had added timing constraints, the Timing-Driven option would be available.  For designs
which were previously place & routed that have minor changes, you could select On or Fix under
the Incremental options in the Layout window.

Layout will place and route our design, and the Layout button will turn green when completed.

 Timer
Next, we will do a quick timing analysis on the
counter design.  Invoke Timer by clicking the Timer
icon. The Timer window will open showing a
speedometer with the max clock frequency for the
counter design.  Note the frequency, temp and speed
grade. When finished, File > Close, to quit.

What frequency did Timer indicate the counter would
run?

Exporting a Timing Report
You can export a timing report for the counter design from Designer.  From Designer’s main menu,
select Tools > Reports.  In the Report Types dialog box, select Timer in the drop down menu then
click OK.  In the Timing Report Dialog box, click Options.

Select sort by Actual.  In the Longest/Shortest Path(s) field, enter 10.  Click OK.

Click OK in the Timing Report dialog box to accept the other default settings.

A Timing Report Dialog window will open as shown on the next page.

In the Timing Report window, select File > Save As.  Name the file counter16.rpt.

Select File > Close to close the Timing Report window.



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

21212121

Timing report for the counter



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

22222222

Back-annotate
 To do timing simulation using post-layout results,
you need to generate the necessary files: post-
placement netlist and an SDF (Standard Delay
Format) file with actual timing numbers from our
place & route.  Click the Back-Annotate button and
the Back-Annotate window will open.

Accept all defaults and click OK (see figure to right).

Saving your design files
 Be sure the save your work!  When finished, click File
> Save then File >  Exit, to close Designer.

After exiting Designer, the Actel database
(counter16.adb) and the timing information
(counter16_ba.sdf) will be visible in the Libero IDE
Design Explorer window on the File manager tab
under Implementation Files.                  



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

23232323



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

24242424

Back-Annotated Timing Simulation

Invoking the Simulator
In this section, you will simulate the structural VHDL netlist of the counter using the VHDL
testbench that was created in section 2 and the actual timing numbers (SDF) exported from Designer
in section 5.

 Click the ModelSim Simulation  button in the
Libero IDE Process window, or right mouse click on
counter16 (Design Hierarchy tab) in the Design Explorer
Window and select Run Post-Layout Simulation.

The ModelSim for Actel VHDL Simulator will open
and compile the source file and the testbench.

Observe the waveforms in the Wave window and confirm that the counter operates correctly and
your results match the results from Sections 2 and 4.  Change the radix of the signals and use the
zoom controls as necessary to match the results shown below.

Section



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

25252525

Timing analysis
Using the zoom controls and the cursors in the Wave window you can measure the length of time it
takes for COUNT to change after a rising clock edge.

You will need to zoom in to an area in order to measure the time.

 To make a time measurement between two edges, add cursors to the Wave window by clicking
Insert > Cursor from the Wave menu.  Drag one of the cursors to a rising edge of clk and drag the
other cursor to the following transition on count.  The difference between the cursors will be visible
at the bottom of the Wave window.  Note the time.

1. What was the time between the rising clock edge and COUNT changing?

2. What does this number represent?

Close ModelSim for Actelby clicking File > Quit from the main menu.    Select Yes when prompted if
you are sure you want to quit.

Close Libero IDE by clicking File > Exit from the main menu.                



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

26262626

APPENDIX A: VHDL SOURCE CODE
-- 16 bit loadable counter with enable and asynchronous reset
-- Actel Corporation
-- July 25, 2002

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter16 is
port (CLK, RESETn, LOAD, ENABLE: in std_logic;

DATA: in std_logic_vector(15 downto 0);
COUNT: out std_logic_vector(15 downto 0));

end counter16;

architecture RTL of counter16 is
signal COUNT_int: std_logic_vector(15 downto 0);

begin

process (RESETn, CLK)
begin

if (RESETn = '0') then
COUNT_int <= (others => '0');

elsif (CLK 'event and CLK = '1') then
if (LOAD = '1') then

COUNT_int <= DATA;
elsif (ENABLE = '1') then

COUNT_int <= COUNT_int + 1;
end if;

end if;
end process;

COUNT <= COUNT_int;

end RTL;



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

27272727

Appendix B: VHLD Testbench
-- Generated by WaveFormer Lite Version 8.9 at 17:44:57 on 10/25/2002
library ieee, std;
-- Libraries used by model under test
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
-- End of libraries used by model under test

entity stimulus is
port(

CLK : out std_logic;
RESETn : out std_logic;
LOAD : out std_logic;
ENABLE : out std_logic;
DATA : out std_logic_vector(15 downto 0);
COUNT : in std_logic_vector(15 downto 0)
);

end stimulus;

architecture GeneratedCode of stimulus is
begin

CLK_process : process
variable tb_stop_time : time := 1201 ns;
variable CLK_Offset : time := 0 ns;
variable CLK_Period : time := 10 ns;
variable CLK_MinLH : time := 0 ns;
variable CLK_MaxLH : time := 0 ns;
variable CLK_MinHL : time := 0 ns;
variable CLK_MaxHL : time := 0 ns;
variable CLK_JRise : time := 0 ns;
variable CLK_JFall : time := 0 ns;
variable CLK_Duty : time := 50 ns;
variable CLK_high : time;
variable CLK_low : time;

begin
CLK_high := CLK_Period * (CLK_Duty / ns) / 100;
CLK_low := CLK_Period - CLK_high;
CLK <= '0';
if (CLK_Offset + (CLK_MinLH - CLK_JRise/2) < 0 ns) then

assert FALSE report "Clock offset is less than 0 for CLK. This could be
caused by jitter. Increase offset to get rid of this error." severity
FAILURE;

else
wait for CLK_Offset + (CLK_MinLH - CLK_JRise/2);
while (now < tb_stop_time) loop

CLK <= '1';
wait for (CLK_high - (CLK_MaxLH + CLK_JRise/2) + (CLK_MinHL -

CLK_JFall/2));
CLK <= '0';
wait for (CLK_low - (CLK_MaxHL + CLK_JFall/2) + (CLK_MinLH -

CLK_JRise/2));



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

28282828

end loop;
end if;

end process;

process
begin

RESETn <= '0';
LOAD <= '0';
ENABLE <= '0';
DATA <= x"0000";

wait for 35 ns; -- Accumulated time = 35 ns

RESETn <= '1';
wait for 30 ns; -- Accumulated time = 65 ns

ENABLE <= '1';
wait for 700 ns; -- Accumulated time = 765 ns

DATA <= x"FFF8";
wait for 10 ns; -- Accumulated time = 775 ns

LOAD <= '1';
wait for 30 ns; -- Accumulated time = 805 ns

LOAD <= '0';
wait for 396 ns; -- Accumulated time = 1201 ns

wait;
end process;

end GeneratedCode;

--Top Level Test Bench Module
-- Contains an instance of the Stimulus Module and an instance of the

Product Module
library ieee, std;
-- Libraries used by model under test
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
-- End of libraries used by model under test

use work.all;

entity testbench is
end testbench;

architecture tbGeneratedCode of testbench is
-- Component declaration for the stimulus module
component stimulus
port(

CLK : out std_logic;
RESETn : out std_logic;
LOAD : out std_logic;
ENABLE : out std_logic;



A C T E L  T R A I N I N G  P R O G R A M
V H D L  L A B  G U I D E  F O R  L I B E R O  I D E  V E R  2 . 3

29292929

DATA : out std_logic_vector(15 downto 0);
COUNT : in std_logic_vector(15 downto 0)

);
end component;

-- Component declaration for the product module
component counter
port(

CLK : in std_logic;
RESETn : in std_logic;
LOAD : in std_logic;
ENABLE : in std_logic;
DATA : in std_logic_vector(15 downto 0);
COUNT : out std_logic_vector(15 downto 0)

);
end component;
-- Signal Declarations for the test bench module
signal CLK : std_logic;
signal RESETn : std_logic;
signal LOAD : std_logic;
signal ENABLE : std_logic;
signal DATA : std_logic_vector(15 downto 0);
signal COUNT : std_logic_vector(15 downto 0);

-- Ports are connected by matching the port names of the Test Module
begin

stimulus_0: stimulus
port map(

CLK,
RESETn,
LOAD,
ENABLE,
DATA,
COUNT

);
counter_0 : counter

port map(
CLK => CLK,
RESETn => RESETn,
LOAD => LOAD,
ENABLE => ENABLE,
DATA => DATA,
COUNT => COUNT
);

end tbGeneratedCode;


	Introduction
	Overview
	Purpose
	Tools
	Function
	Pin list

	Creating a Libero IDE Project and entering the source file
	
	Creating the VHDL source file


	Creating Stimulus with WaveFormer Lite
	
	Generating Stimulus for the Counter


	Performing pre-synthesis simulation with ModelSim for Actel
	Creating a Synplicity project
	Opening Designer R1-2003
	Assigning Pin locations
	L
	Layout
	Timer
	Exporting a Timing Report
	Back-annotate
	Saving your design files
	Invoking the Simulator
	Timing analysis
	APPENDIX A: VHDL SOURCE CODE
	Appendix B: VHLD Testbench

