
ACTgen® Macros Reference Guide

Windows® and UNIX® Environments

2

Actel Corporation, Sunnyvale, CA 94086
© 2003 Actel Corporation. All rights reserved.

Part Number: 5029108-9

Release: June 2003

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied
warranties of merchantability or fitness for a particular purpose.

Information in this document is subject to change without notice. Actel assumes no re-
sponsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed
to any unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logotype are registered trademarks of
Actel Corporation.

Acrobat Reader is a trademark of Adobe Systems, Inc.

Windows is a registered trademark of Microsoft in the U.S. and other countries.

All other products or brand names mentioned are trademarks or registered trademarks of
their respective holders.

Table of Contents

Introduction . 7
Document Conventions . 7
Symbols . 8
Your Comments . 8
Online Help . 8

Arithmetic Macros . 9
Adder . 10
Array Adder . 13
Subtractor . 16
Adder/Subtractor . 18
Accumulator . 20
Incrementer . 23
Decrementer . 25
Incrementer/Decrementer . 27
Constant Multiplier . 29
Multiplier . 32
Advanced Options . 36

Comparators . 39
Magnitude/Equality Comparator . 40
Constant Decoder . 43

Converters . 45
Gray Counter . 46
Binary to Gray / Gray to Binary . 48

Counters . 49
Binary Counter . 50

Decoder . 56
Decoder . 57

IOs . 59
3

Table of Contents
Input Buffers .60
Output Buffers .62
Bi-Directional Buffers . .64
Tri-State Buffers . .67
Global Buffers . .69
PECL Global Buffers .71
PerPin FIFO .73
Dual Data Rate Register . .76
Dual Data Rate FIFO . .78

Logic .80
Logic (AND) .81
Logic (OR) .82
Logic (XOR) .83

Multiplexer .84
Multiplexer .85

Minicores .87
FIR Filter .88
CRC Minicore . .93

PLLs. .96
PLL for ProASICPLUS . .97
Axcelerator PLL . 101

Register (Storage Elements). . 106
Storage Register . 107
Shift Register . 110
Barrel Shifter . 113
Storage Latch . 116

Memory Macros for
Non-Axcelerator Families . 119

Synchronous/Asynchronous Dual Port RAM 120
4

Table of Contents
Register File . 127
Synchronous Dual Port FIFO without Flags 131
Synchronous Dual Port FIFO with Flags 135
FIFO Flag Controller (No RAM) 143

Memory Macros for Axcelerator. 147
Axcelerator RAM . 148
Axcelerator EDAC RAM . 152
Axcelerator FIFO . 153
PerPin FIFO . 157

Memory Macros for Flash Devices . 158
Synchronous/Asynchronous Dual Port RAM for Flash 159
Register File for Flash Devices . 161
Synchronous/Asynchronous Dual Port FIFO for Flash Devices . . . 164
FIFO Using Distributed Memory for Flash 167

Memory in Flash . 170
Embedded Memory. 170
Distributed Memory . 176
Timing for Distrubuted Memories 182
Using Multiple Memories in a Design 185
5

Table of Contents
6

Introduction

This guide provides descriptions of macros that you can generate using the
Actel ACTgen Macro Builder software. For more information about
instantiating macros, refer to the Actel HDL Coding Style Guide and the ACTgen
online help.

The Actel ACTgen Macro Builder generates a large variety of
commonly used functions. You can generate structural netlists in EDIF,
VHDL, and Verilog. Furthermore, you can generate VHDL and Verilog
behavioral models for most parameterized functions (the behavioral
models may be used in a simulation environment).

Actel’s parameterized macros:

• Reduce the development time of complex functions.

• Offer a large set of implementations for each type of function.

• Offer a wide range of bit widths that provides a quick change of
design definitions.

Document Conventions
The following table describes the conventions that are used throughout
this manual.

Table 1.Functional Description of Table Nomenclature

Symbol Definition

X Don’t care

1 Logical 1 or high

0 Logical 0 or low

↑ Rising edge

↓ Falling edge

Qn Value of the signal Q before the active edge of the clock

Qn+1 Value of the signal Q after the active edge of the clock
7

Introduction
Symbols
Each macro symbol shows the input and output ports. Busses are
highlighted with a bold line; scalar signals with a thin line. The actual
symbols generated by ACTgen could look slightly different, depending
on the particular CAE tool used. Some ports shown could be optional,
as described in the port description tables. Default polarities are shown
on the symbols.

Your Comments
Actel Corporation strives to produce the highest quality online help
and printed documentation. We want to help you learn about our
products, so you can get your work done quickly. We welcome your
feedback about this guide and our online help. Please send your
comments to documentation@actel.com.

Online Help
The Designer software comes with online help. Online help specific to each
software tool is available in Libero, Designer, ACTgen, ACTmap, Silicon
Expert, Silicon Explorer II, and Silicon Sculptor. Please refer to the ACTgen
online help (open ACTgen and from the Help menu, select ACTgen Help) for
a complete explanation of how to use the ACTgen tool.

Qn [width-1 : 0] Qn is a width-bit bus

Qn [width-1 Width-1 bit of Qn

m, n Binary pattern with width of function

Table 1.Functional Description of Table Nomenclature (Continued)

Symbol Definition
8

1
Arithmetic Macros
9

Adder

Features • Parameterized word length
• Optional carry-in and carry-out

signals
• Multiple gate-level implementations

(speed/area tradeoffs)
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, 500K, Axcelerator

Description

Cin

Sum

Cout

DataA

DataB

Table 1-1. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

DataB WIDTH Input Req. Input Data

Cin 1 Input Opt. Carry-in

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Table 1-2. Parameter Description

Parameter Family Value Function

WIDTHa

500K, PA 2-128

Word length of DataA, DataB and SumAxcelerator 2-156

Other 2-32

MAXFANOUT 500K, PA
0 Automatic choice (function of WIDTH)

2-16 Manual setting of Max. Fanout

CI_POLARITY ALL 0 1 2 Carry-in polarity (active high, active low and not used)
10

Adder
The MAXFANOUT parameter enables you to perform logic replication for all
Flash Adders, Subtractors, Adder/Subtractors and Accumulators. Inherently
only the Sklansky algorithm generates high-fanout nets (max. fanout =
WIDTH/2), so you will see effects only for this algorithm. The area increases
exponentially for MAXFANOUT approaching 2 and it flattens out for higher
values, as shown in Figure 1-1.

Figure 1-1. Adder Area as a Function of MAX FANOUT

Performance is not always as predictable (as shown in Figure 1-2). When you
select automatic logic replication, ACTgen automatically chooses a value for
MAXFANOUT based on WIDTH. This value returns a good, but not
necessarily the best, result for that particular value of WIDTH.

Figure 1-2. Adder Performance as a Function of MAX FANOUT

CO_POLARITY ALL 0 1 2 Carry-out polarity (active high, active low and not
used)

a. The Brent-Kung Adder extends the ranges from 32 to 128 bit for 54SX, 54SX-A and from 20 to 128 bit
for 500K

Table 1-2. Parameter Description

Parameter Family Value Function
11

ACTgen Macros
Table 1-3. Implementation Parameters

Parameter Family Value Description

LPMTYPE ALL LPM_ADD_SUB Adder category

LPM_HINT

500K, PA

SKADD Sklansky model

FBKADD Fast Brent-Kung model

BKADD (Compact) Brent-Kung model

ALL

FADDa Very fast carry select model

MFADDa Fast carry select model

RIPADD Ripple carry model

LPMTYPE Axcelerator LPM_FC_ADD_SUB Fast carry chain Adder category

LPM_HINT Axcelerator
FC_FADD Fast carry chain selct model

FC_RIPADD Fast carry chain ripple carry model

a. FADD and MFADD are NOT recommended for Flash devices.

Table 1-4. Functional Description

DataA DataB Sum Couta

a. Cin and Cout are assumed to be active high

m[width-1 : 0] n[width-1 : 0] (m + n + Cin)[width-1 : 0] (m + n + Cin)[width]
12

Array Adder

Features • Parameterized word length and
number of input buses

• DADDA tree architecture with
optional Final Adder

• Optional pipeline for implementation
with Final Adder

• Behavioral simulation model in
VHDL and Verilog

Family Support 54SX, 54SX-A, eX, 500K, PA, Axcelerator

Description The Array-Adder implements a Sum-Function over an Array of Buses:

 where

In applications where designers have to add more than two operands at a time
“Carry-Save- Techniques” might be used to build the final Sum. ACTgen makes
these techniques available through the Array-Adder macro, which is using a
Dadda tree algorithm. Usually this algorithm is more compact and faster than
using Adder-trees consisting of multiple 2-operand adders, especially if the
number of operands gets large and/or for large word width.

An example could be the FIR-filter architecture using a “distributed arithmetic”
as described in the Application Note from September 1997 “Designing FIR
Filters with Actel FPGAs.” This architecture generates a large number of partial
products, which need to be summed up. Summing them up in an Adder-Tree
would both be slow and area expensive. At the time of writing this document
synthesis tools did not infer Multiple-Operand-Adders. Therefore making use
of the Array-Adder in those types of applications might result in a significant
gain in both speed and area.

The Array Adder comes with or without Final Adder. The version with Final
Adder allows to instantiate a pipeline stage between the Dadda-tree and the
Final Adder. The output bitwidth for Sum can be calculated using this formula:

OUTWIDTH = log2((m*exp2(n)-1)+1) <= n + log2(m)

The version without Final Adder has two output ports: SumA and SumB,
which added together, will provide the Final Result. It is

Data0

Data1

DataN-1

Sum!
!
!
!

Sum Data (i)∑= i 0 to SIZE-1()=
13

ACTgen Macros
SumA_Width <= SumB_Width <= OUTWIDTH

The differences are at most one bit. This variation of the Array-Adder is
particularly useful for an application, which would cascade the Array-Adder. In
that case only the last stage would need a Final Adder to build the result.

Table 1-5. Port Description

Port
Name Size Type Req/Opt Function

Data0 WIDTH Input Req. Input Data (Operand 0)

Data1 WIDTH Input Req. Input Data (Operand 1)

Data2 WIDTH Input Req. Input Data (Operand 2)

Datax WIDTH Input Opt. Input Data (Operand X) X>2

Sum OUT-
WIDTH Output Req.

Clock 1 Input Opt. Clock (if pipelined)

Table 1-6. Parameter Description

Parameter Value Function

WIDTH width AX/Flash: 2-64
All others: 2-32 Word length Data(i)

SIZE size AX/Flash: 3-64
All others: 3-32 Number of input buses

CKL_EDGE RISE FALL Clock (if pipelined)

Table 1-7. Implementation Parameters

Parameter Value Description

LPMTYPE DADDA Generic Array Adder category

LPM_HINT ARRADD Array Adder with Final Adder

Data i()∑ i 0 to SIZE-1=→
14

Array Adder
ARRADDP Pipelined Array Adder with Final Adder

ARRADD2 Array Adder without Final Adder

Table 1-8. Parameter Rules

Family Variation Parameter Rules

eX
ARRADD / ARRADDP WIDTH * SIZE <=870

ARRADD2 WIDTH * SIZE <= 930

SX
ARRADD / ARADDP WIDTH * SIZE <=110

ARRADD2 WIDTH * SIZE <=144

Axcelerator ARRADD / ARADDP WIDTH * SIZE <= 1920

ARRADD2 WIDTH * SIZE <= 1856

Table 1-7. Implementation Parameters

Parameter Value Description
15

Subtractor

Features • Parameterized word length
• Optional carry-in and carry-out

signals
• Multiple gate-level implementations

(speed/area tradeoffs)
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX,
500K, PA, Axcelerator

Description

Cin

Sum

Cout

DataA

DataB

Table 1-9. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

DataB WIDTH Input Req. Input Data

Cin 1 Input Opt. Carry-in

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Table 1-10. Parameter Description

Parameter Family Value Function

WIDTHa

500K, PA 2-128

Word length of DataA, DataB and SumAxcelerator 2-156

Other 2-32

MAXFANOUT 500K, PA
0 Automatic choice (function of WIDTH)

2-16 Manual setting of Max. Fanout
16

Subtractor
CI_POLARITY ALL 0 1 2 Carry-in polarity (active high, active low and not used)

CO_POLARITY ALL 0 1 2 Carry-out polarity (active high, active low and not used)

a. The Brent-Kung Subtractor extends the ranges from 32 to 128 bit for 54SX, 54SX-A and from 20 to
128 bit for 500K

Table 1-10. Parameter Description (Continued)

Parameter Family Value Function

Table 1-11. Implementation Parameters

Parameter Familiy Value Description

LPMTYPE ALL LPM_ADD_SUB Subtracter category

LPM_HINT

500K, PA

SKSUB Sklansky model

FBKSUB Fast Brent-Kung model

BKSUB (Compact) Brent-Kung model

ALL

FSUBa Very fast carry select model

MFSUBa Fast carry select model

RIPSUB Ripple carry model

LPMTYPE Axcelerator LPM_FC_ADD_SUB Fast carry chain Subtractor category

LPM_HINT Axcelerator
FC_FSUB Fast carry chain selct model

FC_RIPSUB Fast carry chain ripple carry model

a. FSUB and MFSUB are not recommended for Flash devices.

Table 1-12. Functional Description

DataA DataB Sum Couta

a. Cin and Cout are assumed to be active high

m[width-1 : 0] n[width-1 : 0] (m - n - Cin) [width-1 : 0] (m - n - Cin)[width]
17

Adder/Subtractor

Features • Parameterized word length
• Optional carry-in and carry-out signals
• Mulitiple gate-level implementations

(speed/area tradeoffs)
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX,
500K, PA, Axcelerator

Description

Cin

Sum

Cout

DataA

DataB

Addsub

Table 1-13. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

DataB WIDTH Input Req. Input Data

Cin 1 Input Opt. Carry-in

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Addsub 1 Input Req. Addition (AddSub = 1)
or subtraction (Addsub = 0)

Table 1-14. Parameter Description

Parameter Family Value Function

WIDTHa

500K, PA 2-128

Word length of DataA, DataB and SumAxcelerator 2-156

Other 2-32

MAXFANOUT 500K, PA
0 Automatic choice (function of WIDTH)

2-16 Manual setting of Max. Fanout

CI_POLARITY ALL 0 1 2 Carry-in polarity (active high, active low, and not used)
18

Adder/Subtractor
CO_POLARITY ALL 0 1 2 Carry-out polarity (active high, active low, and not used)

a. The Brent-Kung Adder/Subtractor extends the ranges from 32 to 128 bit for 54SX, 54SX-A and from
20 to 128 bit for 500K

Table 1-14. Parameter Description

Parameter Family Value Function

Table 1-15. Implementation Parameters

Parameter Family Value Description

LPMTYPE ALL LPM_ADD_SUB Adder/Subtracter category

LPM_HINT

500K, PA

SKADDSUB Sklansky model

FBKADDSUB Fast Brent-Kung model

BKADDSUB (Compact) Brent-Kung model

ALL

FADDSUBa

a. FADDSUB and MFADSUBB are not recommended for Flash devices.

Very fast carry select model

MFADDSUBa Fast carry select model

RIPADDSUB Ripple carry model

LPMTYPE Axcelerator LPM_FC_ADD_SUB Fast carry chain Adder category

LPM_HINT Axcelerator
FC_FADDSUB Fast carry chain selct model

FC_RIPADDSUB Fast carry chain ripple carry model

Table 1-16. Functional Description

DataA DataB Addsub Sum Couta

m[width-1 : 0] n[width-1 : 0] (m + n + Cin)[width-1 : 0] (m + n + Cin)[width] m[width-1 : 0]

m[width-1 : 0] n[width-1 : 0] (m - n - Cin) [width-1 : 0] (m - n - Cin)[width] m[width-1 : 0]

a. Cin and Cout are assumed to be active high here.
19

Accumulator

Features • Parameterized word length
• Optional carry-in and carry-out signals
• Asynchronous reset
• Accumulator enable
• Multiple gate-level implementations

(speed/area tradeoffs)
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX,
PA, 500K, Axcelerator

Description

DataA

Cin

Enable

Clock

Sum

Cout

Aclr

Table 1-17. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Cin 1 Input Opt. Carry-in

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Enable 1 Input Opt Enable

Clock 1 Input Req. Clock

Aclr 1 Input Opt Asynchronous
Reset
20

Accumulator
Table 1-18. Parameter Description

Parameter Family Value Function

WIDTHa

500K, PA 2-128

Word length of DataA, DataB and SumAxcelerator 2-156

Other 2-32

MAXFANOUT 500K, PA
0 Automatic choice (function of WIDTH)

2-16 Manual setting of Max. Fanout

CI_POLARITY ALL 0 1 2 Carry-in polarity (active high, active low, and not used)

CO_POLARITY ALL 0 1 2 Carry-out polarity (active high, active low, and not used)

CLR_POLARITY ALL 0 1 2 Asynchronous reset (active high, active low, and not used)

EN_POLARITY ALL 0 1 2 Accumulator enable (active high, active low, and not used)

FFTYPEb ALL except Flash REGULAR TMR FF type used (Regular, Triple Voting)

CLK_EDGE ALL RISE FALL Active High/Low

a. The Brent-Kung Accumulator extends the ranges from 32 to 128 bit for 54SX, 54SX-A and from 20 to 128 bit for 500K
b. TMR is Triple Module Redundancy. Choosing this option makes ACTgen use TMR FlipFlops that are used to avoid
Single Event Upsets (SEUs) for Rad-hard Designs. Choosing this option causes the Sequential resource usage to be tripled
in families where no TMR is implemented in Silicon.

Table 1-19. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]
21

ACTgen Macros
Table 1-20. Implementation Parameters

Parameter Family Value Description

LPMTYPE LPM_ADD_SUB Accumulator category

LPM_HINT

500K, PA

SKACC Sklansky model

FBKACC Fast Brent-Kung model

BKACC (Compact) Brent-Kung model

ALL

FACCa

a. The FACC and MACC parameters are not recommended for Flash devices.

Very fast carry select model

MFACCa Fast carry select model

RIPACC Ripple carry model

LPMTYPE Axcelerator LPM_FC_ADD_SUB Fast carry chain Adder category

LPM_HINT Axcelerator
FC_FACC Fast carry chain selct model

FC_RIPACC Fast carry chain ripple carry model

Table 1-21. Functional Description

DataA Sumn+1 Couta

a. Cin and Cout are assumed to be active high.

m[width-1 : 0] (m + Sumn + Cin)[width-1 : 0] (m + Sumn + Cin)[width]
22

Incrementer

Features • Parameterized word length
• Optional Carry-out signals
• One very fast gate level

implementation, FC High Speed and
FC Ripple available

• Behavioral simulation model in
VHDL and Verilog

Family Support ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Acelerator

Description

Sum

Cout

DataA

1

Table 1-22. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Table 1-23. Parameter Description

Parameter Value Function

WIDTH 2-32
2-156 for FC Macros Word length of DataA and Sum

CO_POLARITY 0 1 2 Carry-out polarity (active high, active low, and
not used)
23

ACTgen Macros
Table 1-24. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_ADD_SUB Incrementer category

LPM_HINT FINC; FC_FINC,
FC_RIPINC Very fast carry look ahead

Table 1-25. Functional Description

DataA Sum Cout

m m + 1 (m + 1) ≥ 2width
24

Decrementer

Features • Parameterized word length
• Optional Carry-out signals
• One very fast gate level

implementation, FC High Speed and
FC Ripple available

• Behavioral simulation model in
VHDL and Verilog

Family Support ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator

Description

Sum

Cout

DataA

1

Table 1-26. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Table 1-27. Parameter Description

Parameter Value Function

WIDTH
2-32
2-156 for FC_FDEC
and FC_RIPDEC

Word length of DataA and Sum

CO_POLARITY 0 1 2 Carry-out polarity (active high, active low,
and not used)
25

ACTgen Macros
Table 1-28. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_ADD_SUB Decrementer category

LPM_HINT FDEC
FC_FDEC and FC_RIPDEC, Fast Carry Versions Very fast carry look ahead

Table 1-29. Functional Description

DataA DataB Sum Cout

m n m - 1 (m-1) < 0
26

Incrementer/Decrementer

Features • Parameterized word length
• Optional Carry-out signals
• One very fast gate level

implementation, FC High Speed and
FC Ripple available

• Behavioral simulation model in
VHDL and Verilog

Family Support ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator

Description

Sum

Cout

DataA

1

Incdec

Table 1-30. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Incdec 1 Input Req. Increment (Incdec = 1) or
decrement (Incdec = 0)

Table 1-31. Parameter Description

Parameter Value Function

WIDTH
2-32
2-156 for FC_FINCDEC
and FC_RIPINCDEC

Word length of DataA and Sum

CO_POLARITY 0 1 2
Carry-out polarity (active high, active
low, and not used)
27

ACTgen Macros
Table 1-32. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_ADD_SUB Incrementer/Decrementer category

LPM_HINT
FINCDEC
FC_FINCDEC
FC_RIPINCDEC

Very fast carry look ahead

Table 1-33. Functional Description

DataA Incdec Sum Cout

m 1 m + 1 (m + 1) ≥ 2width

m 0 m - 1 (m - 1) < 0
28

Constant Multiplier

Features • Parameterized word lengths and
constant values

• Unsigned and signed (two’s
complement) data representation

• Booth / Wallace architecture
• Behavioral simulation model (for non-

pipelined multiplier only) in VHDL
and Verilog

Family Support 54SX, 54SX-A, eX, 500K, PA, Axcelerator

Description The Constant Multiplier performs the multiplication of a data-input with a
constant value. Area and performance of the Constant Multiplier depend on
the value of the constant. Specifically, area and performance depend on the
number of groups of 1's in the bit pattern of the constant. As a result, the
worst-case constant has a bit pattern of alternating 1's and 0's (…010101…).
However, even for that worst case the area and performance of the Constant
Multiplier is superior to a regular Multiplier.

The Constant Multiplier macro output word length is always double the input
word length. Depending on the value of the constant, some of the most
significant bits might be sign-extension bits. You may be able to reduce
hardware by calculating the actual number of bits needed and cutting all sign-
extension bits. For example:

width =4, Constant = 1100, representation=signed

The worst case data for this example would be 1000 (-8) and therefore the
worst case output data would be 010 0000 (-8 * -4 = 32). So with that we know,
that Mult<8> is just a sign-extension bit (Mult<8> = Mult<7>).

Keep in mind that some constant multiplications might be generated even
more effectively, e.g. constants to the power of 2 are just shift-operations, or
constants like 3,5,7,9,10, etc. can be generated using shift operations and a
simple addition/subtraction (2+1, 4+1, 8-1, 8+1, 8+2, etc.). For these
constants the implementation of the Constant Multiplier might not be as
efficient as using shift operations and/or Adders/Subtractors.

Mult

DataA

Constant
29

ACTgen Macros
Usually synthesis infers regular Multipliers even for constant values. Therefore
the use of the Constant Multiplier macro in a design, which performs one or
more multiplications with constant values, is expected to be very beneficial.

An application example might be FIR-filters with constant coefficients, were
the computation is organized in the “transposed form” as indicated in
Figure 1-3.

Figure 1-3. FIR-filter Organized in the "Transposed Form" Using Constant Multipliers

Table 1-34. Port Description

Port Name Size Type Req/Opt Function

Data WIDTH Input Req. Input data

Mult 2*WIDTH Output Req. Constant * Data

Table 1-35. Parameter Description

Parameter Value Function

WIDTHa

a. For eX WIDTH is supported from 2-11

2-64 Word length Data

CONST Constant Constant value

RADIX HEX BIN DEC Radix for constant value

SIGNb

b. For signed constant multiplier

0 1 Positive, negative constant sign

C4

Din

C3 C2 C1 C0

Dout
30

Constant Multiplier
Parameter Rules:

1. DataA is always binary and of the size of Width.

2. Constant must be of the selected Radix and be of the selected width for
HEX/BIN. ACTgen automatically pads zeroes if they are missing.

e.g.: Radix: BIN, Width: 5, Constant: 00010
Radix Hex, Width:8, Constant: 0A

Table 1-36. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_MULT Constant multiplier category

LPM_HINT UCMULT Unsigned constant multiplier

SCMULT Signed constant multiplier
31

Multiplier

Features • Parameterized word lengths
• Unsigned and signed (two’s

complement) data representation
• Booth or array implementation
• Optional pipelining
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator1

Description

Mult

DataA

DataB

1. For more information on the Fast Carry Chain macros available with the Axcelerator family, please
refer to “Fast Carry Chains (Axcelerator Only)” on page 20.

Table 1-37. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTHA Input Req. Input data

DataB WIDTHB Input Req. Input data

Clock 1 Input Opt. Clock

Mult WIDTHA+WIDTHB Output Opt. DataA*DataB

Mult0 WIDTHA+WIDTHB Output Opt. Mult0 + Mult1 =
DataA*DataBMult1 WIDTHA+WIDTHB Output Opt.
32

Multiplier
Table 1-38. Parameter Description

Parameter Family Value Function

WIDTHAa

a. For some of the multiplier variations there are small deviations from the limits
mentioned to ensure that the multiplier fits in the largest device of the selected family.

500K, PA,
Axcelerator 2-64

Word length of
DataAeX 2-14

Other 2-30

WIDTHB Same as WIDTHA Word length of
DataB

REPRESENTATION UNSIGNED
SIGNED Data representation

FFTYPEb

b. TMR: Triple Module Redundancy. Choosing this option makes ACTgen use TMR
FlipFlops which are used to avoid Single Event Upsets (SEUs) for Rad-hard Designs.
Choosing this option causes the Sequential resource usage to be tripled in families where
no TMR is implemented in Silicon.

CC: When combinatorial option is chosen for the Sequential Type, the FF is implemented
using two Combinatorial Cells instead of one Sequential Cell. This is useful when no
Sequential resources are available in the designs.

This option is applicable only to the pipelined multipliers.

ALL except
Flash

REGULAR
TMR
CC

FF Type Used
(Default, Triple Vot-
ing, Combinatorial)

CLK_EDGE RISE FALL Clock (if pipelined)

Table 1-39. Functional Description

DataA DataB Mult1a

m n m * n
33

ACTgen Macros
a. If pipelined, the sum is correct (available) after <latency> cycles. Latency is a function of
WIDTHA and WIDTHB, or the number of pipelined stages mentioned specifically (eg. 1 or
2 pipelines).

Table 1-40. Functional Description

DataA DataB Mult0/1a

a. Mult1<0> is always 0

m n Mult1 + Mult2 = m * n

Table 1-41. Parameter Rulesa

Family Variation Parameter rules

All All WIDTHA ≥ WIDTHB

eX

BOOTHMULT/P WIDTHA + WIDTHB <= 15 (signed) / 16
(unsigned)

BOOTHMULTP For TMR restrictions for WIDTHA, WIDTHB

BOOTHMULT2 WIDTHA + WIDTHB <= 17 (signed) / 18
(unsigned)

SX/SX-A
BOOTHMULT/P WIDTHA + WIDTHB <= 32

BOOTHMULT2 WIDTHA + WIDTHB <= 55

Axcelerator

ARRAYMULT WIDTHA + WIDTHB <= 128

PARRAYMULT WIDTHA + WIDTHB <= 128

FC_BOOTHMULT1 WIDTHA + WIDTHB <= 106

FC_BOOTHMULT1 WIDTHA + WIDTHB <= 106

500K, PA All WIDTHA + WIDTHB <= 106

Other All WIDTHA + WIDTHB <= 32
34

Multiplier
a. These are the most important parameter rules; additional rules may apply

Table 1-42. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_MULT Multiplier category

LPM_HINT

BOOTHMULT Booth multiplier

BOOTHMULT2a Booth multiplier without final Adder

BOOTHMULTP Pipelined booth multiplier

LPMTYPE

LPM_FC_MULT Fast Carry multiplier category (Axcelerator)b

PARRAYMULT
Fast Carry array multipliers in parallel; each array multiplier consists
of a 1-bit multiplier (MULT1); the rows of the array use fast carry
chains, but there is a regular routing between columns

BOOTHMULT1 Booth-encoded Wallace-tree with Fast Carry final adder

BOOTHMULT2 Booth-encoded multiplier with n-bit Fast Carry adder tree

a. Available for 54SX, 54SX-A, eX, 500K & PA

b. For information on multiplier area and performance please refer to the latest Actel application note available at
http://www.actel.com

Table 1-43. Axcelerator Multiplier Architecture Comparison Speeda

Architecture \
Speed

1 (fastest) 2 3 (slowest)

Parallel-2 Array Multiplier width <= 8 bit 8 bit < width <= 10 bit width > 10 bit

FC Booth-1 8 bit < width <= 20 bit width <= 8 bit or width > 20 bit

FC Booth-2 width > 20 bit 10 bit < width <= 20 bit width <= 10 bit

a. For simplicity’s sake, the table assumes WIDTHA = WIDTHB = width
35

ACTgen Macros
Advanced Options
Click the Advanced button (available for PA, 500K, and Axcelerator devices) to
specify pipeline stages. If you are using a PA or 500K device, you can insert
(default setting) or omit the final Adder stage.

Omitting the
Final Adder

You can choose not to instantiate the final adder in the multiplier and add up
the two buses Mult0 and Mult1 to the final result later in the design flow. This
is often the most efficient implementation when a lot of partial results get
summed up in a large summation network. Figure 1-4 shows an example for Y
= (A x B) + C + D using the multiplier with 2 outputs in combination with the
Array-Adder.

Figure 1-4. Efficient implementation using the 2-output multiplier in combination with the
Array-Adder

Table 1-44. Axcelerator Multiplier Architecture Comparison: Area

Architecture \ Speed 1 (smallest) 2 3 (largest)

Parallel-2 Array Multiplier always

FC Booth-1 always

FC Booth-2 always

Mult1

Mult0

DataA

DataB Y

Data0

Data1

Data2

Data3

Sum

A

B

C
D

36

Multiplier
Multiplier
Pipelining

For 500K, PA and Axcelerator devices you can specify the number of pipeline
stages (1, 2, or 3). However, three pipeline stages increases performance only
for high bitwidth. Click the Advanced button in the GUI to access pipelining.

For ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX the
multiplier architecture does not allow you to select the latency of the pipelined
multiplier or the number of logic levels between the pipeline stages. Registers
are automatically inserted between the major components of the architecture,
primarily the multiplexer and adder macros, as shown in Figure 1-5.

Figure 1-5. Booth Multiplier Architecture (Pipeline)

Table 1-45. Pipeline Stages

Pipeline Stages
WidthB

w/ Final Adder w/o Final Adder

1 >= 2 >= 5

2 >= 5 >= 7

3 >= 7 Not applicable

GND

co1

co0

DataB [0] DataB [1]

DataB [2] DataB [3]

DataB [4] DataB [5]

 Mux4
[widtha+2]

 Mux4
[widtha+2]

 Mux4
[widtha+2]

 Adder
[widtha+1]

 Adder
[widtha+2]

 Adder
[widtha+2]

 Product
[widtha+5:4]

 Product [3:2]

 Product [1:0]

aux3 [widtha+1:0]

aux3 [widtha+1:2]

0.co1.aux3 [widtha+1:2]

aux1 [widtha+1:0]

aux0 [widtha+1:0]

0.0.aux0 [widtha+1:2]

aux1 [widtha+1:0]

aux1 [widtha+1:0]

DataA [n-1:0]

DataA [n-2:0].0

aux1 [widtha+1:0]

Register
37

ACTgen Macros
The number of pipeline stages is a function of the width of the DataB input.
The number of logic levels per pipeline stage is a function of the width of the
DataA input. Therefore, the number of logic levels per pipeline stage is equal to
the number of logic levels of the first adder (WIDTHA + 1) plus 1 for the 4 to
1 multiplexer, as shown in Figure 1-5.

Table 1-46. Pipeline Stages as a Function of WidthB

WidthB Range Pipeline Stages

2 0

3-4 1

5-8 2

9-16 3

Table 1-47. Logic Levels as a Function of WidthA

WidthA Range Logic Levels

2-5 3

6-17 4

18-30 5
38

2
Comparators
39

Magnitude/Equality Comparator

Features • Parameterized word length
• Unsigned and signed (two’s

complement) data comparison
• One very fast gate level

implementation
• Behavioral simulation model in

VHDL and Verilog

Family Support1 ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, Axcelerator

Description

DataA

DataB

AGB
AGEB
ALB
ALEB

>
>
<
<

_

_

1. For Flash devices the Equality Comparator and the Magnitude Comparator are separate. For all other
devices they are the same macro. There is a Fast Carry Magnitude Comparator available for Axcelerator.

Table 2-1. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input data

DataB WIDTH Input Req. Input data

AGB 1 Output Opt. Output comparison; A > B

AGEB 1 Output Opt. Output comparison; A ≥ B

ALB 1 Output Opt. Output comparison; A < B

ALEB 1 Output Opt. Output comparison; A ≤ B

AEB 1 Output Opt. Output comparison; A = B

ANEB 1 Output Opt. Output comparison; A ≠ B
40

Magnitude/Equality Comparator
Table 2-2. Parameter Description

Parameter Value Function

WIDTH 2-32 Word length of DataA and
DataB

REPRESENTATION UNSIGNED SIGNED

AGB_POLARITY 0 1 2 AGB polarity (active high,
active low, and not used)

AGEB_POLARITY 0 1 2 AGEB polarity (active high,
active low, and not used)

ALB_POLARITY 0 1 2 ALB polarity (active high,
active low, and not used)

ALEB_POLARITY 0 1 2 ALEB polarity (active high,
active low, and not used)

AEB_POLARITY 0 1 2 AEB polarity (active high,
active low, and not used)

ANEB_POLARITY 0 1 2 ANEB polarity (active high,
active low, and not used)

Table 2-3. Implementation Parameters

Parameter Value Description

LPMTYPE
LPM_COMPARE Comparator category

LPM_FC_COMPARE Fast Comparator Category

LPM_HINT
COMPARE Very fast carry select

FC_MAGCOMP Very fast Magnitude Comparator

Table 2-4. Parameter Rules

Parameter Rules

At lease one of the comparisons (AGB, AGEB, ALB, ALEB, AEB or ANEB) must be
selected
41

ACTgen Macros
Only one of the magnitude comparisons (AGB, AGEB, ALB or ALEB) can be selected at
the same time

Only one of the equality comparisons (AEB or ANEB) can be selected at the same time

Table 2-5. Functional Description

DataA DataB AGB AGEB ALB ALEB AEB ANEB

m n m > n m ≥ n m < n m ≤ n m = n m ≠ n

Table 2-6. Implementation Parameters

Implementation (LPM_HINT) Description

COMPARE Very fast carry select model

FC_MAGCOMP Very fast Magnitude Comparator

Table 2-7. Parameter Rules

Parameter rules

At least one of the comparisons (AGB, AGEB, ALB, ALEB, AEB or ANEB) must be selected

Only one of the magnitude comparisons (AGB, AGEB, ALB or ALEB) can be selected at the
same time

Only one of the equality comparisons (AEB or ANEB) can be selected at the same time

Table 2-4. Parameter Rules (Continued)

Parameter Rules
42

Constant Decoder

Features • Parameterized word length
• DEC/BIN/HEX radices for

constant
• Equal/Not Equal comparison

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, Axcelerator

Description

Aeb

DataA

Constant

Table 2-8. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Aeb 1 Output Req. Result

Table 2-9. Parameter Description

Parameter Value Function

WIDTH 2-32a

a. For Flash devices, width is 2-128

Word length of DataA and Constant

Radix Dec/Bin/Hex Base of Constant

Constant
Same as Width
in selected
Radix

The value with which input data will be
compared

AEB_POLARITY 0, 1 A equals B polarity (Active High, Active
Low)
43

ACTgen Macros
Parameter Rules:

1. DataA is always binary and of the size of Width.

2. Constant must be of the selected Radix and be of the selected width for
HEX/BIN.

e.g.: Radix: BIN, Width: 5, Constant: 00010
Radix Hex, Width:8, Constant: 0A

Table 2-10. Implementation Parameters

Parameter Value Description

LPM_TYPE LPM_COMPARE Comparator category

LPM_HINT WDEC Very fast

Table 2-11. Functional Description

Aeb

DataA = Constant
44

3
Converters
45

Gray Counter

Features • Parameterized for Data Width

• Asynchronous Clear,
Asynchronous Preset

Family support 54SX, Axcelerator

Description ACTgen can generate Gray Counters parameterized for a specified
Data Width and with a choice of Enable, Asynchronous Clear, and
Asynchronous Preset signals.

ENABLE Q

CLOCK

CLR

PRE

Table 3-1. Port Description

Port Name Size Type Req/Opt Function

Clock WIDTH Input Req. Input Data

Q WIDTH Output Req. Output Data

Clr 1 Input Opt. Clear

Pre 1 Input Opt. Preset

Enable 1 Input Opt. Enable
46

Gray Counter

Table 3-2. Parameter Description

Parameter Value Function

GRAYCOUNT 2-99 Output Data Width

CLR_POLARITY 0,1,2 Clear Polarity

PRE_POLARITY 0,1,2 Preset Polarity

EN_POLARITY 0,1 Enable Polarity

CLK_EDGE RISE,FALL Clock Edge

Table 3-3. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_GRAY COUNTER Gray Counter
47

Binary to Gray / Gray to Binary

Features • Parameterized for Data Width

Family support 54SX, Axcelerator

Description ACTgen can generate Binary to Gray and Gray to Binary Converters
parameterized for a specified Data Width.

Datain Dataout

Table 3-4. Port Description

Port Name Size Type Req/Opt Function

Datain WIDTH Input Req. Input Data

Dataout WIDTH Output Req. Output Data

Table 3-5. Parameter Description

Parameter Value Function

GRAYDECODE/WIDTH 2-99 Input/Output Data Width

Table 3-6. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_GRAYENCODE/ LPMGRAYDECODE Binary to Gray and Gray
to Binary Converter
48

4
Counters
49

Binary Counter

Features • Parameterized word length
• Up, Down and Up/Down

architectures
• Asynchronous clear
• Asynchronous preset (available only

for Flash devices)
• Synchronous counter load
• Synchronous count enable
• Terminal count flag (not available

for Axcelerator)
• Multiple gate level

implementations (area/speed
tradeoffs)

• Behavioral simulation model in
VHDL and Verilog

Family Support ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator

Description The ACTgen binary counters are general purpose UP, DOWN, or
UP/DOWN (direction) counters.

When the count value equals 2width-1, the signal Tcnt (terminal count),
if used, is asserted high.

The counters are WIDTH bits wide and have 2width states from
“000…0” to “111…1”. The counters are clocked on the rising (RISE) or
falling (FALL) edge of the clock signal Clock (CLK_EDGE).

The Clear signal (CLR_POLARITY), active low or high, provides an
asynchronous reset of the counter to “000…0”. You may choose to not
implement the reset function.

In the case of an Up/Down counter, the Updown signal controls
whether the counter counts up (Updown = 1) or down (Updown = 0).

The counter could be loaded with Data. The Sload signal
(LD_POLARITY), active high or low, provides a synchronous load

Data

Updown

Enable

Clock

Q

Tcnt

Aclr

Sload
50

Binary Counter
operation with respect to the clock signal Clock. You can choose to not
implement this function.

The ACTgen counters have a count enable signal Enable (EN_POLARITY).
Enable can be active high or low. When Enable is not active, the counter is
disabled and the internal state is unchanged.

Table 4-1. Port Description

Port
Name Size Type Req./

Opt. Function

Data WIDTH input Opt. Counter load input

Aclr 1 input Opt. Asynchronous counter reset

Enable 1 input Req. Counter enable

Sload 1 input Opt. Synchronous counter load

Clock 1 input Req. Clock

Updown 1 input Opt. UP (Updown = 1),
DOWN (Updown = 0)

Q WIDTH out-
put Req. Counter output bus

Tcnt 1 out-
put Opt. Terminal count (active high)

Table 4-2. Parameter Description

Parameter Value Function

WIDTH 2-32 Word length of Data and Q

DIRECTION UP DOWN UPDOWN Counter direction

CLR_POLARITY 0 1 2 Aclr can be active low,
active high or not used

EN_POLARITY 0 1 Enable can be active low,
active high
51

ACTgen Macros
LD_POLARITY 0 1 2 Sload can be active low,
active high or not used

CLK_EDGE RISE FALL

TCNT_POLARITY 1 2 Tcnt can be active high or
not used

Table 4-3. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

LD_FANIN AUTO MANUAL

LD_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 4-4. Implementation Parameters

Parameter Value Description Family

LPMTYPE LPM_COUNTER Counter category

LPM_HINT LLCNT Prescaled model All

TLACNT Register look ahead model All

FBCNT Fast Balanced model 54SX, 54SX-A

BCNT Balanced model All

LECNT Fast Enable Balanced All

COMPCNT Compact model All

RIPPLE Ripple model All

Table 4-2. Parameter Description (Continued)

Parameter Value Function
52

Binary Counter
Implementations This section decribes the implementation of the Pre-Scaled Counter, Register
Look Ahead Counter, Fast Balanced Counter and the Balanced Counter.

Pre-Scaled Counter

The pre-scaled counter achieves absolute maximum count and count enable
performance by sacrificing synchronous load performance. This counter
registers the two least significant bits and uses them as an enable for the upper
bits. Count performance is limited only by the delay in the lower two bits and
the enable path for the upper bits. Because the upper bits are only updated
(enabled) every fourth cycle, they can accommodate more delay (up to one-
fourth the clock frequency).

There are two limitations related to the use of the pre-scaled counter. The first
is in analyzing the actual performance of the counter. The second is correctly
performing data load functions; these two limitations are related. Two
parameters must be measured to overcome these two limitations. The first
parameter that must be measured is the worst internal delay inside the counter.
The second parameter is the worst delay from Q0/Q1 to any upper bit. The
minimum count period is then defined by the greater value of these two
parameters.

Table 4-5. Functional Descriptiona

a. Assume Aclr is active low, Enable is active high, Sload is active high, Clock is rising, Tcnt is
active high

Data Aclr Enable Sload Clock Up
down Qn+1 Tcnt n+1

X 0 X X X X 0’s 0

X 1 X X ↑ X Qn Qn+1== 2width-1

X 1 0 0 ↑ X Qn Qn+1== 2width-1

m 1 X 1 ↑ X m Qn+1== 2width-1

X 1 1 0 ↑ 1 Qn + 1 Qn+1== 2width-1

X 1 1 0 ↑ 0 Qn - 1 Qn+1== 2width-1
53

ACTgen Macros
The load function is a slave of the maximum internal path delay in the pre-
scaled counter. The load function must be held for as many clock periods as
required to exceed the maximum internal delay; this ensures that all internal
nodes are settled and that correct count operation can be performed. This
requirement can be waived if you can guarantee that 0’s will always be loaded in
Q0 and Q1 (resulting in only a single load cycle).

The count path in pre-scaled counters without Sload or Enable functions only
have a single logic level for ACT 2/1200XL, ACT 3, 3200DX, 42MX 54SX,
54SX-A, and eX. All other combinations of pre-scaled counters have two logic
levels in their count path. In these cases, given the two limitations mentioned
previously related to the pre-scaled counter, use the Register Look Ahead or
Fast Balanced counters.

Register Look Ahead Counter

This counter achieves the absolute maximum performance for the count, count
enable, and synchronous load functions. The counter operates by registering
intermediate count values providing “look-ahead” carry circuitry. As a result,
this counter variation requires more flip-flops (sequential modules) than other
counters.

Fast Balanced Counter

This counter is only available for the 54SX, 54SX-A, and eX families. It takes
advantage of the architectural features of these families, including flip-flops
with built-in enable and more powerful combinatorial cells. Using these two
features, it is possible to build a very fast and compact binary counter without
using “look-ahead” carry circuitry. This counter should be preferred over all the
others available for this family.

Balanced Counter

This counter achieves high performance for both the count and enable
functions using standard design approaches. Module count performance is
sacrificed to maintain high speed. This counter is the result of the performance
balance between the count/enable functions and the balance between the
performance/cost in building this architecture. This counter should address
most counter needs for the ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX
and 42MX families.
54

Binary Counter
Fast Enable Counter

This compact counter is fully synchronous and has higher performance than
the ripple counter. However, this counter should only be used in moderate
performance applications, especially for large widths.

Ripple Counter

The ripple counter is an asynchronous counter where the Q of each bit feeds
the clock of the next bit; performance is sacrificed to build this variation.
However, the ripple counter uses the least amount of logic resources. This
counter should only be used in very low-performance applications or for very
small counters.

Because of the asynchronous nature of the count function, this counter does
not have a synchronous load function.
55

5
Decoder
56

Decoder

Features • Parameterized output size
(DECODES)

• Behavioral simulation model in
VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40 MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, Axcelerator

Description

Enable

EqData

Table 5-1. Port Description

Port Name Size Type Req/Opt Function

Data declna

a. decln is an integer and log2 (DECODES) = decln d<log2 (DECODES + 1. If decln is equal
to 1, then Data is scalar, else Data is a bus.

input Req. Input data

Enable 1 input Opt. Enable

Eq DECODES output Req. output

Table 5-2. Parameter Description

Parameter Value Function

DECODES 2-32 Word length of Eq

EN_POLARITY 0 1 2 Enable polarity (active high, active low or not used)

EQ_POLARITY 0 1 Eq polarity (active low or active high)
57

ACTgen Macros
Table 5-3. Functional Descriptiona

a. Assume enable is active low and Eq is active high.

Data Enable Eq

X 0 0’s

m 1 decb (m)==decodes-1 &&c dec(m)==decodes-2 && … &&
dec(m)==0

b. dec(m) defines the decimal value of m

c. && indicates bity concatenation
58

6
IOs
59

Input Buffers

Features • Parameterized for data width

• Choice of data buffers (Regular, Special, Pull-Up, Pull-Down)

Family support ACT2/1200XL, ACT3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator

Description ACTgen generates different types of Input Buffers with specified data
width.

Table 6-1. Port Description

Port Name Size Type Req/Opt Function

PAD WIDTH Input Req. Input Data

PADP (LVDS and
LVPECL, Axcelera-
tor Only)

WIDTH Input Req. Input Data for LVDS and
LVPECL

PADN(LVDS and
LVPECL, Axcelera-
tor Only)

WIDTH Input Req. Input Data for LVDS and
LVPECL

Y WIDTH Output Req. Output Data

Table 6-2. Parameter Description

Parameter Value Function

WIDTH 1-99 (Limit may vary depending
on the family) Data Width
60

Input Buffers

PULLUP (Flash Only) NO / YES Choice of Pull-up version

VOLT (Flash Only) 0,1,2
Choice of different volt-
age levels. 3.3v, 2.5v or
2.5v(Low Power)

TYPE
(Axcelerator Only)

REG, LVCMOS25,
LVCMOS18, LVCMOS15,
PCI, PCIX, GTLP25, GTLP33,
HSTL_I, HSTL_II, SSTL3_I,
SSTL3_II, SSTL2_I, SSTL2_II,
LVDS, LVPECL,
LVCMOS25U, LVCMOS25D,
LVCMOS18U, LVCMOS18D,
LVCMOS15U, LVCMOS15D.

Type of Buffer

Table 6-3. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_IO/ LPM_IB_IO (Flash) Input Buffers

LPM_HINT

INBUF / IB (Flash) Regular Input Buffers

INBUF_SP (Axcelerator Only) Special Input Buffers

INBUF_PU (Axcelerator Only) Pull-up Input Buffers

INBUF_PD (Axcelerator Only) Pull-down Input Buffers

Table 6-2. Parameter Description (Continued)

Parameter Value Function
61

Output Buffers

Features • Parameterized for data width

• Choice of buffers (Regular, Special)

Family support ACT2/1200XL, ACT3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator

Description ACTgen generates different types of Output Buffers with specified data
width.

Table 6-4. Port Description

Port Name Size Type Req/Opt Function

Data/A (Flash) WIDTH Input Req. Input Data

PAD WIDTH Output Req. Output Data

Table 6-5. Parameter Description

Parameter Value Function

WIDTH 1-99 (Limit may vary depending
on the family) Data Width

VOLT (Flash Only) 0,1,2,3,4,5

Choice of different voltage
levels. 3.3v(PCI), 3.3v & Low
Strength, 2.5v & High
Strength, 2.5v & Low
Strength, 2.5v(Low Power) &
High Strength, or 2.5v(Low
Power) & Low Strength
62

Output Buffers
SLEW 0,1,2 Choice of different slew
rates. Low, Normal or High

TYPE
(Axcelerator Only)

REG, S_8, S_12, S_16, S_24,
F_8, F_12, F_16, F_24,
LVCMOS25, LVCMOS18,
LVCMOS15, PCI, PCIX,
GTLP25, GTLP33, HSTL_I,
HSTL_II, SSTL3_I, SSTL3_II,
SSTL2_I, SSTL2_II, LVDS,
LVPECL.

Type of Buffer Note : "S" in
S_* denotes Low Slew Rate
and "F" in F_* denotes High
Slew Rate. Also 8,12,16,24
denote Output drive
strengths of 1x, 2x, 3x, 4x
respectively

Table 6-6. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_IO / LPM_OB_IO (Flash) Output Buffers

LPM_HINT
OUTBUF / OB (Flash) Regular Output Buffers

OUTBUF_SP (Axcelerator Only) Special Output Buffers

Table 6-5. Parameter Description (Continued)

Parameter Value Function
63

Bi-Directional Buffers

Features • Parameterized for data width

• Choice of buffers (Regular, Special, Pull-up, Pull-down)

Family support ACT2/1200XL, ACT3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator

Description ACTgen generates different types of Input Buffers with specified data
width.

Table 6-7. Port Description

Port Name Size Type Req/Opt Function

PAD WIDTH Inout Req. Inout Data

Data / A (Flash) WIDTH Input Req. Input Data

Trien / ENABLE (Flash) 1 Input Req. Enable

Y WIDTH Output Req. Output Data

Table 6-8. Parameter Description

Parameter Value Function

WIDTH 1-99 (Limit may vary depending on
the family) Data Width
64

Bi-Directional Buffers

VOLT (Flash Only) 0,1,2,3,4,5

Choice of different voltage levels.
3.3v(PCI), 3.3v & Low Strength,
2.5v & High Strength, 2.5v & Low
Strength, 2.5v(Low Power) &
High Strength, or 2.5v(Low
Power) & Low Strength

SLEW (Flash Only) 0,1,2 Choice of the slew rates: Low,
Normal, or High

PULLUP NO / YES Choice of Pull up version

TRIEN_POLARITY /
EN_POLARITY
(Flash)

0,1 Enable Polarity

TYPE (Axcelerator
Only)

REG, S_8, S_12, S_16, S_24, F_8,
F_12, F_16, F_24, LVCMOS25,
LVCMOS18, LVCMOS15, PCI,
PCIX, GTLP25, GTLP33, S_8U,
S_12U, S_16U, S_24U, F_8U,
F_12U, F_16U, F_24U, S_8D,
S_12D, S_16D, S_24D, F_8D,
F_12D, F_16D, F_24D,
LVCMOS25U, LVCMOS25D,
LVCMOS18U, LVCMOS18D,
LVCMOS15U, LVCMOS15D,
HSTL_I, SSTL2_I, SSTL2_II,
SSTL3_I, SSTL3_II

Type of Buffer. Note : "S" in S_*
denotes Low Slew Rage and "F" in
F_* denotes High Slew Rate. Also
8,12,16,24 denote Output drive
strengths of 1x, 2x, 3x, 4x respec-
tively

Table 6-9. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_IO / LPM_IOB_IO Bi-directional Buffers

Table 6-8. Parameter Description (Continued)

Parameter Value Function
65

ACTgen Macros
LPM_HINT

BIBUF / IOB, GLMIOB
(Flash)

Regular Bi-directional Buffers / IO
pad with Global Connection, Two
Multiplexed Pads & Global Con-
nection (Flash)

BIBUF_SP (Axcelerator Only) Special Bi-directional Buffers

BIBUF_PU (Axcelerator Only) Pull-up Bi-directional Buffers

BIBUF_PD (Axcelerator Only) Pull-down Bi-directional Buffers

Table 6-9. Implementation Parameters (Continued)

Parameter Value Function
66

Tri-State Buffers

Features • Parameterized for data width

• Choice of buffers (Regular, Special, Pull-up, Pull-down)

Family support ACT2/1200XL, ACT3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator

Description ACTgen generates different types of Input Buffers with specified data
width.

Table 6-10. Port Description

Port Name Size Type Req/Opt Function

PAD WIDTH Inout Req. Inout Data

Data / A (Flash) WIDTH Input Req. Input Data

Trien / ENABLE (Flash) 1 Input Req. Enable

Table 6-11. Parameter Description

Parameter Value Function

WIDTH 1-99 (Limit may vary depending on
the family) Data Width

VOLT (Flash Only) 0,1,2,3,4,5

Choice of different voltage levels. 3.3v
(PCI), 3.3v & Low Strength, 2.5v &
High Strength, 2.5v & Low Strength,
2.5v (Low Power) & High Strength, or
2.5v (Low Power) & Low Strength
67

ACTgen Macros

SLEW (Flash Only) 0,1,2 Choice of the slew rates: Low, Normal,
or High

TRIEN_POLARITY /
EN_POLARITY
(Flash)

0,1 Enable Polarity

TYPE (Axcelerator
Only)

REG, S_8, S_12, S_16, S_24, F_8,
F_12, F_16, F_24, LVCMOS25,
LVCMOS18, LVCMOS15, PCI,
PCIX, GTLP25, GTLP33, S_8U,
S_12U, S_16U, S_24U, F_8U, F_12U,
F_16U, F_24U, S_8D, S_12D,
S_16D, S_24D, F_8D, F_12D,
F_16D, F_24D, LVCMOS25U,
LVCMOS25D, LVCMOS18U,
LVCMOS18D, LVCMOS15U,
LVCMOS15D, HSTL_I, SSTL2_I,
SSTL2_II, SSTL3_I, SSTL3_II

Type of Buffer. Note : "S" in S_*
denotes Low Slew Rage and "F" in
F_* denotes High Slew Rate. Also
8,12,16,24 denote Output drive
strengths of 1x, 2x, 3x, 4x respectively

Table 6-12. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_IO / LPM_OB_IO Tri-State buffers

LPM_HINT

TRIBUFF / OTB (Flash) Regular Tri-State Buffers

TRIBUFF_SP (Axcelerator Only) Special Tri-State Buffers

TRIBUFF_PU (Axcelerator Only) Pull-up Tri-State Buffers

TRIBUFF_PD (Axcelerator Only) Pull-down Tri-State Buffers

Table 6-11. Parameter Description (Continued)

Parameter Value Function
68

Global Buffers

Features • Parameterized for data width

• Choice of buffers (Regular, Multiplexed, Internal Driver)

Family support 500K, PA

Description ACTgen generates different types of Input Buffers with specified data width.

Table 6-13. Port Description

Port Name Size Type Req/Opt Function

PAD WIDTH Input Req. Inout Data

A WIDTH Input Req. Input Data

ENABLE 1 Input Req. Enable

GL 1 Output Req. Output Data

Y WIDTH Output Req. Output Data

Table 6-14. Parameter Description

Parameter Value Function

WIDTH 1-499 (Limit may vary
depending on the type) Data Width

VOLT 0,1,2 Choice of different voltage levels:
3.3V, 2.5V, 2.5V (Low Power)

PULLUP NO / YES Choice of Pull-up version
69

ACTgen Macros

Table 6-15. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_GL_IO All buffers

LPM_HINT

GL Standard Global buffer

GLIB Standard Global buffer w/ an Input bufer

GLMIB Standard Global buffer with Multiplexed
Input buffer

GLINT Global internal driver
70

PECL Global Buffers

Features • Parameterized for data width

• Choice of buffers (Direct to Global, Multiplexed with Internal Signal)

Family support PA

Description ACTgen generates different types of Input Buffers with specified data width.

Table 6-16. Port Description

Port Name Size Type Req/Opt Function

PECLIN WIDTH Input Req. Input Data

PECLREF WIDTH Input Req. Reference Data

A WIDTH Input Req. Input Data

ENABLE 1 Input Req. Enable

GL WIDTH Output Req. Output Data

Y WIDTH Output Req. Output Data

Table 6-17. Parameter Description

Parameter Value Function

WIDTH 1-2 Data Width
71

ACTgen Macros

Table 6-18. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_GLPE_IO PECL Global buffers

LPM_HINT
GLPE Direct to Global

GLPEMIB Multiplexed with Internal Signal
72

PerPin FIFO

Features • Parameterized for Data Width
and almost Full/Empty Values.

• Choice of generating with Input or
Output pads

• Choice of generating with or
without a Controller

• Choice of Dedicated or Core Logic
controller

• Asynchronou, or synchronous write

• Rising edge triggered or level sensitive

• Supported netlist formats:
VHDL and Verilog

Family support Axcelerator

Description ACTgen can generate Input or Output PerPin FIFOs with or without a
Controller parameterized depending on the 'Width' parameter.

When generating PerPin FIFOs with a Controller, you can specify almost full
(AfVal) and almost empty (AeVal) values in the GUI. You can choose two
types of controllers: either an Embedded PerPin FIFO controller or one that is
generated using core logic.

The maximum number of PerPin FIFOs that a single Embedded controller can
control is 26. ACTgen restricts generation of PerPin FIFOs with Embedded
Controllers to a Max. Width of 26. The number of PerPin FIFOs that can be
controlled using the core logic controller depends entirely on the available
resources and PerPin FIFOs in the chip, hence there is no restriction on the
core logic controller option. AeVal and AfVal accept any value between 1 and
63.

An I/O FIFO Embedded controller can support upto 26 PerPin FIFOs
depending on the die size and the location of the PerPin FIFO on the die.

DATA

WE

RE

Q

FULL

AFULL

EMPTY

AEMPTY
RClock

CLR

WClock

With
Controller

Option
73

ACTgen Macros
Please note that if more than 26 PerPin FIFOs are to be used, there will be 2
separate set of flags from each Embedded PerPin FIFO controller.

Table 6-19. Port Description

Port Name Size Type Req/Opt Function

DATA WIDTH Input Req. Input Data

Q WIDTH Output Req. Output Data

WE 1 Input Req. Write Enable

RE 1 Input Req. Read Enable

Rclock 1 Input Req. Read Clock

WClock 1 Input Req. Write Clock

CLR 1 Input Req. Clear Signal

FULL 1 Output Opt. Full Flag

AFULL 1 Output Opt. Almost Full Flag

EMPTY 1 Output Opt. Empty Flag

AEMPTY 1 Output Opt. Almost Empty Flag

Table 6-20. Parameter Description

Parameter Value Function

WIDTH

2-26 Data Width with Dedicated Controller

1-128 Data Width without a Controller or with Core Logic
Controller

AEVAL 0-62 For Almost Empty Value Flag

AFVAL 1-63 For Almost Full Value Flag
74

PerPin FIFO

CTL 0,1 Dedicated or Core Logic Controller

PORT* <Port Names> Optional - Can be used if port name needs to be changed

Table 6-21. Implementation Parameters

Parameter Value Function

LPMTYPE

LPM_IOFIFO_I_NC Input IOFIFO with no Controller

LPM_IOFIFO_O_NC Output IOFIFO with no Controller

LPM_IOFIFO_I_C Input IOFIFO with Controller

LPM_IOFIFO_O_C Output IOFIFO with Controller

LPM_HINT

IR, ISP, IPU, IPD, ILV Input IOFIFO - With Regular, Special, Pull
up, Pull down input buffers

OR_NC, OSP_NC,
OLV_NC

Output IOFIFO - With Regular, Special,
LVDS/LVPECL output buffers

IR_C, ISP_C, IPU_C,
IPD_C, ILV_C

Input IOFIFO - With Regular, Special, Pull
up, Pull down input buffers

OR_C, OSP_C,
OLV_C

Output IOFIFO - With Regular, Special,
LVDS/LVPECL output buffers

Table 6-20. Parameter Description (Continued)

Parameter Value Function
75

Dual Data Rate Register

Features • Parameterized for Data Width
and almost Full/Empty Values

• Choice of Input buffers

Family support Axcelerator

Description ACTgen can generate Dual Data Rate Registers parameterized for a specific
Data Width and with a choice of the type of Input Buffers.

PAD PRE

E

QR

QF

CLK

CLR

Table 6-22. Port Description

Port Name Size Type Req/Opt Function

PAD WIDTH Input Req. Input Data

QR WIDTH Output Req. Output Data

QF WIDTH Output Req. Ouput Data

E 1 Input Req. Enable

CLK 1 Input Req. Clock

CLR 1 Input Req. Clear

PRE 1 Output Req. Preset
76

Dual Data Rate Register

Table 6-23. Parameter Description

Parameter Value Function

WIDTH 1-128 Data Width

DDR 0,1 0 for DDR Register and 1 for DDR FIFO

Table 6-24. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_DDR DDR Register / FIFO category

LPM_HINT

DDR DDR Register with Regular Input buffers

DDR_SP DDR Register with Special Input buffers

DDR_PU DDR Register with Pull-up Input buffers

DDR_PD DDR Register with Pull-down Input buffers
77

Dual Data Rate FIFO

Features • Parameterized for Data Width

• Choice of Input buffers

Family support Axcelerator

Description ACTgen can generate Dual Data Rate FIFOs parameterized for specified Data
Width and with a choice of Input Buffers.

RE

RCLK

WD

WE

QR

QF

WCLK

CLR

FULL

AFULL

EMPTY

AEMPTY

With
Controller

Option

Table 6-25. Port Description

Port Name Size Type Req/Opt Function

PAD WIDTH Input Req. Input Data

QR WIDTH Output Req. Output Data

QF WIDTH Output Req. Ouput Data

REN 1 Input Req. Read Enable

WEN 1 Input Req. Write Enable

RCLK 1 Input Req. Read Clock

WCLK 1 Input Req. Write Clock

CLR 1 Input Req. Clear

FULL 1 Input Opt. Full Flag

AFULL 1 Input Opt. Almost Full Flag

EMPTY 1 Input Opt. Empty Flag
78

Dual Data Rate FIFO

AEMPTY 1 Input Req. Almost Empty Flag

Table 6-26. Parameter Description

Parameter Value Function

WIDTH
2-26 Data Width with Dedicated Controller

1-128 Data Width without a Controller or with Core Logic Controller

AEVAL 1-63 For Almost Empty Value Flag

AFVAL 1-63 For Almost Full Value Flag

CTL 0,1 Dedicated or Core Logic Controller

DDR 1 1 for DDR FIFO

Table 6-27. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_DDR DDR FIFO category

LPM_HINT

DDRF/DDR DDR FIFO with Regular Input buffers; note
that the ‘F’ denotes ‘with controller’

DDRF_SP/DDR_SP DDR_FIFO with Special Input buffers

DDRF_PU/DDR_PU DDR FIFO with Pull-up Input buffers

DDRF_PD/DDR_PD DDR FIFO with Pull-down Input buffers

Table 6-25. Port Description (Continued)

Port Name Size Type Req/Opt Function
79

7
Logic
80

Logic (AND)

Features • Parameterized AND size
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA

Description

Data Result

Table 7-1. Port Description

Port Name Size Type Req/Opt Function

Data SIZE input Req. Input data

Result 1 output Req. output

Table 7-2. Parameter Description

Parameter Value Function

SIZE 2-64 Word length of data

RESULT_POLARITY 0 1 Output polarity (active
low or active high)

Table 7-3. Functional Descriptiona

a. result is active; highresult is active high

Data Result

m m[0] and m[1] and … and m[SIZE-1]
81

Logic (OR)

Features • Parameterized OR size
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, Axcelerator

Description

Data Result

Table 7-4. Port Description

Port Name Size Type Req/Opt Function

Data SIZE input Req. input data

Result 1 output Req. output

Table 7-5. Parameter Description

Parameter Value Function

SIZE 2-64 Word length of data

RESULT_POLARITY 0 1 Output polarity (active low
or active high)

Table 7-6. Functional Descriptiona

a. result is active high

Data Result

m m[0] or m[1] or … or m[SIZE-1]
82

Logic (XOR)

Features • Parameterized XOR size
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, Axcelerator

Description

Data Result

Table 7-7. Port Description

Port Name Size Type Req/Opt Function

Data SIZE input Req. input data

Result 1 output Req. output

Table 7-8. Parameter Description

Parameter Value Function

SIZE 2-64 Word length of data

RESULT_POLARITY 0 1 Output polarity (active low
or active high)

Table 7-9. Functional Descriptiona

a. result is active high

Data Result

m m[0] xor m[1] xor … xor m[SIZE-1]
83

8
Multiplexer
84

Multiplexer

Features • Parameterized word length
• Parameterized multiplexer input

number
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, Axcelerator

Description

Data Result

SEL

Table 8-1. Port Description

Port Name Size Type Req/Opt Function

Data0_port WIDTH Input Req. Input data

Data1_port WIDTH Input Req. Input data

… … … … …

DataSIZE-1_port WIDTH Input Req. Input data

Sel0 1 Input Req. Select line

Sel1 1 Input Req. Select line

… … … … …

SelSIZELN-1 1 Input Req. Select line

Result WIDTH Output Req. output

Table 8-2. Parameter Description

Parameter Family Value Function

WIDTH
APA, 500K 1-48

Word length of Data
All Others 1-32

SIZE All 2-32 Number of data inputs
85

ACTgen Macros
Table 8-3. Functional Description

Data0 Data1 … DataSIZE-1 Sel0 Sel1 … SelSIZELN-1 Result

m0 m1 … mSIZE-1 0 0 … 0 m0

m0 m1 … mSIZE-1 1 0 … 0 m1

… … … … … … … … …

m0 m1 … mSIZE-1 1 1 … 1 mSIZE-1
86

9
Minicores
87

FIR Filter

Features • Variable input data width:
2 to16 bit input data

• Variable output data width:
3 to 64 bit output data

• Support for up to 64 taps

• Support of symmetric coefficients

• Optional IO insertion

• Optional registers for filter in-
and output

• Verilog RTL model for simulation

• VHDL RTL model for synthesis1

Family support 54SX, 54SX-A, 500K, PA, Axcelerate

Design Flow An overview of the design flow required for the FIR filter is shown in
Figure 9-1.

Figure 9-1. FIR Filter Design Flow

1. Synthesized filter designs are usually slower, but more compact.

Data Qout

Aclr

Clock

System Level
Design Tool

ACTgen

Designer

.gen File w/
Implementation

Parameters

FIR.edn

TOP.ednFPGA
88

FIR Filter
Generate the filter coefficients and other implementation parameters using a
system level design tool (like Matlab). This information is made available for
ACTgen in form of a <design>.gen file. .

From that point on it follows the regular design flow as described in the Actel
Quick Start Guide.

Description The ACTgen FIR-filter macro supports symmetric, high-speed, parallel FIR-
filters with up to 64 time taps.

Figure 9-2. Tap Transposed from FIR Filter

The architecture is a variation of the "transposed form" of the FIR-filter as
shown in Figure 9-2, making use of ACTgen's signed Constant Multiplier. The
data is assumed to be signed. Data- and coefficient widths are the same
(D_WIDTH).

Figure 9-2 suggests that coefficients with a value of 0 are desirable for this type
of architecture, since they will not generate any multiplication hardware.
"Halfband" filters are trying to maximize the number of 0-coefficients and
might result in significant area savings over regular filters of the same order .

* * * * *
C0C1C2C3C4

Data

Qout
89

ACTgen Macros
The output width O_WIDTH has no impact on the filter size. Internally,
ACTgen always uses the maximum precision filter, unless specified otherwise
using the internal precision parameter PREC. If you set O_WIDTH to 0,
ACTgen usese the maximum output resolution (MAX_RES). For values of
O_WIDTH greater than MAX_RES the result is sign-extended. For values of

Table 9-1. Port Description

Port Name Size Type Req/Opt? Function

Data D_WIDTH input Req. Input Data

Clock 1 input Req. Filter clock

Aclr 1 input Opt. Asynchronous Clear

Qout O_WIDTH input Req. Filter output = Σ χι * δι

Table 9-2. Parameter Description

Parameter Value Function

D_WIDTH 3 .. 16 Input Data Width

O_WIDTH 3 .. 64 Output Data Width

TAPS 3 .. 64 Number of time taps

CLK_EDGE RISE FALL Clock sensitivity

CLR_POLA 2 0 1 None, active high, active low

PREC Internal precision

INSERT_PAD NO YES Pad insertion

INSERT_IOREG NO YES Register inputs and outputs

C1 … C32 0 .. 2C_WIDTH 2's complement coefficients (integers)
90

FIR Filter
O_WIDTH smaller than MAX_RES ACTgen cuts some of the lower bits. An
upper estimate for MAX_RES is

For example a 12-tap filter with 8-bit data and coefficients might yield up to (8
+ 8 + 4) bit = 20 bit output resolution.

The coefficients C1 to C16 are positive integers, which will be interpreted as
two's complement numbers. That means 0 to
2C_WIDTH-1-1 are considered positive, and 2C_WIDTH-1 to 2C_WIDTH-1 will be
interpreted as negative numbers.

Only unique coefficients need to be specified properly, all other coefficients
need to be set to any value, e.g. "0". An N-tap filter requires (N / 2) + (N % 2)
unique coefficients.

Only unique coefficients need to be specified properly, all other coefficients
need to be set to any value, e.g. "0". An N-tap filter requires (N / 2) + (N % 2)
unique coefficients.

Table 9-3. Parameter Rules

Family Variation Parameter rules

All FIR2 PREC >= O_WIDTH

54SX, 54SX-A All O_WIDTH <= 32

54SX, 54SX-A All TAPS <= 32

Table 9-4. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_FIR FIR-filter category

LPM_HINT
FIR1 Basic Options

FIR2 Advanced Options

MAX_RES 2 D_WIDTH 2 TAPS()log+×≤
91

ACTgen Macros
Internal Precision (PREC) specifies the minimum number of bits

• For the time tab registers

• From multiplier outputs kept for further processing

• From adder outputs kept for further processing

Currently the RTL-model does not reflect the PREC parameter, so there may
be differences between the simulated output of the structural netlist and the
RTL-model for the low-order bits.

Integer Values Coefficient File

The Integer Values Coefficient File consists of the conversion of the quantized
coefficients into regular integers. This file can be directly imported into
ACTgen.

Table 9-5. Internal Precision (PREC)

Variation Value Description

Basic Options 97, 0 Maximum output resolution, same as O_WIDTH

Advanced Options PREC See parameter rules

Table 9-6. Sample Integer Coefficient File

2048
2037
0
48
2048
1892
0
630
1026
630
0
1892
2048
48
0
2037
2048
92

CRC Minicore

Features • General-purpose cyclic redundancy Code generator

• Fully synchronous, single clock operation (over 100 MHZ for many
configurations)

• Parameterized arbitrary polynomial (from 1 up to 64-bit)

• Parameterized data input width

• Parameterized register initialization

• Parameterized bit and byte ordering

• Parameterized bit pattern for CRC output XOR with

Family support SX, Axcelerator

Description CRC Minicore is a universal Cyclic Redundancy Check (CRC) Polynomial
generator that validates data frames and ensures data integrity during data
transmission.

To meet different application requirementa, CRC minicore provides many
different configuration parameters. These parameters include Data Width,
Register Initialization, and CRC output data characteristics.

• Data width specifies the number of bits upon which CRC Minicore generates
the CRC value in a single clock cycle. For example, 8 bit data width CRC32
performs CRC calculations on 8 bit per clock.

• Register Initialization provides the seed value for CRC generation.

• CRC data characteristics parameters provide designers great flexibility of
CRC data characteristics.

Thus, the parameter of CRC output XOR bit pattern controls how the CRC
value is inverted before it is injected into the data stream. Although CRC
Minicore generator (ACTgen) provides seven commonly used CRC
polynomials, it does provide polynomial parameters (size and value) for any
other generic CRC creation. The polynomial size can span from 1-bit to 64-
bit.
93

ACTgen Macros

Table 9-7. XOROUT Configuration

XOROUT Description

1 All bits are not inverted (000000000) xor CRC

2 All bits are inverted (..FFFFFFFF) xor CRC

3 Even bits are inverted, odd bits are not inverted (….10101010) xor CRC

4 Odd bits are inverted, even bits are not inverted (….01010101) xor CRC

Table 9-8. CRC Operation Control

rst_n init_n enable Description

0 x x A synchronous reset, set to initial register value

1 0 x Synchronous initialize

1 1 0 Disable, register maintain the current value

1 1 1 Generate CRC on the input data

Table 9-9. Port Description

Port Name width Description

CLK 1 Clock port

rst_n 1 Asynchronous reset

init_n 1 Synchronous load CRC value

enable 1 CRC enable/disable control

data_in Data_width Input data word

CRC_in Poly_size CRC value to be load in
94

CRC Minicore
CRC_out Poly_size Generated CRC value

Table 9-10. Standard CRC Generator Parameters - Description

Name Poly_width Poly_value
(HEX) initial xorout

CRC32 32 04C11DB7 FFFF.. FFFFFF....

CRC16/ARC 16 1005 FFFF... FFFFF....

CCIT CRC16 16 1021 FFFF…. FFFFFF….

CANBUS 16 4599 FFFFF... FFFFF....

ATM CRC10 10 233 FFFFF... FFFFF....

ATM CRC8 8 7 FFFF…. FFFFF..….

kermit 16 8408 000000… 000000000

Table 9-9. Port Description (Continued)

Port Name width Description
95

10
PLLs
96

PLL for ProASICPLUS

You can use ACTgen to configure PLLs according to your needs, and generate
a netlist that has a PLL primitive instantiated with the correct specified
configuration

Features • Clock Delay Adjustment

• Clock Frequency Synthesis

• Clock Phase Shifting

Family Support PA

Parameter
Description

Table 10-1. Parameter Description

Parameter Value Function

CLKS 1 2 Primary or Both outputs

FIN 1.5 - 240 MHz Input Frequency

PRIMFREQ 1.5 - 240 MHz Primary Output Frequency

PDELAYVAL 0 - 8 ns Primary Delay value, in steps of .25 ns

PDELAYSIGN 0 1 Positive or Negative primary delay

PPHASESHIFT 0 90 180 270 Primary Phase-shift

PBYPASS 0 1 No Yes. Primary Bypass

FIN2 1.5 - 240 MHz Secondary Input Frequency, Only if PLL is
bypassed for Secondary Output

SECFREQ 1.5 - 240 MHz Primary Output Frequency

SDELAYVAL 0 - 8 ns Primary Delay value, in steps of 0.25 nsa

SDELAYSIGN 0 1 Positive or Negative primary delay

SPHASESHIFT 0 90 180 270 Primary Phase-shift

SBYPASS 0 1 No Yes. Primary Bypass
97

ACTgen Macros
Summary of the menu items available when you generate a PLL for
ProASICPLUS.

Configuration - Dynamic or Static Configuration

In dynamic mode, designers are able to set all the configuration parameters
using either the external JTAG port or an internally-defined serial interface.
The dynamic-mode PLL can be switched to static mode during operation by
just changing a mode selection bit. This way you can have one stable static
configuration, yet for selected sequences of events, you can switch to dynamic
mode and run the clock at a different frequency if required. For the Dynamic
mode, ACTgen is used to specify a stable default configuration.

Input Clock Frequency - Floating point value between 6.0 and 240 MHz

Primary Clock Frequency - Floating point value between 6.0 and 240
MHz. If the specified frequency cannot be achieved, the closest approximate
frequency is provided. There are some restrictions on the possible values of this
frequency even in the specified range, based on the PLLCORE limitations.
ACTgen takes all these limitations into consideration when generating a PLL. If
the specified frequency cannot be achieved, the closest approximate frequency
will be provided..

Bypass PLL in Primary Clock - Selecting this checkbox bypasses the PLL
for the primary clock. This feature enables you to bypass the PLLCORE
functionality and use the surrounding divider and delay elements. When the
PLL is bypassed, the primary clock frequency must be equal to or be 1/2, 1/3
or ¼ of input frequency, as only a divider is available in the output path.

FB
Internal
Deskewed
External

Feedback

CONF STATIC
DYNAMIC Configuration

a. In the GUI, the delay is entered directly as a value between -3.75 and +3.75 without breaking
it into sign and value

Table 10-1. Parameter Description (Continued)

Parameter Value Function
98

PLL for ProASICPLUS
Primary Clock Phase Shift - Supports 4 values 0, 90, 180, 270 degrees.
Not valid when PLL is bypassed for primary clock. The secondary clock cannot
be phase-shifted.

Primary Clock Delay - This is a floating point between -4.0 and 8.0 with
increments of 0.25. When PLL is bypassed for primary clock, only 0, 0.25, 0.5
and 4 ns are valid delays.

Secondary Clock Input Frequency - Floating point value between 1.5
and 240 MHz. This is valid only when secondary clock is selected and PLL is
bypassed.

Secondary Clock Output Frequency - Floating point value between 1.5
and 240 MHz. This is valid only when secondary clock is selected. If the
specified value cannot be achieved, the closest approximate frequency will be
provided.

Bypass PLL in Secondary clock - Selecting this checkbox bypasses the
PLL for secondary clock. When the PLL is bypassed, the secondary clock
frequency must be equal to or be 1/2, 1/3 or ¼ of secondary input frequency.
This feature allows the user to bypass the PLLCORE functionality and use the
surrounding divider and delay elements.

Secondary Clock Delay - This is a floating point between -4.0 and 8.0 with
increments of 0.25. When PLL is bypassed for secondary clock, only 0, 0.25,
0.5 and 4 ns are the valid delays.

Feedback - A radio button to select between Internal, External and
Deskewed feedback.

The clock-conditioning circuitry enables you to implement the feedback clock
signal using either the output of the PLL, an internally generated clock, or an
external clock. When external feedback is selected, an additional port EXTFB
is made available to the user to drive the feedback . The internal feedback signal
can be further delayed by a fixed amount designed to emulate the delay through
the chip’s clock tree. This allows for clock-line de-skewing operations. This
99

ACTgen Macros
delay is included in the feedback path when deskewed feedback is chosen. This
value is dependent on the device you are using.

For more detailed information on the various features of the APA PLL, please
refer to Using ProASICPLUS Clock Conditioning Circuits and the ProASICPLUS
PLL Dynamic Reconfiguration Using JTAG application notes at http://
www.actel.com.

Table 10-2. Port Description

Name Size Type Req/Opt Function

GLA 1 Output Opt Secondary clock output

GLB 1 Output Req Primary clock output

LOCK 1 Output Req PLL Lock

SDOUT 1 Output Req Output of serial interface shift register

CLK 1 Input Req Input clock for primary clock

CLKA 1 Input Opt Input clock for secondary clock. Valid
only in Bypass Mode

EXTFB 1 Input Opt External Feedback

SCLK 1 Input Opt Shift Clock (Only Dynamic Mode)

SSHIFT 1 Input Opt Serial Shift enable (Only Dynamic Mode)

SDIN 1 Input Opt Serial Data in for PLL configuration bits
(Only Dynamic Mode)

SUPDATE 1 Input Opt Serial Update (Only Dynamic Mode)

MODE 1 Output Opt Dynamic or Static mode indicator
100

Axcelerator PLL

Features • Clock Delay Minimization

• Clock Frequency Synthesis

• Programmable delay lines for clock delay adjustment

• 6-bit divider in the feedback path for clock multiplication

• 6-bit divider in one of the output paths for clock division

• Cascadable up to 2 PLLs

Family support Axcelerator

Description The Axcelerator PLL has two main features. They are:

• Clock Delay Minimization

In this mode the PLL can perform either a positive or negative clock delay
operation of up to 3.75ns in increments of 250ps before or after the clock
edge of the incoming reference clock. The value of the delay is programmable
via the five bits of the DelayLine bus.

• Clock Frequency Synthesis

The multiplier and divider can be used together to synthesize a wide range of
output frequencies from the reference clock. Input frequencies are allowed
to be in the range of 14 MHz to 200 MHz. Multiplication and division factors
are integers in the range of 1 to 64. The maximum allowable output frequency
is 1 GHz. The output duty cycle is fixed at 50/50.

Cascading
Blocks

The device supports cascading of up to 2 PLLs.
101

ACTgen Macros
Table 10-3. Port Description

Name Size Type Req/Opt Function

RefClk 1 Input Req Reference Clock

PWRDN 1 Input Req Power Down

Lock 1 Output Req PLL Lock

FB 1 Input Opt Feedback (only external feedback)

CLK(freq) 1 Output Opt Clk1 with the required freq

CLK(freq) 1 Output Opt CLK2 with the required freq

Table 10-4. Parameter Description

Parameter Value Function

LPMTYPE LPMPLL PLL category

LPM_HINT

PRIM Only primary output

SEC Only secondary output

BOTH Both outputs

FB Internal External Feedback

IFREQ 14.0 - 200.0 MHz Input Frequency

PFREQ 14.0 - 1000.0 Primary Clock freq

SFREQ 14.0 - 1000.0 Secondary Clock freq

DT STATIC DYNAMIC Delay type

DELAYSIGN +ve -ve Positive or negative delay

DELAYVALUE 0 - 3.75 ns In steps of 250 psa
102

Axcelerator PLL
Description

The Axcelerator family provides eight PLLs, four on the north side and four on
the south side of the device. The outputs of the north-side PLLs can be
connected to either hard-wired clock networks or regular nets. The outputs of
the south-side PLLs can be connected to either routed clock networks or
regular nets. The Axcelerator family PLLs have many outstanding features,
including the following:

• PLLs can multiply and/or divide the reference clock frequency by factors
ranging from1 to 64. As a result, there are many available output frequencies
for each PLL, based on the input frequency. ACTgen automatically calculates
the values of the multiplier and divider based on the Input and Output
frequencies specified. If the exact value cannot be achieved, ACTgen
generates the output frequency that is the closest possible to the required
value.

• PLLs are capable of inserting programmable delays on the REFCLK from –
3.75ns to +3.75ns with the steps of 250ps. The delay is programmed either
statically or dynamically. Dynamic programming means that you can change
the delay value during the operation when the device is functional. If you
select the dynamic delay, then the 5-bit Delay Line port is added to the
generated code and accessible to you.

Refclk is the reference input to the PLL. The frequency of Refclk can vary from
14 MHz to 200 MHz. The reference can be supplied from a dedicated pad or an
internal net.

CASCADE YES NO Cascade 2 PLLs to achieve the required output fre-
quency

REFCLKPAD DEDICATED EXTERNAL Source of REFCLK, the Dedicated Pad, or any
external net

CLK1OUT HW RC RN Clock network to which PLL is connected, Hard-
wired Clock, Routed Clock, or Routed Net

a. In the GUI, the delay is entered directly as a value between -3.75 and +3.75 without breaking
it into sign and value

Table 10-4. Parameter Description

Parameter Value Function
103

ACTgen Macros
You can select to have an internal or external feedback. Selecting an external
feedback adds a port (named FB) to the PLL block, through which the external
feedback is passed into the PLL and the internal feedback is blocked.

Clk(freq) are the output signals from the PLL. The CLK(primary) is defined as
refclk * i/j where i is the multiplier and j is the divider. CLK(secondary) is
defined as refclk * i

Cascading

Cascading is an option that helps you generate a wider range of output
frequencies. If cascading is set to No and the output frequency is chosen as a
value that cannot be achieved by fREF * i/j, then the PLL will try to set i and j
in order to reach to the closest vicinity of the desired frequency. If cascading is
set to Yes, then for the conditions in which the desired frequency is
unattainable by a single PLL, another PLL will be cascaded to the first PLL and
then the final output frequency is:

In cascading PLLs, the input frequency of each PLL should remain in the range
of 14 MHz to 200 MHz.

You must specify the desired output frequencies and the networks that the
outputs should drive for the PLL outputs CLK1 and CLK2. Note that if
cascading is disabled, the CLK2 frequency can only be a multiple of the
reference frequency. As mentioned earlier, if the selected values for output
frequencies cannot be achieved, they will be set to the closest possible
frequency.

For each output, there are three routing resources. Hard-wired is the HCLK
network which reaches to the clock input of R-cells. Selecting a hard-wired
output for the PLL implies that the PLL should be located at the north side of
the device. If one of the outputs is connected to hard-wired global network, the
routed clock network cannot be chosen as the second output because the
routed clock network is only accessible by the PLLs on the south side. ACTgen

fout fREF
i1
j1
----- 

  i2
j2
----- 

 ××=
104

Axcelerator PLL
helps you select the output type by keeping the possible outputs active and
disabling the illegal combinations (Table 10-5).

Table 10-5. Basic PLL Architecture in Axcelerator Devices

For more detailed information on the various features of the Axcelerator PLL,
please refer to the Axcelerator Family PLL and Clock Management application note
at http://www.actel.com.

Delay Line

PLL

Delay Line

RefCLK

FB

/i

6

/j

6

CLK1

PowerDown

Lock

CLK2

/i Delay
Match

/i Delay
Match

FBMuxSel

5

DividerIDelayLine

DividerJ

LowFreq

3

Osc

155 MHz

0

1

105

11
Register (Storage Elements)
106

Storage Register

Features • Parameterized word length
• Asynchronous clear
• Synchronous register parallel load
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, Axcelerator

Description Storage registers have a parallel-in/parallel-out (PIPO) architecture.
The registers are WIDTH bits. They are clocked on the rising (RISE) or
falling (FALL) edge of the clock Clock (CLK_EDGE).

The Clear signal (CLR_POLARITY), active high or low, provides an
asynchronous reset of the registers to “000…0”. You may choose to not
implement the reset function.

The Enable signal (EN_POLARITY), active high or low, provides a
synchronous load enable operation with respect to the Clock signal.
You can choose to not implement this function. Storage registers are
then loaded with a new value every clock cycle.

Enable

Clock

Q

Aclr

Data

Table 11-1. Port Description

Port
Name Size Type Req./Opt. Function

Data WIDTH input Req. Register load input

Aclr 1 input Opt. Asynchronous register reset

Enable 1 input Opt. Synchronous Parallel load enable

Clock 1 input Req. Clock

Q WIDTH output Req. Register output bus
107

ACTgen Macros
Table 11-2. Parameter Description

Parameter Family Value Function

WIDTH
500K, PA 1-512

Word length of Data and Q
All other 1-99

CLR_POLARITY ALL 0 1 2 Aclr can be active low, active high or not used

EN_POLARITY ALL 0 1 2 Enable can be active low, active high

CLK_EDGE ALL RISE FALL Clock can be rising or falling

Table 11-3. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 11-4. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DFF Register category

LPM_HINT PIPO Parallel-in/Parallel-out
108

Storage Register

Table 11-5. Functional Descriptiona

a. Assume Aclr is active low, Enable is active high, Clock is rising (edge-triggered)

Data Aclr Enable Clock Q

X 0 X X 0’s

X 1 X ↓ Qn

X 1 0 ↑ Qn

m 1 1 ↑ Qn+1 = m
109

Shift Register

Features • Parameterized word length
• Asynchronous clear
• Synchronous parallel load
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A,
eX, 500K, PA, Axcelerator

Description Shift registers have parallel-in/parallel-out (PIPO), parallel-in/serial-out
(PISO), serial-in/parallel-out (SIPO) and serial-in/serial-out (SISO)
architecture. The registers are WIDTH bits. They are clocked on the
rising (RISE) or falling (FALL) edge of the clock Clock signal
(CLK_EDGE).

The Clear signal (CLR_POLARITY), active high or low, provides an
asynchronous reset of the registers to “000…0”. You may choose to not
implement the reset function.

Shift registers can be loaded with Data. The Enable signal
(EN_POLARITY), active high or low, provides a synchronous load
enable operation with respect to the clock signal Clock. You may
choose to not implement this function. Shift registers are then
implemented in a serial-in mode (SIPO or SISO).

Shift registers have a shift enable signal Shiften (SHEN_POLARITY) that
can be active high or low. When Shiften is active, the register is shifted
internally. The LSB is loaded with Shiftin.

In the current implementation, Enable has priority over Shiften.

Data

Shiftin

Enable

Clock

Q

Shiftout

Aclr

Shiften

Table 11-6. Port Description

Port
Name Size Type Req/Opt Function

Data WIDTH input Opt. Register load input data

Shiftin 1 Input Opt. Shift in signal
110

Shift Register
Aclr 1 input Opt. Asynchronous register reset

Enable 1 input Opt. Synchronous parallel load enable

Shiften 1 input Req. Synchronous register shift enable

Clock 1 input Req. Clock

Q WIDTH output Opt. Register output bus

Shiftout 1 output Opt. Serial output

Table 11-6. Port Description (Continued)

Port
Name Size Type Req/Opt Function

Table 11-7. Parameter Description

Parameter Family Value Function

WIDTH
500K, PA 2-512

Word length of Data and Q
All other 2-99

CLR_POLARITY ALL 0 1 2 Aclr can be active low, active high or not used

EN_POLARITY ALL 0 1 2 Enable can be active low, active high

SHEN_POLARITY ALL 0 1 Shiften can be active low, active high or not
used

CLK_EDGE ALL RISE FALL Clock can be rising or falling

Table 11-8. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

SHEN_FANIN AUTO MANUAL
111

ACTgen Macros
SHEN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 11-9. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DFF Register category

LPM_HINT PIPOS Parallel-in/Parallel-out shift register

PISO Parallel-in/Serial-out shift register

SIPO Serial-in/Parallel-out shift register

SISO Serial-in/Serial-out shift register

Table 11-10. Functional Descriptiona

a. Aclr is active low, Enable is active high, Shiften is active high, Clock is rising.

Data Aclr Enable Shiften Clock Qb

b. For the PISO and SISO implementations, Q is an internal register.

Shiftoutc

c. For the PIPO and SIPO implementations, Shiftout is not present.

X 0 X X X 0 0

X 1 X X ↓ Qn Qn = [WIDTH-1]

X 1 0 0 ↑ Qn Qn = [WIDTH-1]

X 1 0 1 ↑
Qn[WIDTH-
2:0] && Shif-
tin

Qn = [WIDTH-1]

m 1 1 X ↑ Qn+1 = m Qn+1 = m[WIDTH-1]

Table 11-8. Fan-in Control Parameters (Continued)

Parameter Value
112

Barrel Shifter

Features • Parameterized word length

• Standard or pipelined

• Shift right, left or both

• Wrap around or feed bit

• Fixed or programmable shift.

Family Support 54SX, 54SX-A, eX, 500K, PA, Axcelerator

Description The Barrel Shifter can be generated for a fixed shift or range of shift, with
feedbit shift or rotation in left, right, or both directions. The non-pipelined
Barrel Shifter is designed to shift any number of positions at one time. For the
pipelined version it takes log2(MAXSHIFT) clock cycles for the shifted data to
appear at the output.

The architecture is based on 2 to 1 Multiplexors.

Data

Enable

Clock

Q

Aclr

Dir

Table 11-11. Port Description

Port
Name Size Type Req./Opt. Function

Data WIDTH input Req. Register load input

Aclr 1 input Opt. Asynchronous register reset

Dir 1 input Opt For selecting Left or Right shift

RFill 1 input Opt For Right Feed Bit

LFill 1 input Opt For Left Feed Bit

S0,
S1…

Log of
Max.
Shift

input Opt For programmable, depends on
Maximum shift

Enable 1 input Opt. Synchronous Parallel load enable

Clock 1 input Req. Clock

Q WIDTH output Req. Register output bus
113

ACTgen Macros

s

Table 11-12. Parameter Description

Parameter Value Function

WIDTH

2-99 (Pipelined)
2-63 (Standard)
2-99 (PA fixed
programmable)
2-63 (PA range
programmable

Word length of Data and Q

MAXSHIFT 1-32 Maximum Shift length

CLR_POLARITY 0 1 2 Aclr can be active low, active high or
not used

PROG Fixed or Range For a Fixed or Programmable shift

FILL No, Yes Wrap around or Feed a bit

DIRECTION Right Left Both Direction can be Right Left or Both

EN_POLARITY 0 1 2 Enable can be active low, active high

CLK_EDGE RISE FALL Clock can be rising or falling

Table 11-13. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

SEL0_FANIN AUTO MANUAL

SEL0_VAL <val> [default value for AUTO is 6, 1 for MANUAL]
114

Barrel Shifter
Table 11-14. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DFF Register category

LPM_HINT SHIFT, PIPE Standard or Pipelined

Table 11-15. Functional Descriptiona (Standard)

a. Assume Aclr is active low, Enable is active high, Clock is rising

Data Enable Clock Q

M 1 ↑ Qn

M 0 ↑ Mshifted

Table 11-16. Functional Descriptiona (Pipelined)

a. Assume Aclr is active low, Enable is active high, Clock is rising

Data Aclr Enable Clock Q

X 0 X X 0’s

X 1 0 X Qn = Mshifted - log2(MAXSHIFT)

M 1 1 ↑ Qn+1 = Mshifted - log2(MAXSHIFT) + 1
115

Storage Latch

Features • Parameterized word length
• Asynchronous clear
• Synchronous latch enable
• Behavioral simulation model in

VHDL and Verilog

Family Support ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX 54SX, 54SX-A, eX,
500K, PA, Axcelerator

Description Latches have a parallel-in/parallel-out architecture (PIPO). The latches are
WIDTH bits. The latches are gated on the active high (HIGH) or low (LOW)
state of the gate Gate (GATE_POLARITY).

The Clear signal (CLR_POLARITY), when active high or low, provides an
asynchronous reset of the latch to “000…0”. You may choose to not
implement this function.

The Enable signal (EN_POLARITY), when active high or low, provides a
synchronous latch enable operation with respect to the gate Gate. You may
choose to not implement this function. Latches are then loaded with a new
value when both Enable and Gate are active.

Enable

Gate

Q

Aclr

Data

Table 11-17. Port Description

Port
Name Size Type Req/Opt Function

Data WIDTH input Req. Latch load input

Aclr 1 input Opt. Asynchronous latch reset

Enable 1 input Opt. Synchronous parallel latch enable

Gate 1 input Req. Gate input

Q WIDTH output Req. Latch output bus
116

Storage Latch
Table 11-18. Parameter Description

Parameter Family Value Function

WIDTH
500K, PA 1-99

Word length of Data and Q
All other 1-512

CLR_POLARITY ALL 0 1 2 Aclr can be active low, active high or not used

EN_POLARITY ALL 0 1 2 Enable can be active low, active high

GATE_POLARITY ALL 0 1 Gate can be active low, or active high

Table 11-19. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

GATE_FANIN AUTO MANUAL

GATE_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 11-20. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_LATCH Latch category

LPM_HINT N/A Not needed
117

ACTgen Macros
Table 11-21. Functional Descriptiona

a. Assume Aclr is active low, Enable is active high, Gate is active high

Data Aclr Enable Gate Q

X 0 X X 0’s

X 1 X 0 Qn

X 1 0 1 Qn

m 1 1 1 Qn+1 = m
118

12
Memory Macros for
Non-Axcelerator Families
119

Synchronous/Asynchronous Dual Port RAM

Features • Parameterized word length and
depth

• Dual port synchronous RAM
architecture

• Dual port synchronous write,
asynchronous read RAM
architecture

•

Family Support 3200DX, 42MX

Description The RAM macros use 3200DX and 42MX, 32x8 or 64x4, dual port RAM
cells.

In the synchronous mode, the read and write operations are totally
independent and can be performed simultaneously. The operation of
the RAM is fully synchronous with respect to the clock signals, WClock
and RClock. Data of value Data are written to the WAddress of the
RAM memory space on the rising (RISE) or falling (FALL) edge of the
clock WClock (WCLK_EDGE). Data are read from the RAM memory
space at RAddress into Q on the rising (RISE) or falling (FALL) edge of
the clock signal RClock (RCLK_EDGE).

The behavior of the RAM is unknown if you write and read at the same
address and signals WClock and RClock are not the same. The output
Q of the RAM depends on the time relationship between the write and
the read clock.

In the asynchronous mode, the operation of the RAM is only
synchronous with respect to the clock signal WClock. Data of value
Data are written to the WAddress of the RAM memory space on the
rising (RISE) or falling (FALL) edge of the clock signal WClock
(WCLK_EDGE). Data are read from the RAM memory space at
RAddress into Q after some delay when RAddress has changed.

The behavior of the RAM is unknown if you write and read at the same
address. The output Q depends on the time relationship between the
write clock and the read address signal.

Data

WClock

WAddress

RAddress

RClock

WE

RE

Q

120

Synchronous/Asynchronous Dual Port RAM
The WIDTH (word length) and DEPTH (number of words) have continuous
values but the choice of WIDTH limits the choice of DEPTH and vice versa.

The write enable (WE) and read enable (RE) signals are active high request
signals for writing and reading, respectively; you may choose not to use them.

Table 12-1. Port Description

Port
Name Size Type Req/Opt Function

Data WIDTH input Req. Input Data

WE 1 input Opt. Write Enable

RE 1 input Opt. Read Enable

WClock 1 input Req. Write clock

RClock 1 input Opt. Read clock

Q WIDTH output Req. Output Data

Table 12-2. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

Depth depth Number of RAM words

WE_POLARITY 1 2 WE can be active high or not used

RE_POLARITY 1 2 RE can be active high or not used

WCLK_EDGE RISE FALL WClock can be rising or falling

RCLK_EDGE RISE FALL NONE RClock can be rising, falling or not used

Table 12-3. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_RAM_DQ Generic Dual Port RAM category
121

ACTgen Macros
Fan-in Control One of the key issues when building RAM macros is control of the routing
congestion near the RAM cells. The problem becomes more critical when deep
RAM macros are built. You need to broadcast signals throughout the height of
the chip. The place-and-route algorithm could have difficulties satisfying all
routing constraints. As a result, much slower routing resources could be
allocated to satisfy all constraints. To make this problem less likely, a special
buffering scheme has been implemented to relieve the congestion near the
RAM cells. However, you may choose to control the buffering yourself to
improve performances when needed. The RAM macro can be built using either
the automatic buffering architecture or the manual buffering architecture.

Automatic Buffering

In this mode (default), a buffering scheme is automatically built into the RAM
macro architecture (see Figure 12-1 on page 123). This mode should always be

Table 12-4. Fan-in Parameters

Parameter Value Description

RAMFANIN AUTO MANUAL See Fan-in Control section below

Table 12-5. Parameter Rules

Parameter Rules

If RCLK_EDGE is NONE (Asynchronous mode), then RE_POLARITY must be 2 (note
used)

The number of RAM blocks used (function of width and depth) must be less than or
equal to the number of RAM blocks in one column of the largest device.
122

Synchronous/Asynchronous Dual Port RAM
considered first. However, if the performance is not met, it may be better to use
the manual buffering option .

Figure 12-1. Automatic Buffering for RAM Macros

Manual Buffering

Figure 12-2 shows how manual buffering is done. A fan-in of one (1) is
enforced on all signals fanning out to more than one RAM cell. If these signals
were broadcast to all RAM cells, very slow routing resources (long freeways)
would be required to route the signals impacting the RAM performance.

Use Manual Buffering only if the expected performance is not realized using
the automatic buffering scheme, or if you know ahead of time that you need to
use this scheme to meet your timing goals. In this architecture, the idea is not to
buffer the signals internally but rather give some kind of access to the RAM
macro internal signals. Then, you must buffer the signals outside the macro and
either use traditional buffers or duplicate the logic that drives these signals
externally. If you choose manual buffering, the WE, RE, Waddress(i), RAddress(i)
and Data[i] signals become busses external to the macro. For all these signals,
the bus width is equal to the number of RAM cells (used to build a given
configuration) driven by each signal. Figure 12-2 illustrates the manual
buffering architecture for a 96x8 RAM configuration, built of three 32x8
configured RAM cells. In this configuration, the WE, RE, WAddress and
RAddress signals drive all RAM cells simultaneously. Figure 12-3 shows a 128x8
RAM configuration, built using four 64x4 configured RAM cells. In that

RAM

RAM

RAM

1

1

1

WE
RE
WAdress[i]
RAdress[i]
Data
123

ACTgen Macros
configuration, the 8-bit data bus is split into two completely independent 4-bit
data busses.

Figure 12-2. Manual Buffering (96x8 RAM Configuration)

Figure 12-3. Manual Buffering for the Data Bus (128x8 RAM Configuration)

Timing
Waveforms

RAM

RAM

RAM

1

1

1

WE
RE
WAdress[i]
RAdress[i]
Data

1

1

RAM

RAM

1

1

RAM

RAM

Data (i) [1:0]

Data (i+4) [1:0]

Table 12-6. Timing Waveform Terminology

Term Description Term Description

tckhl Clock high/low period tdsu Data setup time
124

Synchronous/Asynchronous Dual Port RAM
Figure 12-4. RAM Write Cycle

trp Reset pulse width trco Data valid after clock high/low

twesu Write enable setup time trao
Data valid after read address has
changed

tresu Read enable setup time tco Flip-flop clock to output

Table 12-6. Timing Waveform Terminology

Term Description Term Description

WClock

Data

WE

tdsu

twesu

tckhl ttckhl

Data latched into FIFO
125

ACTgen Macros
Figure 12-5. RAM Synchronous Read Cycle

Figure 12-6. RAM Asynchronous Read Cycle

RClock

Q

RE

tresu

tckhl ttckhl

Valid Output

trco

Q

RAddress

Valid Output

trao
126

Register File

Features • Parameterized word length and
depth

• Dual port synchronous RAM
architecture

• Dual port synchronous write,
asynchronous read RAM
architecture

• Write and Read enable
• Behavioral simulation model in

VHDL and Verilog

Family Support 54SX, 54SX-A, eX

Description The register file is a macro unique to the 54SX, 54SX-A and eX families.
This macro synthesizes the equivalent of small RAM blocks using
ordinary logic, thereby making memory cells available to you even
though the silicon does not explicitly have hardware support for RAM.

In synchronous mode, the read and write operations are totally
independent and can be performed simultaneously. The operation of
the register is fully synchronous with respect to the clock signals
WClock and RClock. Data of value Data are written to the WAddress of
the register memory space on the rising (RISE) or falling (FALL) edge of
the clock WClock (WCLK_EDGE). Data are read from the register
memory space at RAddress into Q on the rising (RISE) or falling (FALL)
edge of the clock RClock (RCLK_EDGE).

The behavior of the Register is unknown, if designers write and read at
the same address and WClock and RClock are not the same. The
output Q of the register depends on the time relationship between the
write and the read clock.

In asynchronous mode, the operation of the register is only
synchronous with respect to the clock signal WClock. Data of value
Data are written to the WAddress of the register memory space on the
rising (RISE) or falling (FALL) edge of the clock WClock

Data

WClock

RClock

WE

Q

REnableRAdress

WAdress
127

ACTgen Macros
(WCLK_EDGE). Data are read from the register memory space at RAddress
into Q after some delay when RAddress has changed.

The WIDTH (word length) and DEPTH (number of words) have continuous
values but the choice of WIDTH limits the choice of DEPTH and vice versa.

The write enable (WE) and read enable (RE) signals are active high request
signals for writing and reading, respectively. The user may not utilize them.

Table 12-7. Port Description

Port Name Size Type

Data WIDTH input

WE 1 input

RE 1 input

WClock 1 input

RClock 1 input

Q WIDTH output

Table 12-8. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

DEPTH depth Number of RAM words

WE_POLARITY 1 2 WE can be active high or not used

RE_POLARITY 1 2 RE can be active high or not used

WCLK_EDGE RISE FALL WClock can be rising or falling

RCLK_EDGE RISE FALL NONE RClock can be rising, falling or not used
128

Register File
Timing
Waveforms

Figure 12-7. Ram Write Cycle

Table 12-9. Timing Waveform Terminology

Term Description Term Description

tckhl Clock high/low period tdsu Data setup time

trp Reset pulse width trco Data valid after clock high/low

twesu Write enable setup time trao
Data valid after read address has
changed

tresu Read enable setup time tco Flip-flop clock to output

WClock

Data

WE

tadsu

twesu

tckhl ttckhl

WAddress

twadsu

Data latched into RAM
129

ACTgen Macros

Figure 12-8. RAM Synchronous Read Cycle

Figure 12-9. RAM Asynchronous Read Cycle

RClock

Q

RE

tresu

tckhl ttckhl

RAddress

tradsu

Valid Output

trco

Q

RAddress

Valid Output

trao
130

Synchronous Dual Port FIFO without Flags

Features • On-chip RAM
• Parameterized word length and

depth
• Dual port synchronous FIFO

(write and read clocks are
separated) with no static flag logic

• Global reset of FIFO address
pointers

Family Support 3200DX, 42MX, 54SX, 54SX-A, eX

Description The ACTgen FIFO macros use the 3200DX and 42MX 32x8 or 64x4 on-
chip RAM cells. ACTgen generates addresses internally using counters
and token chains to address the RAM blocks (transparent to the user).
Dedicated read and write address data paths are used in the FIFO architecture.
The read and write operations are independent and can be performed
simultaneously.

The WIDTH (word length) and DEPTH (number of words) have
continuous values but the choice of WIDTH limits the choice of
DEPTH and vice versa.

The asynchronous clear signal, Aclr, can be active low or active high
(low is the default option and is the preferred use for all synchronous
elements in the two supported families). When the asynchronous clear
is active, all internal registers used to determine the current FIFO read
and write addresses (counters and token chains) are reset to “0.” The
FIFO is now in an empty state; the RAM content is not affected. When
power is first applied to the FIFO, the FIFO must be initialized with an
asynchronous clear cycle to reset the internal address pointers.

The write enable WE and read enable RE signals are active high
request signals for writing into and reading out of the FIFO
respectively. The WE and RE signals only control the logic associated
with the FIFO write and read address pointers.

WE

RClock

Q

Aclr

Data

RE

WClock
131

ACTgen Macros
When WE is asserted high, the write cycle is initiated, and Data are written into
the FIFO. The design using the FIFO is responsible for handling the full and
empty states of the FIFO macro.

When RE is asserted high, the read cycle is initiated, and Q is read from the
FIFO. The design using the FIFO is responsible for handling the full and
empty states of the FIFO macro.

Table 12-10. Port Description

Port
Name Size Type Req/Opt Function

Data WIDTH input Req. Input Data

WE 1 input Req. Write Enable

RE 1 input Req. Read Enable

WClock 1 input Req. Write clock

RClock 1 input Req. Read clock

Q WIDTH output Req. Output Data

Table 12-11. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

DEPTH depth Number of FIFO words

WCLK_EDGE RISE FALL WClock can be rising or falling

RCLK_EDGE RISE FALL RClock can be rising falling

Table 12-12. Implementation Parameters - MX/DX

Parameter Value Description

LPMTYPE LPM_FIFO_DQ Generic FIFO category

LPM_HINT SFIFO Synchronous FIFO with no flags
132

Synchronous Dual Port FIFO without Flags
Timing
Waveforms

Table 12-13. Implementation Parameters - 54SX/SX-A

Parameter Value Description

LPM_HINT SFIFOSX Synchronous FIFO with no flags

Table 12-14. Fan-in Parameters

Parameter Value Description

RAMFANIN AUTO MANUAL See “Fan-in Control” on page 122

Table 12-15. Timing Waveform Terminology

Term Description Term Description

tckhl Clock high/low period tdsu Data setup time

trp Reset pulse width trco Data valid after clock high/low

twesu Write enable setup time tco Flip-flop clock to output

tresu Read enable setup time
133

ACTgen Macros
Figure 12-10. FIFO Write Cycle

Figure 12-11. FIFO Read Cycle

WClock

Data

WE

tdsu

twesu

tckhl ttckhl

Data latched into FIFO

RClock

Q

RE

tresu

tckhl ttckhl

Valid Output

trco
134

Synchronous Dual Port FIFO with Flags

Features • On-chip RAM
• Parameterized word length and

depth
• FIFO full and empty flags
• Statically programmable almost-

full flag to indicate when the FIFO
macro reaches a specific level,
usually when writing into the
FIFO

• Statically programmable almost-
empty flag to indicate when the
FIFO macro reaches a specific
level, usually when reading from
the FIFO

• Global reset of the FIFO address
pointers and flag logic

• Dual port synchronous FIFO

Family Support 3200DX, 42MX, 54SX, 54SX-A, eX

Description The ACTgen FIFO macros use the 3200DX and 42MX 32x8 or 64x4
dual-port RAM cells. Addresses are generated internally using counters
and token chains to address the RAM (this is transparent to the user).
Dedicated read and write address data paths are used in the FIFO
architecture. The read and write operations are totally independent
and can be performed simultaneously.

The WIDTH (word length) and DEPTH (number of words) have
continuous values but the choice of WIDTH limits the choice of
DEPTH and vice versa.

The asynchronous clear signal, Aclr, can be active low or active high
(low is the default option and should be used for all synchronous
elements in the two supported families). When the asynchronous clear
is active, all internal registers used to determine the current FIFO read
and write addresses (counters and token chains) are reset to “0.”

Data

Clock

WE

RE

Q

Aclr

WEF

REF

FF

EF

AFF

AEF
135

ACTgen Macros
The FIFO is now in an empty state; the RAM content is not affected. When
power is first applied to the FIFO, the FIFO must be initialized with an
asynchronous clear cycle to reset the internal address pointers.

The full flag signal, FF, is optional and is available only for the High Speed Flag
(FFIFO) and the Medium Speed Flag (MFFIFO) variations. The FF signal is
active high only (if selected) and indicates when the FIFO is full. The signal is
asserted high on the rising (RISE) or falling (FALL) edge of the clock signal
Clock with no delay.

The empty flag signal, EF, is optional and is available only for the High Speed
Flag (FFIFO) and the Medium Speed Flag (MFFIFO) variations. The EF signal
is active low only (if selected) and indicates when the FIFO is empty. The signal
is asserted low on the rising (RISE) or falling (FALL) edge of the clock signal
Clock with no delay.

The write enable signals, WE and WEF, and read enable signals, RE and REF,
are active high requests for writing into and reading out of the FIFO
respectively. The WE and RE signals only control the logic associated with the
FIFO write and read address pointers. The WEF and REF signals control the
logic implementing the different flags. The WE and WEF signals should be
logically driven by the same logic outside the FIFO macro. The same behavior
applies to the RE and REF signals as well. For SX and SX-A there are only the
RE and WE ports.

When WE is asserted high and FF is asserted low (not full), the write cycle is
initiated and Data are written into the FIFO. When WE is asserted high and FF
is asserted high (full), the FIFO behavior is undefined. When RE is asserted
high and EF is asserted high (empty), the read cycle is initiated and Q is read
from the FIFO. When RE is asserted high and EF is asserted low (empty), the
FIFO behavior is undefined. When RE and WE are asserted high at the same
time, Data are written into the FIFO and Q is read from the FIFO
simultaneously. The read and write operations are fully synchronous with
respect to the clock signal Clock.

The FIFO function offers a parameterizable almost-full flag, AFF. The AFF
flag is asserted high when the FIFO contains aff_val words or more as defined
by the parameter AFF_VAL. Otherwise, AFF is asserted low. The aff_val value
is a parameter to the macro, and thus logic is built at generation time to realize
the almost-full flag function.
136

Synchronous Dual Port FIFO with Flags
The FIFO function offers a parameterizable almost-empty flag, AEF. The
AEF flag is asserted low when the FIFO contains aef_val words or less as
defined by the parameter AEF_VAL. Otherwise, AEF is asserted low. The
aef_val value is a parameter to the macro, and thus logic is built at generation
time to realize the almost-empty flag function.

Table 12-16. Port Description

Port
Name Size Type Req./Opt. Function

Data WIDTH input Req. Input Data

WE 1 input Req. Write Enable with the FIFO only
(noflag)

RE 1 input Req. Read Enable with the FIFO only
(no flag)

WEF 1 input Req. Write enable associated with the
flag logic only (for DX/MX)

REF 1 input Req. Read enable associated with the
flag logic only (for DX/MX)

Clock 1 input Req. Write and read clock

Q WIDTH output Req. Output Data

FF 1 output Req. Full Flag

EF 1 output Req. Empty Flag

AFF 1 output Optional Almost Full Flag

AEF 1 output Optional Almost Empty Flag

Table 12-17. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

DEPTH depth Number of FIFO words

FF_POLOARITY 1 2 FF can be active high or not
137

ACTgen Macros
EF_POLARITY 0 2 EF can be active low or not used

AFF_VAL aff_val (see
parameter rules) AFF value (not used if aff_val is 0

AEF_VAL aef_val (see
parameter rules AEF value (not used if aef_val is 0

CLK_EDGE RISE FALL Clock can be rising or falling

Table 12-18. Implementation Parameters - MX/DX

Parameter Value Description

LPMTYPE LPM_FIFO_DQ Generic FIFO category

LPM_HINT FFIFO High skpeed FIFO with flags

MFFIFO Medium speed FIFO with flags

Table 12-19. Implementation Parameters - 54SX/SX-A

Parameter Value Description

LPM_HINT FFIFOSX Synchronous FIFO with no flags

Table 12-20. Fan-in Parameters

Parameter Value Description

RAMFANIN AUTO MANUAL See Fan-in Control section below

Table 12-17. Parameter Description (Continued)

Parameter Value Function
138

Synchronous Dual Port FIFO with Flags
Timing
Waveforms

Table 12-21. Parameter Rules

Parameter Rules

If RCLK_EDGE is NONE (Asynchronous mode), then RE_POLARITY must be 2 (not
used)

Table 12-22. Timing Waveform Terminology

Term Description

tckhl Clock high/low period

trp Reset pulse width

twesu Write enable setup time

tresu Read enable setup time

tadsu Data setup time

trco Data valid after lock high/low

trao Data valid after read address has changed

tco Flip-flop clock to output
139

ACTgen Macros
Figure 12-12. Reset Cycle

Clock

Aclr

tckhl ttckhl

FF

AEF

AFF

EF

trp
140

Synchronous Dual Port FIFO with Flags
Figure 12-13. Write and Read Cycle

Figure 12-14. Full FIFO Timing Diagram

Clock

Q

WE/WEF

twesu

tckhl ttckhl

Data

tdsu

Valid Output

trco

RE/REF

tresu

Clock

WE/WEF

twesu

tckhl ttckhl

tco

RE/REF

FF

tco

tresu
141

ACTgen Macros
Figure 12-15. Empty FIFO Timing Diagram

Figure 12-16. Almost Full FIFO Timing Diagram

Clock

RE/REF

tresu

tckhl ttckhl

tco

WE/WEF

EF

tco

twesu

Clock

WE/WEF

tresu

tckhl ttckhl

tco

RE/REF

AFF

tco

twesu

N writes
N reads
142

FIFO Flag Controller (No RAM)

Features • Off-chip RAM
• Parameterized word length and

depth
• FIFO full and empty flags
• Statically programmable almost-

full flag to indicate when the FIFO
macro reaches a specific level,
usually when writing into the
FIFO

• Statically programmable almost-
empty flag to indicate when the
FIFO macro reaches a specific
level, usually when reading from
the FIFO

• Global reset of the FIFO address
pointers and flag logic

Family Support 3200DX, 42MX, 54SX, 54SX-A, eX

Description The ACTgen FIFO Flag Controler is designed for off-chip RAM. It is a
state machine generating the Flags typically used by a FIFO.

The asynchronous clear (Aclr) can be active low or active high (low is
the default option and should be preferably used as for all
synchronous elements in the two supported families). We will further
use the word active to specify the state of a given signal. When the
asynchronous clear is active, all internal registers are reset to '0'. The
FIFO Controler is now in an empty state. At power up time, the FIFO
must be initialized with a asynchronous clear cycle.

The full flag signal FF is optional. The FF signal is active high only (if
selected) and indicates when the FIFO is full. The signal is asserted
high on the rising (RISE) or falling (FALL) edge of the clock signal
Clock with no delay.

The empty flag signal EF is optional. The EF signal is active low only
(if selected) and indicates when the FIFO is empty. The signal is

Clock

WE

RE

Aclr

FF

EF

AFF

AEF
143

ACTgen Macros
asserted low on the rising (RISE) or falling (FALL) edge of the clock signal
Clock with no delay.

The write enable (WE) and read enable (RE) signals are active high requests
signals for for controlling the FIFO flags. They should be logically equivalent
to the write and read enable controlling the off-chip RAM.

The FIFO Controller offers a parameterizable almost-full flag (AFF). The AFF
flag is asserted high when the FIFO contains aff_val words or more as defined
by the parameter AFF_VAL. Otherwise, AFF is asserted low. The value aff_val
value is a parameter to the macro, and thus logic is built at generation time to
realize the almost-full flag function.

The FIFO Controller offers a parameterizable almost-empty flag (AEF). The
AEF flag is asserted low when the FIFO contains aef_val words or less as
defined by the parameter AEF_VAL. Otherwise, AEF is asserted low. The
value aef_val value is a parameter to the macro, and thus logic is built at
generation time to realize the almost-empty flag function.

Table 12-23. Port Description

Port
Name Size Type Req/Opt? Function

Clock 1 input Req. Write and read clock

WE 1 input Req. Write enable associated to the flag
logic only

RE 1 input Req. Read enable associated to the flag
logic only

Aclr 1 input Req. Asynchronous Clear

EF 1 output Opt. Empty Flag

FF 1 output Opt. Full Flag

AEF 1 output Opt. Almost Empty Flag

AFF 1 output Opt. Almost Full Flag
144

FIFO Flag Controller (No RAM)
Table 12-24. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

DEPTH depth Number of FIFO words

FF_POLARITY 1 2 FF can be active high or not used

EF_POLARITY 0 2 EF can be active low or not used

AFF_VAL aff_val (see parameter
rules) AFF value (not used if aff_val is 0)

AEF_VAL aef_val (see parameter
rules) AEF value (not used if aef_val is 0)

CLK_EDGE RISE FALL Clock can be rising or falling

Table 12-25. Implementation Parameters - MX/DX

Parameter Value Description

LPMTYPE LPM_FIFO_DQ Generic FIFO category

LPM_HINT
FFIFOCTRL High speed FIFO Controller

MFFIFOCTRL Medium speed FIFO Controller

Table 12-26. Implementation Parameters - 54SX/SX-A/eX

Parameter Value Description

LPM_HINT FCTR FIFO Controller
145

ACTgen Macros
Table 12-27. Fan-In Parameters

Parameter Value Description

CLR_FANIN AUTO MANUAL See Fan-in Control section

CLK_FANIN AUTO MANUAL See Fan-in Control section

WE_FANIN AUTO MANUAL See Fan-in Control section

RE_FANIN AUTO MANUAL See Fan-in Control section
146

13
Memory Macros for Axcelerator
147

Axcelerator RAM

Features • Parameterized word length and depth

• Dual port synchronous RAM architecture

• Independent Read/Write Sizes

• Active High/Low enable

• Active High/Low Read and Write Clocks

• Non-pipelined (synchronous - one clock edge)/
Pipelined (synchronous - two clock edges) Read

• Port mapping

Family support Axcelerator

Description Axcelerator provides dedicated blocks of RAM. Each block has a read
port and a write port. Both ports are configurable to any size from
4Kx1 to 128x36; thereby, allowing built-in bus width conversion (see
SRAM Port Aspect Ratio table below). Each port is completely
independent and fully synchronous.

Table 13-1. SRAM Port Aspect Ratio

Width Depth ADDR Bus Data Bus

1 4096 ADDR[11:0] DATA[0]

2 2048 ADDR[10:0] DATA[1:0]

4 1024 ADDR[9:0] DATA[3:0]

9 512 ADDR[8:0] DATA[8:0]

18 256 ADDR[7:0] DATA[17:0]
148

Axcelerator RAM
Modes The three major modes available for read and write operations are:

1. Read Non-pipelined (synchronous - one clock edge)
The read address is registered on the read port clock edge and data appears
at read-data after the RAM access time (when all RENs are high,
approximately 4.5ns). The setup time of the read address and read enable
are minimal with respect to the read clock. Setting the Pipeline to OFF
enables this mode.

2. Read Pipelined (synchronous - two clock edges)
The read-address is registered on the read port clock edge and the data is
registered and appears at read-data after the second read clock edge. Setting
the Pipeline to ON enables this mode.

3. Write (synchronous - one clock edge)
On the write clock edge, the write data are written into the USRAM at the
write address (when all WENs are high). The setup time of the write
address, write enables and write data are minimal with respect to the read
clock.

Cascading
Blocks

Blocks can be cascaded to create larger sizes. ACTgen performs all the
necessary cascading for achieving the desired configuration. To achieve good
performance, all cascaded RAM blocks must fit within one RAM column of the
selected device. Cascading RAM blocks deep is possible only up to the capacity
of one RAM column.

However, if the specified configuration exceeds one RAM column, ACTgen
tries to cascade the RAM wide, up to the available RAM Blocks in the device.
This results in poorer performance as the RAM blocks are not located close
physically.

The WIDTH (word length) and DEPTH (number of words) have continuous
values but the choice of WIDTH limits the choice of DEPTH and vice versa.

36 128 ADDR[6:0] DATA[35:0]

Table 13-1. SRAM Port Aspect Ratio

Width Depth ADDR Bus Data Bus
149

ACTgen Macros
The Read/Write Width/Depth can be different but the Aspect ratio should be
same for both. For example:

Read Width * Read Depth == Write Width * Write Depth

The write enable (WE) and read enable (RE) signals are active high or low
request signals for writing and reading, respectively; you may choose not to use
them. When none is selected for an enable, that operation remains enabled all
the time.

For example, if WEN is chosen as none, then write operation of the RAM is
enabled all the time.

The write enable (WE) and read enable (RE) signals are active high or low
request signals for writing and reading, respectively; you may choose not to use
them.

The RCLK and WCLK pins have independent polarity selection.

Conflict
Resolution

There is no special hardware for handling read and write operations at the same
addresses.

Table 13-2. Port Description

Name Size Type Req/Opt Function

Data Write Width Input Req Write Data Port

WAddress log 2(Write Depth) Input Req Write Address Bus

WE 1 Input Opt Write Enable

WClock 1 Input Req Write Clock

Q Read Width Output Req Read Data Port

RAddress log 2(Read Depth) Input Req Read Address Bus

RE 1 Input Opt Read Enable

RClock 1 Input Req Read Clock
150

Axcelerator RAM

Table 13-3. Parameter Description

Parameter Value Function

WWIDTH Write Width Word length of Data

WDEPTH Write Depth Number of Write Words

RWIDTH Read Width Word length of Q

RDEPTH Read Depth Number of Read Words

WE_POLARITY 1 0 2 Write Enable Polarity

RE_POLARITY 1 0 2 Read Enable Polarity

WCLK_EDGE RISE FALL Write Clock Edge

RCLK_EDGE RISE FALL Read Clock Edge

PIPE NO YES Read Pipeline

DEVICE 125 250 500 1000 2000 Target Device, to determine
blocks available for cascading

Table 13-4. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_RAM Generic Dual Port RAM Category

Table 13-5. Parameter Rules

Device Parameter rules

Axcelerator RWIDTH*RDEPTH == WWIDTH*WDEPTH
151

Axcelerator EDAC RAM

Please refer to the Using EDAC RAM for RadTolerant RTAX-S FPGAs and
Axcelerator FPGAs application note, available on the Actel website
(http://www.actel.com), for a complete explanation of the EDAC RAM
module.

Features • 8, 16, 32 bit word width

• Background refresh and variable refresh rate

• EDAC RAM module supports READ and WRITE clocks from the same
clock source OR separate READ and WRITE clocks

• EDAC RAM Encoder/Decoder supports correcting one error and detecting
two errors, with a coding efficiency of 44-66%

• Variable RAM depth support from 256 to 4k words

Family Support Axcelerator

Description The Error Detection and Correction (EDAC) RAM module is designed to
provide a transparent RAM interface that supports EDAC. When you use
ACTgen to generate an EDAC RAM module it creates a top-level for the
EDAC RAM, an Axcelerator RAM block, and the "edaci" module, which
handles all the EDAC functionality.
152

Axcelerator FIFO

Features • Parameterized word length and FIFO depth

• Dual port synchronous FIFO

• Active High/Low enable

• Static/ Programmable/No Almost empty/full flags

• Full and Empty flags

Family support Axcelerator

Description Axcelerator provides dedicated blocks of FIFO. They are actually hardwired
using the RAM blocks plus some control logic. Each FIFO block has a read
port and a write port. Both ports are configurable (to the same size) to any size
from 4Kx1 to 128x36; thereby, allowing built-in bus width conversion (see
SRAM Port Aspect Ratio table below). Each port is fully synchronous. The
FIFO block offers programmable Almost Empty and Almost Full flags as well
as Empty and Full flags. The FIFO block may be reset to the empty state.

Table 13-6. SRAM Port Aspect Ratio

Width Depth ADDR Bus Data Bus

1 4096 ADDR[11:0] DATA[0]

2 2048 ADDR[10:0] DATA[1:0]

4 1024 ADDR[9:0] DATA[3:0]

9 512 ADDR[8:0] DATA[8:0]

18 256 ADDR[7:0] DATA[17:0]

36 128 ADDR[6:0] DATA[35:0]
153

ACTgen Macros
Cascading
Blocks

Blocks can be cascaded to create larger sizes, up to the capacity of one whole
column of RAM blocks. ACTgen performs all the necessary cascading for
achieving the desired configuration.

The WIDTH (word length) and DEPTH (number of words) have continuous
values but the choice of WIDTH limits the choice of DEPTH and vice versa.
The write enable (WE) and read enable (RE) signals are active high or low
request signals for writing and reading, respectively; you may choose not to use
them.

The RCLK and WCLK pins have independent polarity selection.

Table 13-7. Port Description

Name Size Type Req/Opt Function

Data Width Input Req Data Port

WE 1 Input Opt Write Enable

WClock 1 Input Req Write Clock

Q Width Output Req Q Port

RE 1 Input Opt Read Enable

RClock 1 Input Req Read Clock

Full 1 Output Req Full Flag

Empty 1 Output Req Empty Flag

Afval 1-8 Input Opt Almost Full, Dynamically programmable

Aeval 1-8 Input Opt Almost Empty, Dynamically programmable

AFull 1-8 Output Opt Almost Full Flag

AEmpty 1-8 Output Opt Almost Empty Flag
154

Axcelerator FIFO

Table 13-8. Parameter Description

Parameter Value Function

WIDTH Width Word length of Data, Q

DEPTH Depth FIFO Depth

WE_POLARITY 1 0 2 Write Enable Polarity

RE_POLARITY 1 0 2 Read Enable Polarity

WCLK_EDGE RISE FALL Write Clock Edge

RCLK_EDGE RISE FALL Read Clock Edge

AEVAL Almost Empty Value Almost Empty Flag

AFVAL Almost Full Value Almost Full Flag

DEVICE 75 150 300 600 1000
(May change)

Target Device, to determine
blocks available for cascading

Table 13-9. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_FIFO Generic Dual Port FIFO Category

LPM_HINT

STATIC Static AF/AE Flags

DYNAMIC Dynamic AF/AE Flags

NOFLAGS No AF/AE Flags

Table 13-10. Parameter Rules

Device Parameter rules

Axcelerator

WWIDTH AEVAL/AFVAL UNITS

000

28-W

001

010

011

100

101

11x
155

ACTgen Macros
FIFO Flag
Usage

In the Axcelerator FIFO, the AFVAL and AEVAL signals are each 8 bits. The
step size of the signal varies based on the aspect ratio to which the FIFO blocks
are configured.

For example, if the FIFO is configured in the 128X36 aspect ratio, the step size
is 8. That means, if a 00000011 is programmed on the AEVAL, the almost
empty flag asserts after 3*8 = 24 words are written. The step sizes can be
calculated from the above table for other configurations.

ACTgen automatically adjusts the AF and AE thresholds specified by changing
them to the nearest step size. A message is also printed in the log file.

Since 8 is the least step size for AFVAL and AEVAL, static flag configuration
is not supported for widths below 8.

When ACTgen is used to configure the FIFO to a depth that is less than the
total available depth, FULL flag will not assert at the depth specified in
ACTgen. For example, if FIFO is configured to a 250X18, then ACTgen
provides a total depth of 256, which is the closest size. FULL flag will assert at
256. ACTgen prints a message in the log file indicating what is the
configuration it is providing taking all these details into consideration.
156

PerPin FIFO

The PerPin FIFO macro is included in the IOs section of the manual on
page 73.
157

14
Memory Macros for Flash Devices
158

Synchronous/Asynchronous Dual Port RAM
for Flash

Features • Parameterized word length and depth

• Dual port RAM architecture

• Asynchronous, synchronous-
transparent or synchronous-pipelined
read

• Asynchronous, or synchronous write

• Parity check or generate,
both even and odd

• Supported netlist formats:
EDIF, VHDL and Verilog

Family Support 500K, PA

Description There is no limitation for depth and width. However, it is your
responsibility to insure that the RAM’s used in a design can physically
fit on the device chosen for the design.

DI

RAM

RADDR

WADDR

WRB

RDB

WCLKS

RCLKS

PO

WP

RPE

DO

PI

Table 14-1. Port Description

Port Name Size Type Req/
Opt? Function

DI WIDTH input Req. Input Data

RADDR log2
(DEPTH) input Req. Read Address

WADDR log2
(DEPTH) input Req. Write Address

WRB 1 input Req. Write pulse (active low)
RDB 1 input Req. Read pulse (active low)
WCLK 1 input Req. Write Clock (active high)
RCLK 1 input Req. Read Clock (active high)
DO WIDTH output Req. Output data
159

ACTgen Macros
Timing
Waveforms

Please refer to the timing waveforms presented in the datasheets for Flash
devices.

PI WIDTH input Opt. Input parity bits
PO log2(WIDTH) output Opt. Parity bits
WPE 1 output Opt. Write parity error flag
RPE 1 output Opt. Read parity error flag

Table 14-2. Parameter Description

Parameter Value Function

WIDTH width Word length of DI and DO
DEPTH depth Number of RAM words

RDA async transparent
pipelined Read Data Access

WRA async sync Write Data Access
OPT speed area Optimization

PARITY

checkeven check-
odd
geneven genodd
none

Parity check or parity generation

Table 14-3. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_RAM_DQ Generic Dual Port RAM category

Table 14-1. Port Description (Continued)
160

Register File for Flash Devices

Features • Parameterized word length and depth

• Two port asynchronous register file

• Rising edge triggered or level-sensitive

• Supported netlist formats:
VHDL and Verilog

Family support 500K, PA

Description Distributed memory can be generated as a two port asynchronous register file
or as an asynchronous FIFO. Distributed memories are made up of the logic
tiles of the device. These memory files are netlists consisting of logic tiles and
do not use embedded memory cells.

Please refer to “Memory in Flash” on page 170 for more detailed descriptions
of Flash Distributed Memories.

wData0

wData1

wAddr0

rAddr0

rData0

rData1

WR

...

...

...

...

Table 14-4. Port Description

Port Name Size Type Req/Opt? Function

wData<i> 1 Input Req. Input (Write) Data (i = 0 .. WIDTH-1)

wAddr<i> 1 Input Req. Write Address (i = 0 .. log2(WIDTH)-1)

rAddr<i> 1 Input Req. Read Address (i = 0 .. log2(WIDTH)-1)

WR 1 Input Req. Write Clock/Pulse (rising edge trig-
gered or level sensitive)

rData<i> 1 Output Req. Output (Read) Data (i = 0 .. WIDTH-1)

Table 14-5. Parameter Description

Parameter Value Function

WIDTH See “Parameter Rules” Word length input/output data
161

ACTgen Macros

DEPTH
2.48 Number of words for APA150

2..64 Number of words for all other devices

TRIGGER edge, level Select between rising edge triggered
and level sensitive write clock

Table 14-6. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DIST_RAM Generic Register File category

LPM_HINT
RAM_DISTH<#>

Horizontal Orientation;
represents the part number, and can be
050, 130, 180, 270 for 500K
150, 300, 450, 600, 750, 1000 for PA

RAM_DISTV<#> Vertical Orientation

Table 14-7. Parameter Rules

Device Orientation Parameter rules

A500K050
Horizontal WIDTH = 2..30
Vertical WIDTH = 2..46

A500K130
Horizontal WIDTH = 2..38
Vertical WIDTH = 2..78

A500K180
Horizontal WIDTH = 2..46
Vertical WIDTH = 2..94

A500K270
Horizontal WIDTH = 2..58
Vertical WIDTH = 2..110

APA150
Horizontal WIDTH = 2..22
Vertical WIDTH = 2..62

APA300
Horizontal WIDTH = 2..30
Vertical WIDTH = 2..62

APA450
Horizontal WIDTH = 2..30
Vertical WIDTH = 2..94

APA600
Horizontal WIDTH = 2..46
Vertical WIDTH = 2..110

Table 14-5. Parameter Description
162

Register File for Flash Devices
Timing
Waveforms

Please refer to the timing waveforms presented in “Memory in Flash” on page
170 for more information.

APA750
Horizontal WIDTH = 2..62
Vertical WIDTH = 2..126

APA1000
Horizontal WIDTH = 2..78
Vertical WIDTH = 2..174

Table 14-7. Parameter Rules (Continued)

Device Orientation Parameter rules
163

Synchronous/Asynchronous Dual Port FIFO
for Flash Devices

Features • Parameterized word length and depth

• Dual port RAM architecture

• Asynchronous, synchronous
transparent or synchronous
pipelined read

• Asynchronous, or synchronous write

• Parity check or generate, both even
and odd

• Supported netlist formats:
EDIF, VHDL and Verilog

Family support 500K, PA

Description There is no limitation for depth and width. However, it is your
responsibility to insure that the FIFOs used in a design can physically
fit on the device chosen for the design.

DI

FIFO

LEVEL

WRB

RDB

WCLKS

RCLKS

RESET

DO

EQTH

GEQTH

FULL

EMPTY

WPE

RPE

PI

PO

Table 14-8. Port Description

Port Name Size Type Req/Opt? Function

DI WIDTH input Req. Input Data

LEVEL 8a input Opt.
Defines level when EQTH and
GEQTH should react (hardcoded
for static trigger Level)

WRB 1 input Req. Write pulse (active low)
RDB 1 input Req. Read pulse (active low)
WCLK 1 input Req. Write Clock (active high)
RCLK 1 input Req. Read Clock (active low)
RESET 1 input Req. Reset for FIFO pointers (active low)
DO WIDTH output Req. Output data
164

Synchronous/Asynchronous Dual Port FIFO for Flash Devices

EMPTY 1 output Req. Empty flag
FULL 1 output Req. Full flag

EQTH 1 output Req. Flag is true when FIFO hold
(LEVEL) words

GEQTH 1 output Req. Flag is true when FIFO hold
(LEVEL) words or more

PI WIDTH input Opt. Input parity bits

PO log2
(WIDTH) output Opt. Parity bits

WPE 1 output Opt. Write parity error flag
RPE 1 output Opt. Read parity error flag

a. LEVEL is always 8 bits. That means for values of DEPTH greater than 256 not all values
will be possible, e.g. for DEPTH =512 LEVEL can have the values 2, 4, … , 512. This holds
true only to dynamically triggered FIFO. For a static trigger, all values of the depth are
possible. In the case of dynamic trigger only values that are divisible by the number of 256X9
FIFO blocks cascaded to achieve the required depth are possible.

For example, for a depth of 512, which uses 2 256 blocks in cascade, only multiples of 2 are
possible. For depth of 768, which uses 3 blocks, multiples of 3 are the only values possible for
the LEVEL threshold.

Table 14-9. Parameter Description

Parameter Value Function

WIDTH width Word length of DI and
DO

DEPTH depth Number of RAM words

RDA async transparent
pipelined Read Data Access

WRA async sync Write Data Access
OPT speed area Optimization

PARITY checkeven checkodd
geneven genodd none

Parity check or parity
generation

Table 14-10. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_FIFO_DQ Generic FIFO category

Table 14-8. Port Description (Continued)
165

ACTgen Macros

Timing
Waveforms

Please refer to the timing waveforms in the Flash device datasheets.

LPM_HINT FIFO_DYN FIFO with dynamic trigger level
LPM_HINT FIFO_STATIC FIFO with static trigger level

Table 14-11. Parameter Rules for FIFO with static trigger level

Parameter Rules

LEVEL <= DEPTH
If DEPTH > 256 not all values for LEVEL will be available (automatic value correction)

This holds true only to dynamically triggered FIFO. For a static trigger, all values of the depth
are possible. In the case of dynamic trigger only values that are divisible by the number of 256X9
FIFO blocks cascaded to achieve the required depth are possible.
For example, for a depth of 512, which uses 2 256 blocks in cascade, only multiples of 2 are pos-
sible. For depth of 768, which uses 3 blocks, multiples of 3 are the only values possible for the
LEVEL threshold.

Table 14-10. Implementation Parameters (Continued)
166

FIFO Using Distributed Memory for Flash

Features • Parameterized word length and depth

• Asynchronous FIFO

• Asynchronous, or synchronous write

• Rising edge triggered or level sensitive

• Supported netlist formats:
VHDL and Verilog

Family support 500K, PA

Description Distributed memory can be generated as a two port asynchronous
register file or as an asynchronous FIFO. Distributed memories are
made up of the logic tiles of the device. These memory files are netlists
consisting of logic tiles and do not use to embedded memory cells.

Please refer to “Memory in Flash” on page 170 for more detailed descriptions
of Flash Distributed Memories.

wData0

wData1

INIT

rData0

rData1

full

empty

RD

... ...

WR

Table 14-12. Port Description

Port Name Size Type Req/Opt? Function

wData<i> 1 Input Req. Input (Write) Data (i = 0 .. WIDTH-1)

INIT 1 Input Req. FIFO initialization

WR 1 Input Req. Write Clock/Pulse (rising edge trig-
gered or level sensitive)
167

ACTgen Macros

RD 1 Input Req. Read Clock/Pulse (rising edge trig-
gered or level sensitive)

rData<i> 1 Output Req. Output (Read) Data (i = 0 .. WIDTH-
1)

full 1 Output Req. Full Flag

empty 1 Output Req. Empty Flag

Table 14-13. Parameter Description

Parameter Value Function

WIDTH See “Parameter Rules” Word length input/output data

DEPTH 2..64 Number of words

TRIGGER edge, level Select between rising edge triggered
and level sensitive write clock

Table 14-14. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DIST_FIFO Generic distributed FIFO category

LPM_HINT
FIFO_DISTH<#>

Horizontal Orientation
represents the part number and can be
050, 130, 180, 270 for 500K
150, 300, 450, 600, 750, 1000 for PA

FIFO_DISTV<#> Vertical Orientation

Table 14-12. Port Description (Continued)

Port Name Size Type Req/Opt? Function
168

FIFO Using Distributed Memory for Flash

Timing
Waveforms

Please refer to the timing waveforms presented in “Memory in Flash” on page
170 for more information.

Table 14-15. Parameter Rules

Device Orientation Parameter Rules

A500K050
Horizontal WIDTH = 2..62, DEPTH = 2..36

Vertical WIDTH = 2..94, DEPTH = 2..23

A500K130
Horizontal WIDTH = 2..78, DEPTH = 2..62

Vertical WIDTH = 2..158, DEPTH = 2..29

A500K180
Horizontal WIDTH = 2..94, DEPTH = 2..74

Vertical WIDTH = 2..190, DEPTH = 2..36

A500K270
Horizontal WIDTH = 2..118, DEPTH = 2..80

Vertical WIDTH = 2..222, DEPTH = 2..45

APA150
Horizontal WIDTH = 2..46, DEPTH = 2..49

Vertical WIDTH = 2..126, DEPTH = 2..16

APA300
Horizontal WIDTH = 2..62, DEPTH = 2..49

Vertical WIDTH = 2..126, DEPTH = 2..23

APA450
Horizontal WIDTH = 2..62, DEPTH = 2..74

Vertical WIDTH = 2..190, DEPTH = 2..23

APA600
Horizontal WIDTH = 2..94, DEPTH = 2..80

Vertical WIDTH = 2..222, DEPTH = 2..36

APA750
Horizontal WIDTH = 2..126, DEPTH = 2..80

Vertical WIDTH = 2..254, DEPTH = 2..49

APA1000
Horizontal WIDTH = 2..158, DEPTH = 2..80

Vertical WIDTH = 2..350, DEPTH = 2..62
169

A
Memory in Flash

This appendix describes how to instantiate the memories generated by
ACTgen into the design source code, simulate and synthesize the
design, and import the netlist into Designer. It includes a description of
ProASIC dedicated memory blocks and all their possible
configurations.

Embedded Memory
Flash devices contain dedicated embedded memory blocks and standard logic
cells called tiles. Each block can be configured to one of 24 functions, as shown
in Table A-1 on page 171. Each memory block is 256 words deep and 9 bits
wide, for a total of 2304 bits of memory per basic memory block. Every
memory block may be configured independently as a two-port SRAM or a
FIFO.

There are separate and independent read and write ports allowing
simultaneous ports access. The ports can be synchronous or
asynchronous. This allows the option of using an asynchronous write
and a synchronous read port. Synchronous output ports can be
configured to either act like a transparent synchronous port or like a
pipelined synchronous port. Additionally in all modes, a parity bit (9th
bit) can be checked or generated within the memory. Parity check can
be performed while writing and reading data without using additional
logic. The result of these checks is returned by two independent
signals “WPE” and “RPE” (Write Parity Error and Read Parity Error).
Parity can also be generated while reading data.

Embedded
Memory
Configurations

The ability to generate additional status signals besides the standard
“EMPTY” and “FULL” signals is also built into the FIFOs. By providing
a level signal, the circuit also generates signals that indicate whether
the FIFO is filled less, filled equally, and filled higher than the specified
level. For a description of what functions each FIFO has in each con-
figuration see the Actel Macro Library Guide. There are 24 different
170

Embedded Memory
memory configurations that ACTgen can generate. Table A-1 lists those config-
urations. .

Table A-1. Embedded Memory Block Configurations

Type Write Access Read Access Parity
Library Cell

Name

RAM Asynchronous Asynchronous Checked RAM256x9AA

RAM Asynchronous Asynchronous Generated RAM256x9AAP

RAM Asynchronous Synchronous Transparent Checked RAM256x9AST

RAM Asynchronous Synchronous Transparent Generated RAM256x9ASTP

RAM Asynchronous Synchronous Pipelined Checked RAM256x9ASR

RAM Asynchronous Synchronous Pipelined Generated RAM256x9ASRP

RAM Synchronous Asynchronous Checked RAM256x9SA

RAM Synchronous Asynchronous Generated RAM256x9SAP

RAM Synchronous Synchronous Transparent Checked RAM256x9SST

RAM Synchronous Synchronous Transparent Generated RAM256x9SSTP

RAM Synchronous Synchronous Pipelined Checked RAM256x9SSR

RAM Synchronous Synchronous Pipelined Generated RAM256x9SSRP

FIFO Asynchronous Asynchronous Checked FIFO256x9AA

FIFO Asynchronous Asynchronous Generated FIFO256x9AAP

FIFO Asynchronous Synchronous Transparent Checked FIFO256x9AST

FIFO Asynchronous Synchronous Transparent Generated FIFO256x9ASTP

FIFO Asynchronous Synchronous Pipelined Checked FIFO256x9ASR

FIFO Asynchronous Synchronous Pipelined Generated FIFO256x9ASRP

FIFO Synchronous Asynchronous Checked FIFO256x9SA

FIFO Synchronous Asynchronous Generated FIFO256x9SAP

FIFO Synchronous Synchronous Transparent Checked FIFO256x9SST

FIFO Synchronous Synchronous Transparent Generated FIFO256x9SSTP

FIFO Synchronous Synchronous Pipelined Checked FIFO256x9SSR

FIFO Synchronous Synchronous Pipelined Generated FIFO256x9SSRP
171

Appendix A: Memory in Flash
Naming Conventions

The HDL models for each of the 24 possible configurations are included in the
ProASIC simulation and synthesis library. The function and timing of each
model is described in detail in the Actel Flash Macro Library Guide and the
datasheets for Flash devices. The modules are named according to the
following convention:

<MEM-TYPE><256x9><WRITE-ACCESS><READ-ACCESS><PARITY>

<MEM-TYPE> := RAM or FIFO;
<WRITE-ACCESS> := A, S;

A := asynchronous;
S := synchronous;

<READ-ACCESS> := A, ST, SR;
A := asynchronous;
ST := synchronous transparent;
SR := synchronous registered;

<PARITY> := P or nothing;
P := parity will be generated;
nothing := parity will be checked;

For example, the name of a FIFO with an asynchronous write and a
synchronous transparent read mode with parity check is “FIFO256x9AST.” Or
a synchronous registered RAM with parity bit generation would be named
“RAM256x9SSRP.”

Integrating
Memories into
a Design

This section provides examples of how to integrate a Verilog or VHDL
memory netlist into a design. Once ACTgen has generated the memories you
must incorporate the netlist into your design before simulation and synthesis.
ACTgen generates a netlist file with the .v, .vhd or .edn extension and a
constraint file with the .gcf extension, which is no longer needed to perform
automatic place-and-route of the memories.
172

Embedded Memory
Example Verilog RAM 512x32

The following is a Verilog netlist generated by ACTgen for a 512x32 bit RAM:

'timescale 1ns/10ps
// Name = ram512x32
// type = RAM
// width = 32
// depth = 512
// part family = A500K
// output type = asynchronous
// optimization = speed
// input type = synchronous
// parity control = ignore
// Write = active low
// Read = active low
// Write clock = posedge

module ram512x32(DO, WCLOCK, DI, WRB, RDB, WADDR, RADDR);
output [31:0] DO;
input WCLOCK;
input [31:0] DI;
input WRB;
input RDB;
input [8:0] WADDR;
input [8:0] RADDR;

GND U1(.Y(VSS));
RAM256x9SA M0(.WCLKS(WCLOCK), .DO8(n27), .DO7(n24), .DO6(n21),
.DO5(n18),
.....
//memory blocks instantiation

endmodule

The following is an example of how to instantiate a ram512x32 module into a
design:

ram512x32 MY_RAM_INST(.DO(data_out),.WCLOCK(clk),
.DI(data_in), .WRB(wrb), .RDB(rdb),.WADDR(write_add),
.RADDR(read_add));

After instantiating the memory into the Verilog source code, the next step is to
simulate and synthesize the design. Before synthesizing the design, make sure
that the “dont_touch” attribute is set on all memories generated by ACTgen.
173

Appendix A: Memory in Flash
Refer to the the documentation included with your synthesis tool for additional
information on how to apply a “dont_touch” attribute on a memory block.

VHDL RAM Example

The following is a VHDL example of the previously generated memory:

-- Name = ram512x32
-- type = RAM
-- width = 32
-- depth = 512
-- part family = A500K
-- output type = asynchronous
-- optimization = speed
-- input type = synchronous
-- parity control = ignore
-- Write = active low
-- Read = active low
-- Write clock = posedge

entity ram512x32 is
port(DO : out std_logic_vector (31 downto 0);

WCLOCK : in std_logic;
DI : in std_logic_vector (31 downto 0);
WRB : in std_logic;
RDB : in std_logic;
WADDR : in std_logic_vector (8 downto 0);
RADDR : in std_logic_vector (8 downto 0));

end ram512x32;

The entity describes the interface of the module that must be instantiated into
the VHDL design source code. Besides the actual connection of the interface,
VHDL requires an additional declaration of the sub-module in the architecture.
The following is an example of an architecture declaration including the
declaration of the memory as a component:

architecture STRUCT_ram512x32 of ram512x32 is
component PWR

port(Y : out std_logic);
end component;

component GND
port(Y : out std_logic);

end component;
174

Embedded Memory
component RAM256x9SA
port(WCLKS : in std_logic;

DO8 : out std_logic;
DO7 : out std_logic;
......

);
end component;
......
begin
......

M0 : RAM256x9SA port map(WCLKS => WCLOCK, DO8 => n27, DO7
=> n24,

......
end STRUCT_ram512x32;

Importing the Netlist into Designer

After synthesis, a design is translated into either a Verilog, VHDL, or an EDIF
netlist. The netlist includes all logic blocks as well as the memories. To import
the netlist file(s) into Designer, refer to the Designer online help. .

Designer automatically places the memories serially. If you want to place
memories in any other way, use manual memory placement, as described in the
next section.

Note: If you use the previous memory modules in a synthesis flow, make sure
that you set “dont_touch” attributes on the modules generated by

Table A-2. Possible RAM Locations for the A500K Family

Part possible RAM locations formula

A500K050 (1,57), (17, 57), ..., (81, 57) x = 16*n+1; n= {0,1,2,3,4,5}; y = 57;

A500K130 (1,81), (17, 81), ..., (145,81)
(1,89), (17, 89), ..., (145,89)

x = 16*n+1; n= {0,1,2,3,4,5,6,7,8,9}
y = {81, 89}

A500K180 (1,97), (17,97), ..., (177, 97)
(1,105), (17,105), ..., (177, 105)

x = 16*n+1; n= {0,1,2,3,4,5,6,7,8,9,10,11}
y = {97, 105}

A500K270 (1,121), (17,121), ..., (209,121)
(1,129), (17,129), ..., (209,129)

x = 16*n+1; n=
{0,1,2,3,4,5,6,7,8,9,10,11,12,13}
y = {121, 129}
175

Appendix A: Memory in Flash
ACTgen. Otherwise, the names of these modules may be changed and
Designer cannot find the memory modules to be placed in the netlist.

Manual Memory Placement

For manual placement, a .gcf constraints file must be created. The following is
an example of a manually created placement file for a A500K130 device.

set_location (1,81) <hier_instance_name>/M0;
set_location (1,89) <hier_instance_name>/M1;
set_location (33,89) <hier_instance_name>/M2;
set_location (33,81) <hier_instance_name>/M3;

The (x,y) coordinates are device dependent. If wrong coordinates are entered,
Designer reports about wrong coordinates and displays a list of valid
coordinates for the selected device. Refer to Table A-2 on page 175 for valid
coordinates for each device.

Distributed Memory
This section describes the distributed memory architecture and how to use
ACTgen to create distributed memories for Flash devices.

Distributed
Memory
Architecture

Distributed memory can be generated as a two port asynchronous register file
or as an asynchronous FIFO. Distributed memories are made up of the logic
tiles of the device. These memory files are netlists consisting of logic tiles and
do not use embedded memory cells.

The Register File

The register file has independent read and write ports. The read port is
asynchronous so the read data is not clocked and is available a short time after
the read address changes. The write port is also asynchronous and data is
written on the active edge of WR. The write operation can be either level
sensitive or edge-sensitive. The schematic of a 2x2 memory is shown in Figure
A-1 on page 177. The schematic is marked to show the words (vertical slices),
the bits (horizontal slices) and the decoders (one per word). The register file
176

Distributed Memory
memory requires 1 column per word and 2 rows per bit plus from 1 to 3 rows
for the necessary decoders.

Figure A-1. 2x2 Register File Schematic

Distributed FIFO

A Distributed FIFO also has independent read and write ports. However, it has
no address ports. Instead, the FIFO keeps track of the addresses internally. The
FIFO is organized with words in columns and data bits in rows. The top row
consists of the write addressing circuitry and the “full” detection circuitry. The
second row consists of the read addressing circuitry and the “empty” detection
circuitry. The FIFO requires two columns per word plus an overhead for
decoders and flag generation that is a minimum of three columns. The FIFO

D

C

Q

D

C

Q

D

C

Q

D

C

Q

B

A S

Y

B

A S

Y

wData1

wData0

WR

wAddr0wAddr0

rAddr0rAddr0

rData1

rData0rData0

Word0 Word1

B
it

0

177

Appendix A: Memory in Flash
also requires one row per bit plus an overhead of two rows. Figure A-2 shows
the schematic of a 2x2 FIFO.

Figure A-2. 2x2 FIFO Schematic

Determining Tile Usage

ProASIC parts tend to have more tiles horizontally. The choice of orientation
affects the allowable size of the memory. A horizontal memory allows the
maximum possible number of words. A vertical memory allows the maximum
number of bits per word. ACTgen can create register files of up to 64 words on
any possible ProASIC device. Distributed memories are created using logic tiles
and are generally slower and larger compared to embedded RAM. Actel
recommends that larger memories be implemented with embedded memory.

D

C

S
Q

A
B

Y

A
B

Y

Init

Write

Read

D Q

D Q

wData1

wData0

D

C

S
Q

A
B

Y

A
B

Y

D Q

D Q

D

C R

Q

D

C R

Q

A
B

Y

A
B

Y

D Q

D Q

D

C R

Q

D

C R

Q

rData1

rData0

A
B

Y

A
B

Y

A
B

Y

A
B

Y

A
B

Y

A
B

Y

empty

full
178

Distributed Memory
The maximum distributed FIFO sizes in any ProASIC device is 80 words. The
maximum RAM and FIFO sizes are shown in Table A-3.

1. Numbers in parentheses are for FIFOs.

The orientation of the register file affects how it is placed. Horizontal register
files are placed with words in columns and bits in rows as shown in Figure A-3.

Figure A-3. Horizontal Memory

Table A-3. Maximum RAM and FIFO Dimensions

Device Vertical Horizontal

Words Width Words Width

A500K050 64 (23)1 46 (94) 64 (36) 30 (62)

A500K130 64 (29) 78 (158) 64 (62) 38 (78)

A500K180 64 (36) 95 (192) 64 (75) 46 (94)

A500K270 64 (45) 110 (222) 64 (80) 58 (118)

APA 64 (45) 110 (222) 64 (80) 58 (118)

Decoders

Core
2 * number bits per word

number of words
179

Appendix A: Memory in Flash
Vertical memories are placed with bits in columns and words in rows as shown
inFigure A-4.

Figure A-4. Vertical Memory

The decoder sizes are given in table Table A-4.

Calculating
Logic Usage

The following section presents how to calculate logic usage for Memory area,
and a vertical and a horizontal memory.

Memory Area

The following is an example of how to calculate memory area:

Table A-4. Decoder Sizes

Number of
Words

Decoder Size

2 ~ 4 1

5 ~ 8 2

9 ~ 64 3

D
ec

od
er

s

C
or

e

2 * number bits per word

nu
m

be
r

of
w

or
ds
180

Distributed Memory
Memory Area = Number of Words
(2 * Number of bits +decoder size)

Vertical Orientation

The following is an example logic usage calculation for a 16x32 RAM:

Width in tiles = 2 * number-of-Bits-per-word + decoder size

= 2 * 32 + 3 = 67

Height in tiles = number-of-words = 16

Horizontal Orientation

The following is a an example logic usage calculation for a 16x32 RAM:

Tiles in Width = Number-of-Words = 16

Tiles in Height = 2 * number-of-bits-per-word + decoder size

= 2 * 32 + 3 = 67

ACTgen displays the legal coordinates to place the memory if the macro is not
rotated or flipped. The horizontal could be placed between the coordinates
(1,1) and (145, 15) assuming the A500K130 device was selected.

Distributed Memory Placement

To achieve the best timing and efficient placement, use the placement
constraints file generated by ACTgen. For more information on constraint
statements, refer to the Actel Quick Start Guide. To utilize this file, use the
“set_location” constraint statement for macros. For example:

set_location (x,y) <mem_hier_name> <macro_name>;

Distributed Memory Timing

Memory timing values are dependent on the memory size and the routing to
and from the memory. Since the memories are implemented as ProASIC
primitives, users can determine the timing characteristics of the circuit by
performing a back annotated timing analysis. In fact, to the timing analyzer, the
distributed memory looks like any other part of the circuit and requires no
special treatment. “Timing for Distrubuted Memories” on page 182 explains
the critical timing paths in each memory, and why these paths are critical.
181

Appendix A: Memory in Flash
Distributed
Memory
Generation
and
Instantiation

Consider the following hierarchical design, which instantiates a 16x32 memory
as shown in Figure A-5.

Figure A-5. Design Example

Simulation and Synthesis

After instantiating a memory into the design, simulate and synthesize it.
Memory models are included into the simulation and synthesis libraries. Refer
to the documentation included with your simulation and synthesis tools for
additional information. During synthesis make sure that the “dont_touch”
attribute is set on all memories generated by ACTgen.

Place-and-Route

After synthesis, a netlist is written out that contains the embedded memories
and the logic of a design. Designer treats the memory as a macro and places it
in a rectangle with the bottom-left corner on tile coordinate (10,10). Memory
can be moved on the die by changing this coordinate.

Note: Distributed memory contains very high fanout nets so, if you do not use
the above placement constraints, memory timing will be sub-optimal or
the design may not route.

Timing for Distrubuted Memories
The following chapter decribes the timing parameters for the level sensitive
register file, and edge-triggered register file. It also includes information about
edge-triggered FIFOs.

TOP

block1 block2

ram16x32 block3

U1 U2

U3mem_inst
182

Timing for Distrubuted Memories
Level-sensitive
Register File

The level-sensitive register file has three main timing parameters.

• Tacc - time from stable read-address to output data valid

• Tsetup_data - time from stable write-data to falling edge of WR

• Tsetup_addr - time from stable write-address to rising clock edge

Figure A-6 shows the timing of these parameters:

Figure A-6. Level-sensitive Mode Timing Diagram

Failure to meet these timing values will have the following results:

• Tacc - read data might be from previous address

• Tsetup_data - data may not be written into the memory

• Tsetup_addr - data may be written into some other address as well as the
intended address

Edge-triggered
Register File

The edge-triggered register file has three main timing parameters:

• Tacc - time from stable read-address to output data valid

• Tsetup_data - time from stable write-data to rising WR edge

• Tsetup_addr - time from stable write-address to rising WR edge

rAddr

rData

wData

wAddr

WR

Tacc

Tsetup_data

Tsetup_addr
183

Appendix A: Memory in Flash
Figure A-7 shows the relationships of the signals.

Figure A-7. Edge-triggered Mode Timing Diagram

Failure to meet these timing values will have the following results:

• Tacc - read data might be from previous address

• Tsetup_data - data may not be written into the memory

• Tsetup_addr - data may be written into some other address

The main advantage of the edge-triggered memory is that the write timing is
sensitive only to the rising edge of the WR, not both the rising and falling edges.

Edge-Triggered
FIFO

The edge-triggered FIFO captures data on the rising edge of the “WR” signal,
and the read pointers advance on the rising edge of the “RD” signal. Before
using the FIFO, it must be initialized by pulsing the “INIT” signal high.
Immediately after initialization, the “empty” signal is true and the “full” signal
false. Data applied on the “wDataX” signals are captured when the “WR”
signal transitions from 0 to 1. Simultaneously, the “empty” signal will become
false to indicate that there is valid data on “rDataX.” Further transitions from 0
to 1 on “WR” captures more data into the FIFO until such time as “full”
becomes true. At this point, the FIFO is full, and no more data should be
entered into it.

After the FIFO is initialized, the output data remains invalid until the first read
operation is performed. With every rising edge of the read pulse, the FIFO

rAddr

rData
Tacc

wData

wAddr

WR

Tsetup_data

Tsetup_addr
184

Using Multiple Memories in a Design
generates the next word written into it on the output data bus until all the
words written into it are read out. At this point the “empty” signal goes high.
Further read operations produce no change to the data output as it remains
fixed at the last word written into the FIFO.

Figure A-8 shows an example of an Edge triggered FIFO. It has the following
main timing:

• Tacc - Access from RD rising edge to output data valid

• Tacc - Access from RD rising edge to output data valid

• Tsu - Setup time from stable write-data to rising WR edge

• Thold - Hold time for write-data from rising WR edge

Figure A-8. Edge-triggered FIFO Timing Diagram

Level Sensitive
FIFO

The level sensitive FIFO has the same timing as the edge-triggered FIFO. The
only difference is that the data input is latched at the falling edge of the write
pulse.

Using Multiple Memories in a Design
This chapter describes how to use multiple memories in a design. If a design
includes several memories with different sizes and access modes, Actel

Tacc

rData

RD

wData

WR
Tsu Thold
185

Appendix A: Memory in Flash
recommends generating them all in one session of ACTgen. The embedded
memories are automatically generated and are accompanied by placement
directives.

Multiple
Memory
Generation
and Integration

ProASIC devices contain dedicated embedded memory blocks that can be
configured as RAM or FIFO. Multiple memory blocks can be combined
together to create deep and wide memories. ACTgen does this by combining
multiple memory blocks as required. The tool generates netlists for these
blocks. Netlist instantiates memory leaf cells. Consider the following design
shown in Figure A-9.

Figure A-9. Sample Design

In this design, there is a receive FIFO and transmit FIFO. Read and Write ports
are synchronous. Each FIFO is 32 words deep and 64 bits wide. Also, both
FIFOs are identical. Only one FIFO needs to be created with ACTgen, and it
must be instantiated twice into the design.

Once the FIFO is generated with ACTgen, it must be instantiated into the
design. The following is an example of the RTL after instantiation:

module top(tran_data, rec_data, rec_data_valid,
tran_data_valid, clk, reset, rec_fifo_full,
rec_fifo_empty, tran_fifo_full, tran_fifo_empty);
// this is top level module

input rec_data_valid, clk, reset, tran_data_valid;
output[63:0] tran_data;
output rec_fifo_full, rec_fifo_empty,tran_fifo_full,
tran_fifo_empty;

Receive FIFO
32x64

Transmit FIFO
32x64

Rec data
64

64

CLK

Rec data valid

Int data

64

Tran data valid

Transmit data

Tran FIFO emptyTran FIFO fullRec FIFO full Rec FIFO empty
186

Using Multiple Memories in a Design
input[63:0] rec_data;
wire[63:0] data_int;
/* Receiver FIFO instantiation */
sync_fifo rec_FI(.data_in(rec_data),.data_out(data_int),

.wr(rec_data_valid), .rd(1'b0),

.empty(rec_fifo_empty), .full(rec_fifo_full),

.reset(reset), .clk(clk));
/* transmit FIFO instantiation */
sync_fifo tran_FI(.data_in(data_int),

.data_out (tran_fifo_full)

.wr(1'b0), .rd(tran_data_valid),

.empty(tran_fifo_empty), .full(tran_fifo_full),

.reset(reset), .clk(clk));
/* other RTL of the design and other blocks */

endmodule

module sync_fifo (data_in, data_out, wr, rd, empty, full,
reset, clk);
input[63:0] data_in;
output[63:0] data_out;
input wr, rd,clk, reset;
output empty, full;
/* Instantiation of FIFO generated from ACTgen */fifo32x64
F1(.DO(data_out), .RCLOCK(clk), .WCLOCK(clk),

.DI(data_in), .WRB(wr), .RDB(rd), .RESET(reset),

.FULL(full), .EMPTY(empty), .EQTH(), .GEQTH());

endmodule
187

Appendix A: Memory in Flash
Simulate and Synthesize

Now the design can be simulated and synthesized. The following is an example
of a Verilog-XL simulation command:

verilog test_sim.v top.v fifo32x64.v –v
$AMHOME/etc/deskits/verilog/lib/A500K.v

The following is a typical Design Compiler script for synthesis of a design
including memory blocks:

read –format verilog fifo32x64
set_dont_touch find(design, “fifo32x64”) /* memories must be
dont_touch during synthesis */
read –format verilog top.v
create_clock –period 20 clk /* add timing constraints */
set_wire_load A500K
set_operating_conditions WORST
compile
set_port_is_pad “*” /* use set_pad_type to to use a particular
type of pad */
insert_pads
write –format verilog –hierarchy –output top_str.v /* write
out netlist with hierarchy */
quit

Memory Placement

The netlist “top_str.v”contains both FIFO instantiations and can be used for
post synthesis gate level simulation. After synthesis, you can place and route the
design. In this example, each FIFO uses 8 memory blocks. Designer
automatically attempts to place each FIFO in a line. The resulting placement on
an A500K130 device, which has 20 memory slots, is shown in Figure A-10 on
page 189. For information about the ChipEdit tool, refer to the ChipEdit User’s
Guide or the ChipEdit online help.
188

Using Multiple Memories in a Design
Figure A-10. Sample Memory Placement (Screen May Vary Slightly)

During placement Designer attempts to keep one memory entity in one group.
In the example shown in Figure A-10, it placed the “Rec_FI/F1/M0” in the
first memory slot on the left side of the lower row, and “rec_FI/F1/M1” in
next slot and so on. Only ten slots were available in one row and therefore, the
placement of “tran_FI” started from the upper row. If each memory block had
used four blocks, both memory blocks would be placed one after another in the
lower row.

Manual
Placement of
Multiple
Memories

A memory placement file must be created to manually place memories. For
example, to place the “rec_FI” from the previous example on the left side using
both rows and the “tran_FI” on right side in both rows, the following
placement file would be used:

set_location (1,81) rec_FI/F1/M0;
set_location (1,89) rec_FI/F1/M1;
set_location (17,89) rec_FI/F1/M2;
set_location (17,81) rec_FI/F1/M3;
set_location (33,81) rec_FI/F1/M4;

M7
M4M6M7 M2

M5
M3

M3M1 M4M2M0
M1 M0M5

M6

8 blocks of
tran_FI

8 blocks of
Rec_FI
189

Appendix A: Memory in Flash
set_location (33,89) rec_FI/F1/M5;
set_location (49,89) rec_FI/F1/M6;
set_location (49,81) rec_FI/F1/M7;

set_location (145,81) tran_FI/F1/M0;
set_location (145,89) tran_FI/F1/M1;
set_location (129,89) tran_FI/F1/M2;
set_location (129,81) tran_FI/F1/M3;
set_location (113,81) tran_FI/F1/M4;
set_location (113,89) tran_FI/F1/M5;
set_location (97,89) tran_FI/F1/M6;
set_location (97,81) tran_FI/F1/M7;

This constraints file should be read into Designer and would result in the
placement shown in Figure A-11 on an A500K130 device.

Figure A-11. Sample FIFO Placement

Designer determines the placement for each memory and keeps each memory
entity together. To change default placement, you can create constraints
manually for memory placement as described in Chapter 1.

Glue Logic for Wider or Deeper Memories

If very deep or very wide memories are created, ACTgen combines together
multiple basic blocks and uses embedded logic. Two lists quantifying glue logic
are shown in Table A-5 and Table A-6 on page 191 .

M1 M6M5M2 M1M2M5M6

M0 M7M4M3 M0M3M4M7

Tran FIFORec FIFO
190

Using Multiple Memories in a Design
These tables cover extreme cases of depth or width for RAMs and FIFOs for
the A500K130 device, which offers 20 memory blocks and 12800 logic tiles.

For FIFOs, ACTgen creates placement directives for glue logic. If placement
information from ACTgen is used, glue logic placement is more efficient.

Programmable
Flags in FIFOs

ProASIC devices provide programmable flags for FIFOs. The threshold for
these flags can be set in ACTgen in the main menu. It is on the bottom right

Table A-5. RAM

RAM Parity
Memory
Blocks
Used

Logic Tile
Used

Comment

Depth 5120
Width 8 Check Even 20 259

All 20
blocks used
in depth

Depth 256
Width 160 Check Even 20 22

All 20
blocks used
in width

Table A-6. FIFO

FIFO Parity
Memory
Blocks
Used

Logic Tile
Used

Comment

Depth 5120
Width 8 Check Even 20 592

All 20
blocks used
in depth

Depth 256
Width 160 Check Even 20 62

All 20
blocks used
in width
191

Appendix A: Memory in Flash
corner in the FIFO Trigger Level box. You can specify whether the flag is static
or dynamic. If dynamic is selected, ACTgen will create a FIFO with a LEVEL
input bus on the memory interface. You can apply values in the range of 0 to
255 to this bus to change its threshold dynamically.

The overall trigger level is a multiple “d,” which is the number of used basic
memory blocks in depth (each 256 words). The increment between each overall
trigger level is equal to “d.” For example, a memory that is 512 words deep is
built up of two basic memory block in depth (512/256). The highest almost full
trigger level should be assigned, which is 510 (512-d = 512-2) The
corresponding dynamic trigger LEVEL is 255 (510/n = 510/2).

If the threshold is not changing, you can select the static option and specify the
threshold value. In this case, ACTgen will hardwire threshold to the specified
value. A detailed timing of these flags can be found in the ProASIC 500k Family
Datasheet.

Trigger level is also called threshold. Consequently, equal threshold (EQTH)
and greater equal threshold (GEQTH) are the names of the trigger flags.
192

	Introduction
	Document Conventions
	Symbols
	Your Comments
	Online Help

	Arithmetic Macros
	Adder
	Array Adder
	Subtractor
	Adder/Subtractor
	Accumulator
	Incrementer
	Decrementer
	Incrementer/Decrementer
	Constant Multiplier
	Multiplier
	Advanced Options

	Comparators
	Magnitude/Equality Comparator
	Constant Decoder

	Converters
	Gray Counter
	Binary to Gray / Gray to Binary

	Counters
	Binary Counter

	Decoder
	Decoder

	IOs
	Input Buffers
	Output Buffers
	Bi-Directional Buffers
	Tri-State Buffers
	Global Buffers
	PECL Global Buffers
	PerPin FIFO
	Dual Data Rate Register
	Dual Data Rate FIFO

	Logic
	Logic (AND)
	Logic (OR)
	Logic (XOR)

	Multiplexer
	Multiplexer

	Minicores
	FIR Filter
	CRC Minicore

	PLLs
	PLL for ProASICPLUS
	Axcelerator PLL

	Register (Storage Elements)
	Storage Register
	Shift Register
	Barrel Shifter
	Storage Latch

	Memory Macros for Non-Axcelerator Families
	Synchronous/Asynchronous Dual Port RAM
	Register File
	Synchronous Dual Port FIFO without Flags
	Synchronous Dual Port FIFO with Flags
	FIFO Flag Controller (No RAM)

	Memory Macros for Axcelerator
	Axcelerator RAM
	Axcelerator EDAC RAM
	Axcelerator FIFO
	PerPin FIFO

	Memory Macros for Flash Devices
	Synchronous/Asynchronous Dual Port RAM for Flash
	Register File for Flash Devices
	Synchronous/Asynchronous Dual Port FIFO for Flash Devices
	FIFO Using Distributed Memory for Flash
	Embedded Memory
	Distributed Memory
	Timing for Distrubuted Memories
	Using Multiple Memories in a Design

