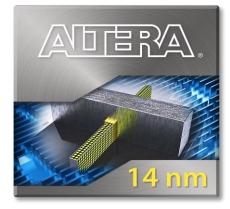
Introduction to Arria 10 FPGAs and SoCs

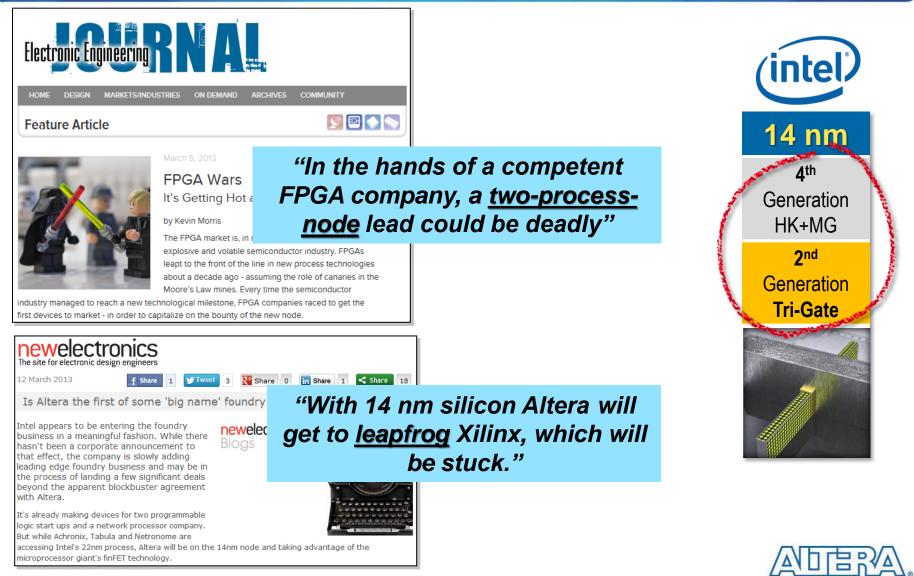
June 2013

MEASURABLE ADVANTAGE M

Notes to Presenters

- This deck is a complete, self-contained presentation for introducing Arria 10 FPGAs and SoCs
 - More detail on the Arria 10 SoC and HPS can be found in the Arria 10 SoC customer presentation
- When giving a combined Arria 10 / Stratix 10 presentation, we recommend you present the Arria 10 deck first, then present the Stratix 10 Blue Angels deck second
 - The beginning of the Arria 10 deck includes Intel announcement info and tailored portfolio info
 - You can delete the Intel announcement information from the start of the Stratix 10 Blue Angels deck to eliminate redundancy


- Optimized next generation portfolio
- Introduction to Altera's expanded
 20 nm mid-range FPGA and SoC family
- Target applications for Arria 10 devices
- Detailed look at Arria 10 features
- Summary


February Altera Announcement

- Altera will build next-generation, high-performance FPGAs on Intel's 14 nm tri-gate process technology
- Next-generation 14 nm tri-gate products enable breakthrough levels of performance and power efficiencies not otherwise possible
- Delivers a significant advantage for Altera's customers → only major FPGA company with access to 14 nm tri-gate technology

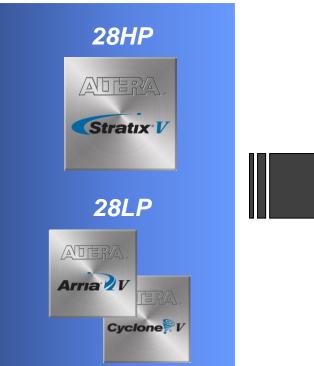
What Industry Observers are Saying

© 2013 Altera Corporation—Public

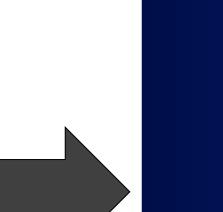
MEASURABLE ADVANTAGE

... And We Agree

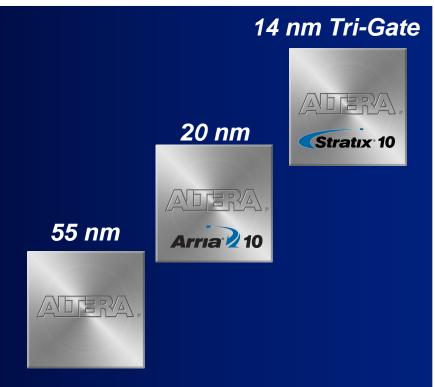
Second	U.S. EDITION V Monday, February 25, 2013 As of 6:16 PM EST									
Home V	Vorld -	U.S	New York 🔻	Business -	Tech •	Markets -	Market			
				Digits P	ersonal Te	chnology V	What They			
TECHNOLOGY Updated February 25, 2013, 6:16 p.m. ET Intel Adds Altera as Customer										


"This will put us two to four years ahead of any of our competitors"

-John Daane, Altera CEO

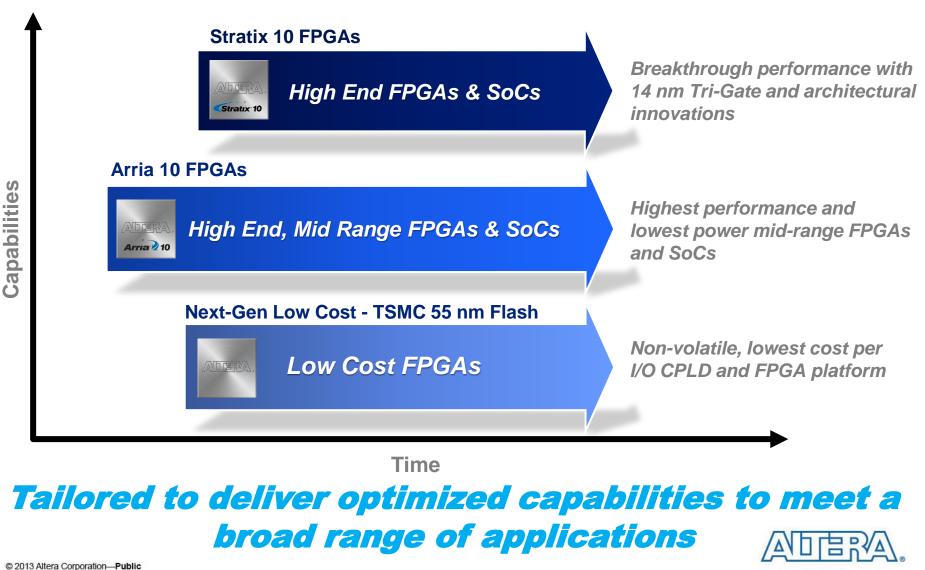

Extending Altera's Tailored Approach With 14 nm

Today's Portfolio



Single Node

28 nm


Next-Gen Portfolio

Altera's Next-Generation Tailored Portfolio Roadmap

MEASURABLE ADVANTAGE "

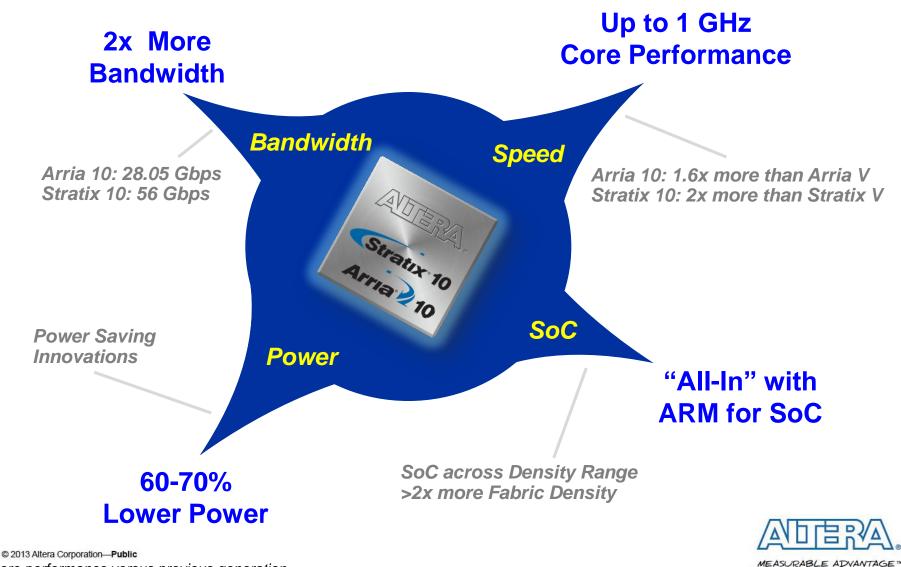
Altera's Next Generation Portfolio Goes to 10

High-Performance Mid Range FPGAs & SoCs

TSMC 20 nm Process

- 60% faster vs. Arria V FPGAs, 15% vs. Stratix V FPGAs
- 40% lower power vs. Arria V FPGAs, 60% vs. Stratix V FPGAs
- 96 XCVRs, up to 28.05 Gbps

Pin Migration



Intel 14 nm Tri-Gate Process Stratix 10
2x performance of Stratix V FPGAs

- Up to 70% lower power vs. Stratix V FPGAs
- 4M+ LEs, Up to 56 Gbps XCVRs
- 10+ TFLOPs DSP performance

Altera's 10th Generation Portfolio – 2x More

* Core performance versus previous generation

A 2x Leap Forward with 10th Generation

	Arria V GX/GT	Arria 10	Advantage
Density	500K LE	1,150K LE	2x
Multipliers	2,312	3,356	1.5x
Core Performance	300 MHz+	500 MHz+	1.6x
Transceiver Max Data Rate	10 Gbps	28.05 Gbps	2.8x
Memory Interface	1333 Mbps	2666 Mbps	2x
Total Power*	1.0	0.6	40% Lower
Cross Migration	No	Yes to Stratix 10	Yes

Arria 10 to Stratix 10 Migration

Arria 210 1st & Largest Devices GX 1150 GT 1150

F1152 / F1517 / F1932 Multiple Packages

1st Stratix 10 Device

Notes: Preliminary and subject to change

Applications: 10th Gen Mid-Range and High-End FPGAs

More Power & Cost Sensitive

More Bandwidth Intensive

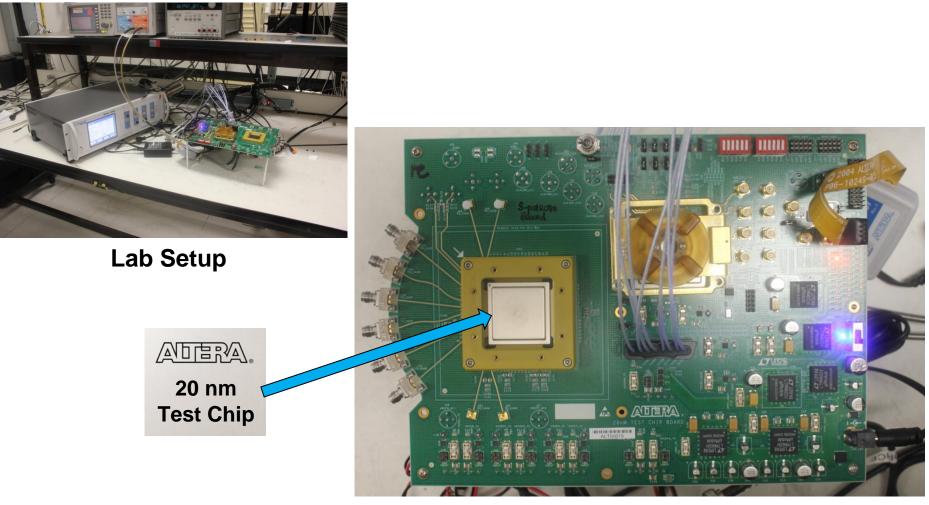
Applications	Industries	Applications				
Up to 100G Line Cards, Nx100G Bridging & Aggregation	Wireline	200G/400G Line Cards, 200G/400G Bridging & Aggregation				
40G/100G Muxponders/Transponders, ODU	Communications	200G/400G Muxponders/Transponders, ODU				
10G GPON / NGPON		100G TM, Packet Processing, NGPON-2				
Remote Radio Heads, Channel & Switch Cards	Wireless					
Mobile Backhaul	Communications	High BW Remote Radio Heads				
Electro-Optical/IR		Signal Intelligence				
Guidance/Control	Defense	High-End				
Radar, Electronic Warfare, Secure Comms		Radar / Electronic Warfare / Secure Comms				
Pro AV / Videoconferencing		High-End Broadcast Studio / Distribution				
Studio Switcher / Server / Transport	Broadcast	Headend Encoder / EdgeQAM / CMAP				
Flash Cache & Cloud Computing	Commune	High- End				
Acceleration, Custom Servers, Diagnostic Imaging	Compute, Storage & Medical	Acceleration & Custom Servers, Diagnostic Imaging				

Altera Reinforces Commitment to 20 nm

- Major improvements to Arria 10 product plan
- Seventh test chip back from fab
- Four members and packages added to Arria 10 family plan
- 20 nm development milestones on schedule

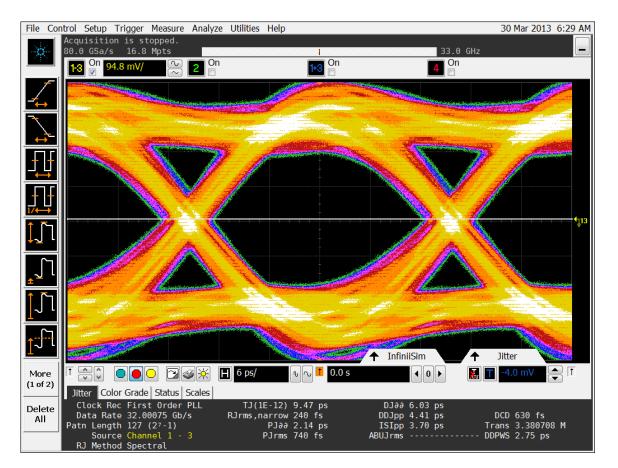
TSMC and Altera Continue Long-Term Partnership

HSINCHU, Taiwan, and SAN JOSE, Calif., Feb. 26, 2013 /PRNewswire/ -- TSMC (TWSE: 2330, NYSE: TSM) and Altera Corporation (NASDAQ: ALTR) today reaffirmed their commitment to a long-term partnership to set new milestones in FPGA innovation. TSMC is Altera's primary foundry, supplying a wide array of processes to fulfill Altera's product portfolio, including soon-to-be-released 20 nm products, existing mainstream products, and long-lived legacy components.


> Altera-TSMC Joint Announcement Reinforcing Cooperation at 20 nm and Beyond Released: February 25, 2013

Migration path to 14 nm Stratix 10 devices

Altera 20 nm Product Plan : Expanded and on Schedule!


Altera 20 nm Transceiver Test Chip Lab Setup

20 nm Test Chip Eval Board

Industry's First Transceivers @20 nm Transmit Eye at 32 Gbps

First Transceivers @ 20 nm Validate 28G Operation for Arria 10

Arria 10 FPGAs and SoCs: Reinventing the Midrange

NEV

High performance and bandwidth

- Over 60% faster than prior generation
 - Over 15% faster than Stratix V FPGAs
- Over 3.6 Tbps of transceiver bandwidth
- Over 850 Gbps of DDR4 bandwidth
- Over 1.2 Tbps of serial memory bandwidth

Lowest power midrange FPGAs and SOCs

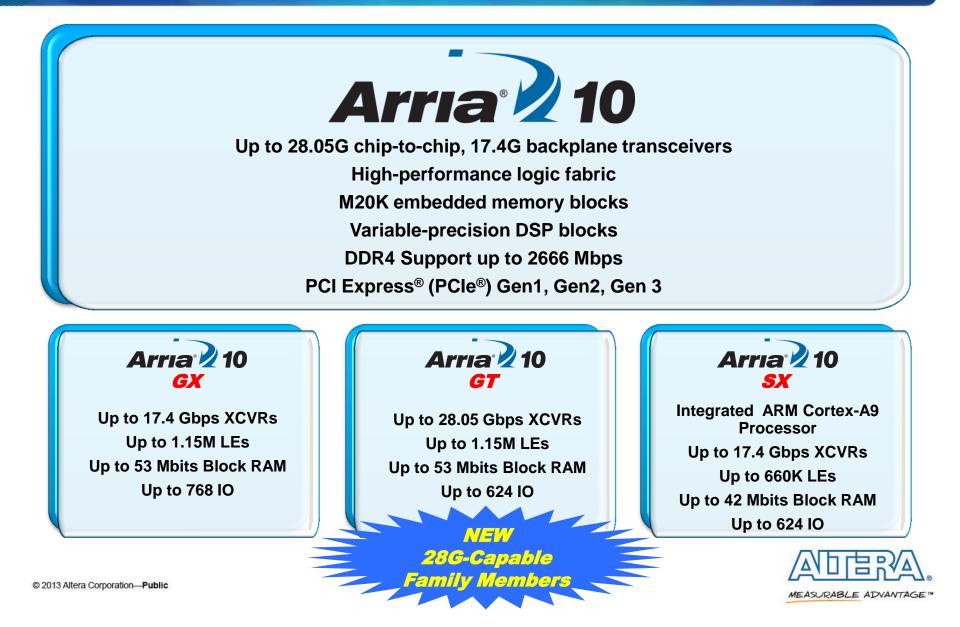
- Up to 60% lower power than Stratix V FPGAs, up to 40% lower than Arria V FPGAs
- Comprehensive power reduction features

Highest level of integration in the midrange

- Up to 1.15 million logic elements and 53 Mb embedded memory

NEW

- Up to 96 transceivers
- Over 3.3K 18x19 multipliers
- Dual-core ARM Cortex A9 processor and subsystem


Highest Performance and Lowest Power for Midrange Applications

© 2013 Altera Corporation—Public

Highest Performance Midrange Devices Up to 60% Lower Power

Arria 10 FPGAs and SoCs

Arria 10 FPGA Family Plan

			Interc	onnects	PL	Ls	Hard IP					
	Device Name	Logic Elements (KLE)	M20K Blocks	M20K Bits (Mbits)	MLAB Counts	MLAB (Mbits)	18x19 Mults	Max IOs	Max XCVRs	fPLLs	IO PLLs	PCle HIPs (x8)
	GX 160	160	440	9	1680	1	312	288	12	6	6	1
	GX 220	220	583	11	2227	1.4	384	288	12	6	6	1
	GX 270	270	750	15	3537	2.2	1600	384	24	8	8	2
	GX 320	320	891	17	4673	2.9	1970	384	24	8	8	2
ХÐ	GX 480	480	1438	28	7137	4.4	2736	492	36	12	12	2
	GX 570	570	1800	35	8241	5.0	3223	588	48	16	16	2
	GX 660	660	2133	42	9345	5.7	3356	588	48	16	16	2
	GX 900	900	2423	47	15080	9.2	3036	768	96	32	16	4
	GX 1150	1150	2713	53	20814	12.7	3036	768	96	32	16	4
GT	GT 900	900	2423	47	15080	9.2	3036	624	96	32	16	4
σ	GT 1150	1150	2713	53	20814	12.7	3036	624	96	32	16	4

Notes:

Preliminary and subject to change

Arria 10 GX and GT Package Plan (1 of 2)

Device		U	484			F6	72			F7	80			F1 :	152					F11	52*			
Size		19x2	19mm	1		27x2	7mm			29x2	9mm			35x3	5mm			35x3	5mm			35x3	35mm	
Package Code		l	J19			Fź	27			F	29			F	34			F	35			F	36	
XCVR Code		C (62	XCVRs))	E	(12 cł	nannel	s)	E	(12 cł	nannel	s)	Н	(24 cl	nannel	s)	Н, К	(24, 3	6 chan	nels)	K	(36 c	hannel	s)
GX FPGAs	GP IO	3V IO	LVDS Pairs	XCVR	GP IO	3V IO	LVDS Pairs	XCVR	GP IO	3V 10	LVDS Pairs	XCVR	GP IO	3V 10	LVDS Pairs	XCVR	GP IO	3V 10	LVDS Pairs	XCAR	GP IO	3V 10	LVDS Pairs	
GX 160	19 2	48	72	6	240	48	96	12	288	48	120	12												
GX 220	192	48	72	6	240	48	96	12	288	48	120	12												
GX 270					240	48	96	12	360	48	156	12	384	48	168	24	384	48	168	24				
GX 320					240	48	96	12	360	48	156	12	384	48	168	24	384	48	168	24				
GX 480									360	48	156	12	492	48	222	24	396	48	174	36				
GX 570													492	48	222	24	396	48	174	36				
GX 660													492	48	222	24	396	48	174	36	432	48	174	36
GX 900													528	0	264	24	432	0	216	36				
GX 1150													528	0	264	24	432	0	216	36				

Notes:

a) Preliminary and subject to change

b) GPIO counts include 3V IO and LVDS IO; GPIO that do not support 3V IO can support LVDS

c) Each LVDS pair can be configured as either a differential input or as a differential output

d) Up to 48 GPIO pins may be used for programming

e) All packages are 1.0mm ball pitch except U484 which is 0.8mm ball pitch

f) Packages of similar footprint (ie, the two F1152 columns shown in table above) may have different package form factors. Please consult package outlines.

*These packages will each have two different package outlines

Pin Migration to Stratix 10 Devices

Pin migration across devices within family

Arria 10 GX and GT Package Plan (2 of 2)

														-					· · ·	
Device		F15	517 [*]			F15	517			F19	932			F19	932			F19	932	
Size		40x4	0mm			40x4	0mm			45x4	5mm			45x4	5mm			45x4	5mm	
Package Code		F4	40			F۷	10			F4	15			F4	15			F4	15	
XCVR Code	N	(48 cł	nannel	s)	R	(66 cł	nannel	s)	N	(48 cł	nannel	s)	S	(72 ch	annel	s)	U	(96 cł	nannel	s)
GX FPGAs	GPIO	3V IO	LVDS Pairs	IXCVR	GPIO	3V IO	LVDS Pairs	XCVR	GPIO	3V IO	LVDS Pairs	XCVR	GPIO	3V IO	LVDS Pairs	XCVR	GPIO	3V IO	LVDS Pairs	IVCVD
GX 570	588	48	270	48																
GX 660	588	48	270	48	Pi	n M	igra	ntior	n to	Stra	atix	10 I	Devi	ices						
GX 900	624	0	312	48	342	0	154	66	768	0	384	48	624	0	312	72	480	0	240	96
GX 1150	624	0	312	48	342	0	154	66	768	0	384	48	624	0	312	72	480	0	240	96
GT FPGAs			-							-				-						
GT 900	624	0	312	48									624	0	312	72	480	0	240	96
GT 1150	624	0	312	48									624	0	312	72	480	0	240	96

Notes:

a) Preliminary and subject to change

b) GPIO counts include 3V IO and LVDS IO; GPIO that do not support 3V IO can support LVDS

c) Each LVDS pair can be configured as either a differential input or as a differential output

d) Up to 48 GPIO pins may be used for programming

e) All packages are 1.0mm ball pitch except U484 which is 0.8mm ball pitch

f) Packages of similar footprint (ie, the two F1517 columns shown in table above) may have different package form factors. Please consult package outlines.

*This packages will have two different package outlines

© 2013 Altera Corporation—Public

MEASURABLE ADVANTAGE "

Pin migration across

devices within family

21

Arria 10 SoC Family Plan

			LOG	IC CORE				Interconnects		PLLs		Hard IP	
	Device Name	Logic Elements (KLE)	M20K Blocks	M20K Bits (Mbits)	MLAB Counts	MLAB (Mbits)	18x19 Mults	Max IOs	Max XCVRs	fPLLs	IO PLLs	PCle HIPs (x8)	
	SX 160	160	440	9	1680	1	312	288	12	6	6	1	
U	SX 220	220	583	11	2227	1.4	384	288	12	6	6	1	
SX SoC	SX 270	270	750	15	3537	2.2	1600	384	24	8	8	2	
10 S)	SX 320	320	891	17	4673	2.9	1970	384	24	8	8	2	
Arria	SX 480	480	1438	28	7137	4.4	2736	492	36	12	12	2	
A	SX 570	570	1800	35	8241	5.0	3223	588	48	16	16	2	
	SX 660	660	2133	42	9345	5.7	3356	588	48	16	16	2	

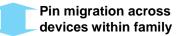
Notes: Preliminary and subject to change

MEASURABLE ADVANTAGE **

Arria 10 SoC Package Plan: Small Form Factor (1 of 2)

Device		U	484			F6	72			F7	80		
Size		19x 2	19mm			27x2	7mm		29x29mm				
Package Code		ι	J19			F2	27			F	29		
XCVR Code		C (6	XCVRs)			E (12 ch	annels)			E (12 cł	nannels)		
SoC	GP IO	3V IO	LVDS Pairs	XCVR	GP IO	3V IO	LVDS Pairs	XCVR	GP IO	3V 10	LVDS Pairs	XCVR	
SX 160	192	48	72	6	240	48	96	12	288	48	120	12	
SX 220	192	48	72	6	240	48	96	12	288	4 8	120	12	
SX 270					240	48	96	12	360	48	15 <mark>6</mark>	12	
SX 320					240	48	96	12	360	48	156	12	
SX 480									360	48	156	12	
SX 570													
SX 660													

Notes:


(1) All packages are ball grid arrays with 1.0mm pitch, except for U19 (U484) which is 0.8mm pitch.

(2) High-Voltage I/O pins are used for 3.3V and 2.5V interfacing.

(3) Each LVDS pair can be configured either as a differential input, or as a differential output.

(4) High-Voltage I/O pins and LVDS Pairs are included in the General Purpose I/O count. Transceivers are counted separately.

(5) Each package column offers pin migration (common circuit board footprint) for all devices in the column.

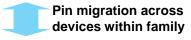
Arria 10 SoC Package Plan: IO & XCVR OPTIMIZED (2 of 2)

		MC	DRE IC)	N	10RE	XCV	RS	72-Bit DDR for HF				N	IAX X	CVRS	
Device		F	1152					F11	.52*					F151	7*	
Size		35	x35mm			35x35mm			35x35mm				40x40mm			
Package Code			F34			F35			F36				F40			
XCVR Code		H (24	1 channels)	H,	, K (24, 3	6 channe	ls)		К (36 с	hannels)			N (48 cha	nnels)	
SX SoCs	GPIO	3V IO	LVDS Pairs	XCVR	GPIO	3V IO	LVDS Pairs	XCVR	GPIO	3V IO	LVDS Pairs	XCVR	GPIO	3V IO	LVDS Pairs	XCVR
SX 160																
SX 220						_		-	-							
SX 270	384	48	168	24	384	48	168	24								
SX 320	384	48	168	24	384	48	168	24								
SX 480	492	48	222	24	396	48	174	36								
SX 570	492	48	222	24	396	48	174	36					588	48	270	48
SX 660	492	48	222	24	396	48	174	36	432	48	174	36	588	48	270	48

Notes:

(1) All packages are ball grid arrays with 1.0mm pitch, except for U19 (U484) which is 0.8mm pitch.

(2) High-Voltage I/O pins are used for 3.3V and 2.5V interfacing.


(3) Each LVDS pair can be configured either as a differential input, or as a differential output.

(4) High-Voltage I/O pins and LVDS Pairs are included in the General Purpose I/O count. Transceivers are counted separately.

(5) Each package column offers pin migration (common circuit board footprint) for all devices in the column.

(6) F36 package supports HPS with 72-bit DDR support, all other packages support HPS with up to 40-bit DDR Support

(7) F36 package is pin compatible superset of the $\,$ F35 package.

Arria 10 Compared to Stratix V

© 2013 Altera Corporation-Confidential

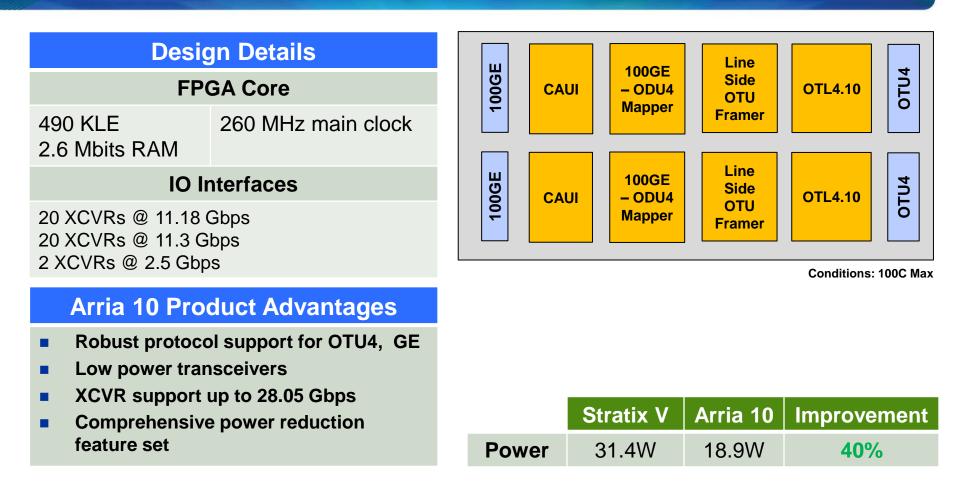
MEASURABLE ADVANTAGE M

Arria 10 Compared to Stratix V

	Feature	Stratix V	Arria 10
	Process	TSMC 28HP	TSMC 20SoC
Power/	Core Performance	Baseline	15%+ Faster than Stratix V
Performance	Power	Baseline	Up to 60% lower
	Density	952 KLE	1.15M LE
Core Resources	Embedded Memory	52Mbit +	53Mbit +
	DSP	3,926 18x18 Multipliers	3,356 18x19 Multipliers
	Channel Count	66	96
XCVR Capability	Backplane	14.1 Gbps	17.4 Gbps
	Chip-to-Chip	28.05 Gbps	28.05 Gbps
	Parallel Memory	DDR3 @ 1866Mbps	DDR4 @ 2666Mbps
IO/ External Memory IF	Serial Memory	Evaluation	Over 1.2 Tbps
	PCI Express	Gen3 x8	Gen3 x8
Additional	Hard Processor	-	Dual Core ARM A9
Integration	Memory Controller	Soft	Hard

Attractive Migration from Stratix V to Lower Power Midrange Arria 10 Devices

Select Arria 10 Target Applications



© 2013 Altera Corporation-Confidential

MEASURABLE ADVANTAGE M

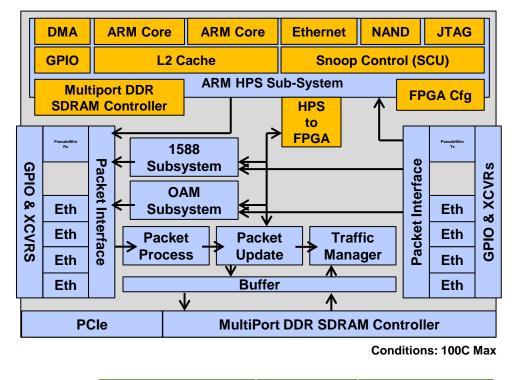
Arria 10 Applications Example: OTN 100G Transponder

Arria 10 FPGA Delivers 40% Power Reduction vs. Prior Generation

Arria 10 Applications Example: Mobile Backhaul

Design Details

FPGA Core

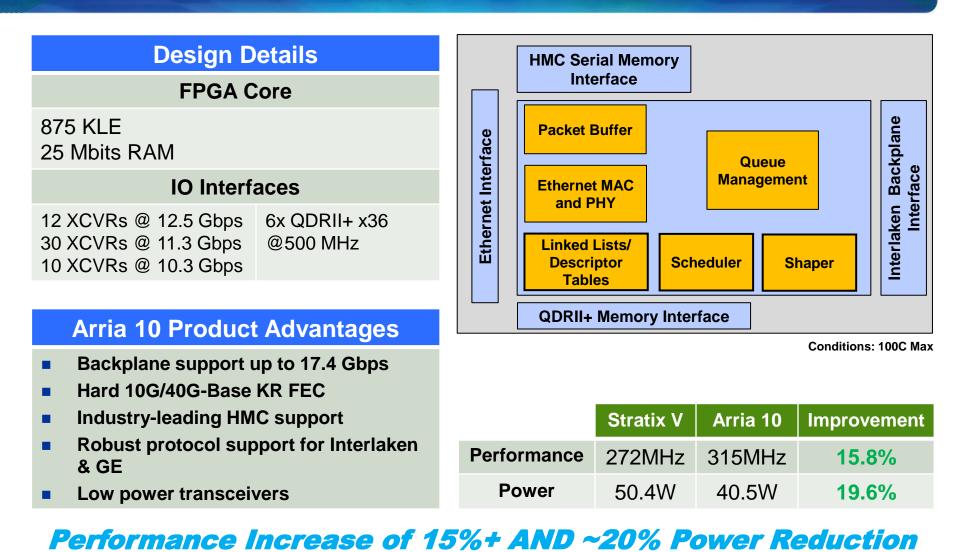

400 KLE500 18x18 mults12.3 Mbits RAM250 Mhz main clock

IO Interfaces

8 XCVRs @ 10.3 Gbps 3x DDR3 x32 @533 Mhz

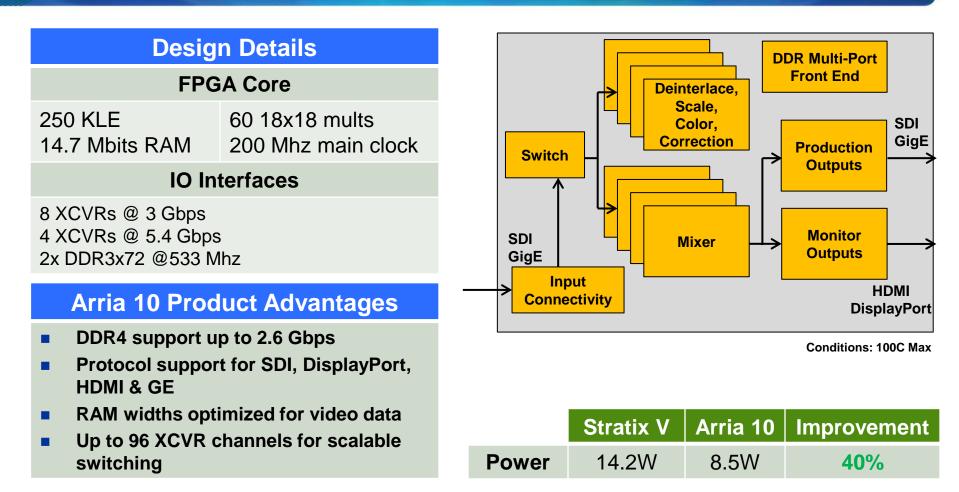
Arria 10 Product Advantages

- Flexibility vs. ASSP solutions
- Single-chip integration of processor and external switch to reduce power and space
- In-field upgradability
- Comprehensive power reduction feature set


	Arria V + CPU + Switch	Arria 10 SoC	Improvement
Power	26.2W	13.7W	47.7%

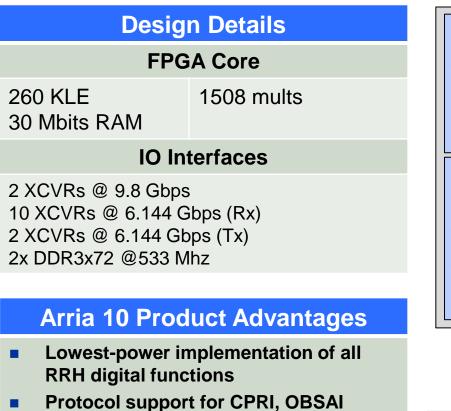
MEASURABLE ADVANTAGE **

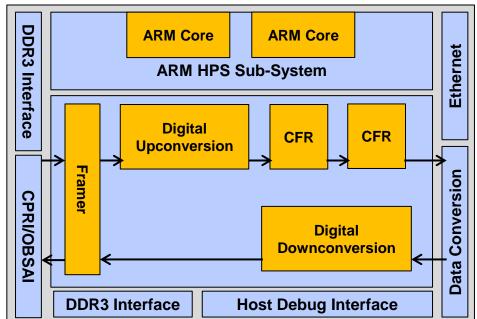
Lowest Power Single-Chip Implementation Supporting In-Field Hardware Upgrades



Arria 10 Applications Example: 100G Traffic Manager

MEASURABLE ADVANTAGE


Arria 10 Applications Example: Broadcast UDX


Lowest Power Single-Chip Implementation for Wide Variety Of Switching Applications

Arria 10 Applications Example: 2x2 Remote Radio Head

 Comprehensive power reduction feature set

	Stratix V	Arria 10	Improvement
Performance	368MHz	491MHz	33.4%
Power	26.4W	17.7W	35%

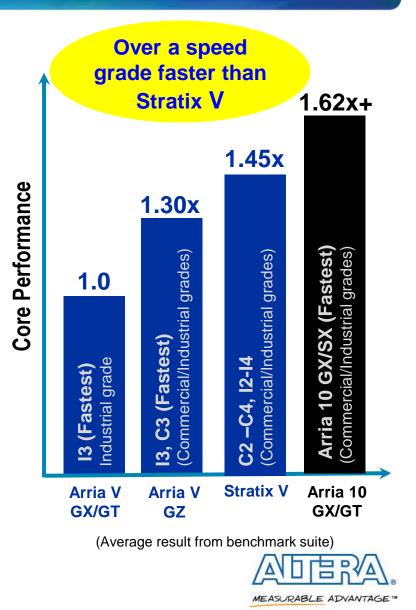
Arria 10 Achieves <20W Thermal Limit for 491 MHz Radio Heads

Arria 10 Performance and Power

MEASURABLE ADVANTAGE M

© 2013 Altera Corporation-Confidential

Arria 10 FPGAs: Highest Performance 20 nm FPGAs


Over a speed grade faster than prior generation high-end FPGAs

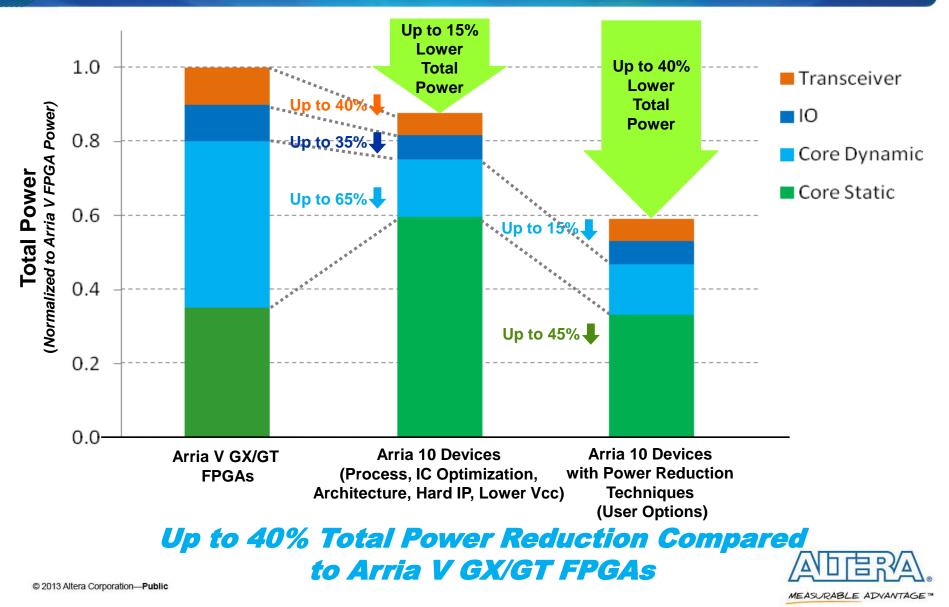
- 15%+ faster than Stratix V FPGAs
- 60%+ faster than Arria V GX/GT FPGAs
- Over 500 MHz at industrial temperatures
- 1.7x faster embedded RAM
- 1.6x faster multiplications

Embedded ARM Cortex A9 dualcore processor at 1.5 GHz

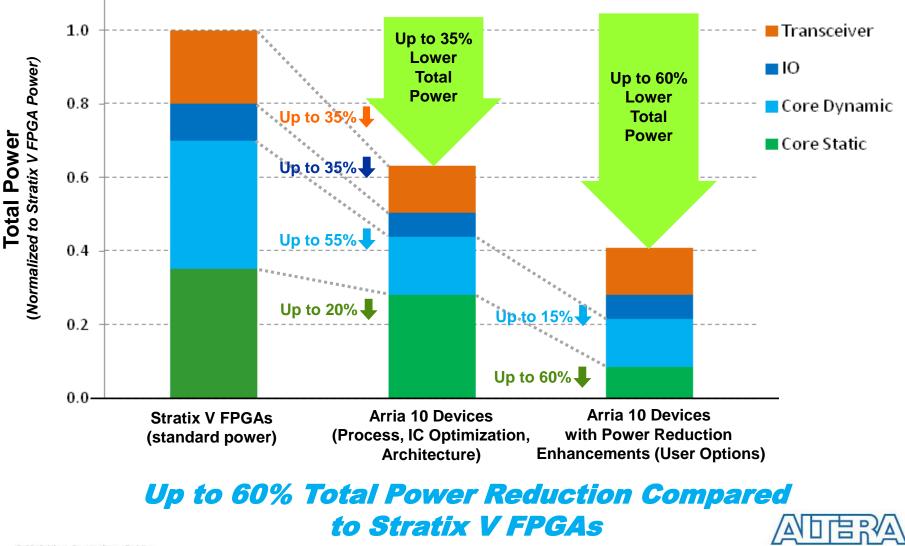
 Over 1.8x faster than Altera's 28 nm SoC devices

Arria 10 FPGAs & SoCs: Built for Performance

Arria 10 FPGAs & SoCs: Lowest Power @ 20 nm

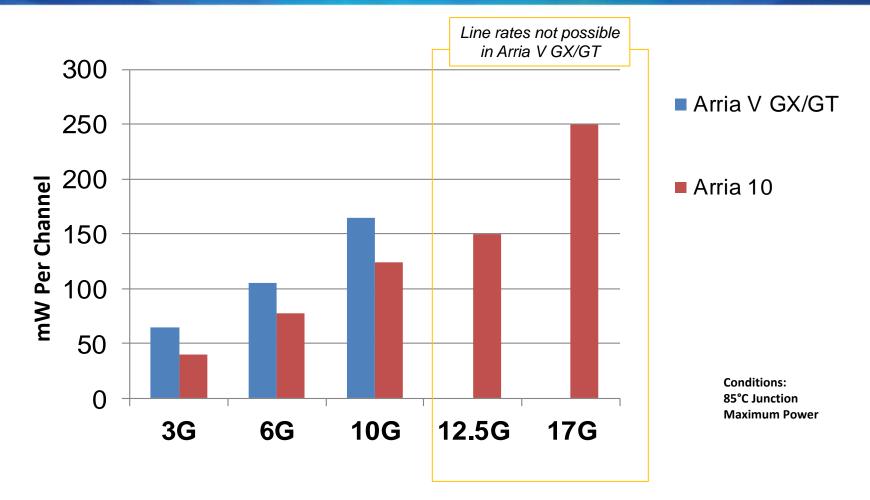

- Advanced 20 nm process
- Comprehensive power reduction features
- Lowest transceiver power in class
- Reduced static power options

MEASURABLE ADVANTAGE


- Most power-efficient embedded processor
- Extensive use of hard IP

Up to 40% Lower Power than Prior GenerationMidrange FPGAs

Power Reduction in Arria 10 vs. Arria V



Power Reduction in Arria 10 vs. Stratix V

MEASURABLE ADVANTAGE "

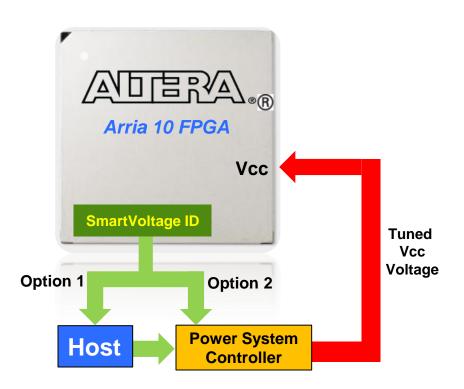

Arria 10 Transceiver Power Reduction

Up to 40% Power Reduction Per Channel Compared to Prior Generation

Arria 10 Power Saving Innovations

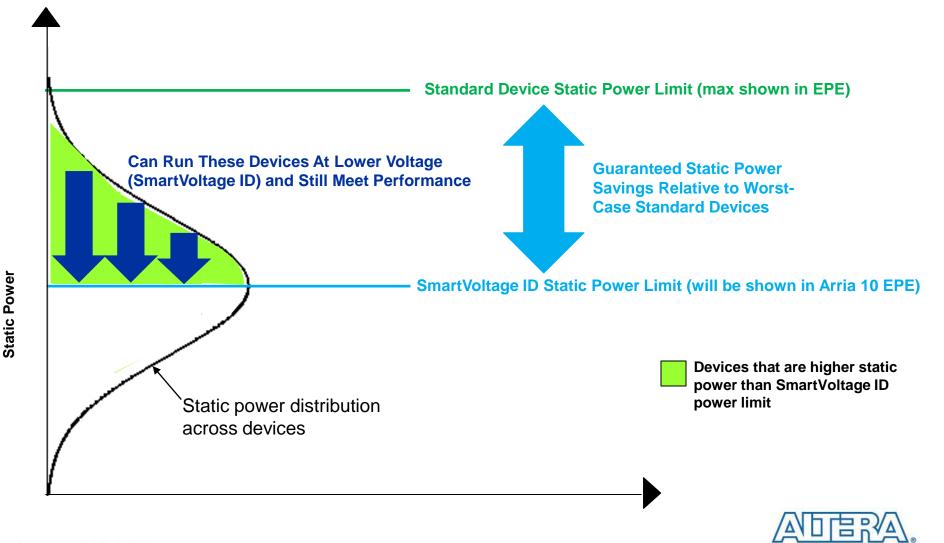
Enables device to run at lower than nominal Vcc while retaining same performance level reducing static and dynamic power

Enables lower power transistors for nonperformance critical paths to reduce static power


Lower operating Vcc to trade off performance to achieve lower total power

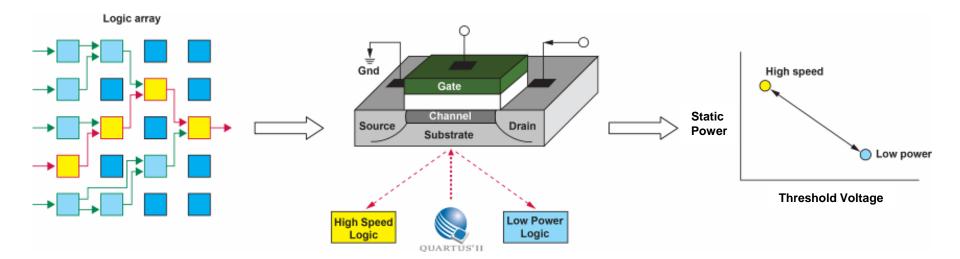
Devices tested to lower static power and designated -L (low static power)

SmartVoltage ID Power Reduction


- Allows FPGA to be operated at lower core Vcc while retaining same performance
- Reduces static power and also average dynamic power consumption across distribution of devices
 - Lower OpEx
- Requires power system controller that can support tuned voltage

Reduce Static Power by Up to 40%

SmartVoltage ID Power Reduction Details


MEASURABLE ADVANTAGE "

orporation—Public

41

C

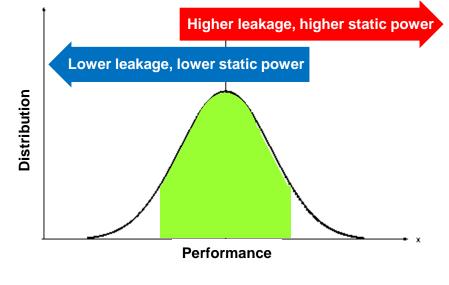
Programmable Power Technology

Accelerate speed-critical paths while reducing power on non-speed critical paths Quartus II optimizes your design automatically, enabling high-speed logic only where needed Get performance where you need it, and reduced power everywhere else

Patented Altera Technology Reduces Core Static Power by Up to 20%

Vcc PowerManager in Arria 10 FPGAs

- Use lower Vcc to achieve lower power by trading off performance
- When lower Vcc applied, Fast speed grade devices operate at slower speed
- Requires timing closure at slower core speed


	Device Speed Grade			
Applied Vcc Level	Fast	Mid	Slow	
Standard Vcc	Fast core speed	Mid core speed	Slow core speed	
Lower Vcc	Slow core speed	Λ	IA	

Reduces Total Power by Up to 35%

Lower Static Power Speed Grades

- Takes advantage of process variation to offer lower static power devices (-L)
- Offered for both Extended (0°C – 100°C) and Industrial (-40°C – 100°C) versions

Distribution of Semiconductor Devices

Reduce Static Power by Up to 25%

Arria 10 Power Summary

Significant reductions compared to prior generation

- Up to 60% lower total power vs. Stratix V FPGAs
- Up to 40% lower total power vs. Arria V GX/GT

Comprehensive suite of power reduction techniques:

- SmartVoltage ID
- Programmable Power Technology
- Vcc PowerManager
- Low Static Power Options

Arria 10: Lowest Power 20 nm FPGAs & SoCs

Transceivers

© 2013 Altera Corporation-Confidential

MEASURABLE ADVANTAGE M

Arria 10 Transceivers

Highest bandwidth in a midrange FPGA

- Over 3.6 Tbps of transceiver bandwidth
- Up to 96 XCVRs 🤍
 - Up to 28.05G chip-to-chip/chip-to-module
 - Backplane support up to @17.4G
- First midrange FPGAs with >12G backplane support
- Hard Nios II processor for individual transceiver tuning and better signal integrity
- Hard IP for 10G/40GBase-KR FEC

Industry's strongest transceiver pedigree

- Comprehensive transceiver IP portfolio developed over a decade
- Across ten product generations
- Overseen by the same core development team
- Leveraging over 100 man years of fieldtested expertise

	TUG-Base R/KR
p-to-module	CEI-6G/10G
7.4G	CPRI
2G backplane support	DisplayPort
vidual transceiver tuning and	FibreChannel
AUTER	GPON
FEC	Gigabit Ethernet
sceiver pedigree	(GbE)
portfolio	Higig+
	IEEE 802.3ba 400

 \mathbf{D}_{II}

e IV

DV ST

AULERA

Arria 210

NEW

Planned Protocol Support			
10G-Base R/KR	PCI Express Gen 3		
CEI-6G/10G	Infiniband		
CPRI	QPI		
DisplayPort	SATA / SAS		
FibreChannel	SDI – SD/HD/3G/10G		
GPON	Serial RapidIO		
Gigabit Ethernet (GbE)	SFP + / XFP		
Higig+	SFI – 4.2 / 5.2		
IEEE 802.3ba 40G / 100G	SGMII		
Interlaken	SONET OC-192		
JESD204B	XAUI		
OTU – 2/3/4	Custom protocols supported using "Native PHY" mode		

Arria 10 Protocol Support

Market Segment	Standards	Protocol / Data rate		
IEEE		GbE (1.25Gbps) XAUI, HiGig (>3.75G) 10GBase-R, 10GBase-KR, 40GBase-KR4, 40GE, 100GE XLAUI (4x10G), CAUI (10x10G) CAUI-4, CPPI-4 1588, SyncE, low latency		
Wirolino	Interlaken	6.25/10.3125/11.3/28G		
Wireline OIF ITU		CEI 6G-SR/LR, 11G-SR/LR, 25G-SR/VSR, 28G-SR/VSR SFI-S 10G/28G, SFI-5.1/5.2 (17x3.125G, 4x10G)		
		SONET OC-3/12/48/192/768 (0.155, 0.622, 2.488, 9.95, 4x10G) OTU-1/2/3 (2.66, 10.7, 4x10.7G, 4x25G) OTL 3.4/4.4/4.10/5.16 (4x10G, 4x25G, 10x10G, 16x25G)		
	GPON/EPON	1.25/2.5/10G		
Militory/M/irologo	JEDEC	JESD204B (3, 6.25, 12.5G)		
Military/Wireless	SRIO	1.25/2.5/3.125/6/10G		
Wireless	CPRI	0.6144, 1.2288, 2.4576, 3.072, 4.9152, 6.144, 9.83, 10.13, 12.67, 20G		

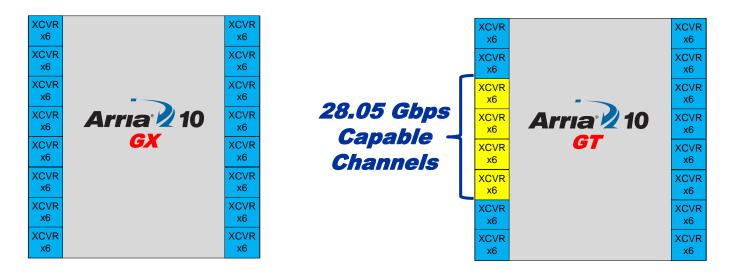
Arria 10 Protocol Support (continued)

Market Segment	Standards	Protocol / Data rate
	SDI	SD/HD/3G/10G
Video/Broadcast	DisplayPort	1.6/2.7/5.4G
	HDMI 1.3/1.4	3.4G
	QPI	4, 4.8, 6.4, 8 , 9.6, 12G
Computing/Storage	Fibre Channel	FC1/2/4/8/10/16G
Computing/Storage	Infiniband	2.5/5/10/25.8G
	SATA/SAS	1.5/3/6/12G
	PCI Express	Gen 1/2/3 (2.5, 5, 8G)
	Altera	SerialLite III (up to 25G)
General	HMC Consortium	HMC2
	MoSys	GCI (10.3G)
	MSA	SFP+, XFP, QSF, CFP, CFP2, CFP4 (4x25G)

Comprehensive Set of Industry Standards

MEASURABLE ADVANTAGE **

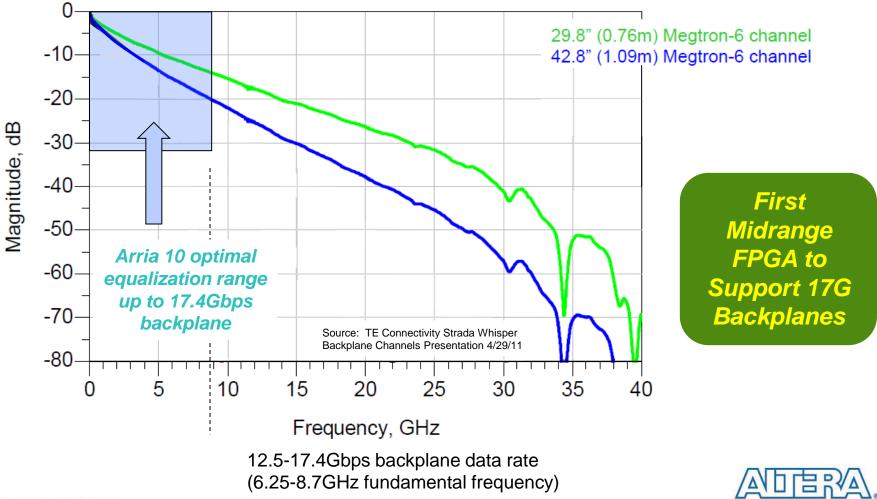
Arria 10 Transceiver Enhancements


Feature	Arria V GX/GT	Arria V GZ	Arria 10 Devices
Technology	28 nm	28 nm	20 nm
Transceivers	32	36	96
Data Rate	6.5Gbps /10.3125Gbps	12.5Gbps chip-to-chip 12.5Gbps backplane	28.05Gbps chip-to-chip 17.4Gbps backplane
Transmit Pre-emphasis	Yes	Yes	Yes
Adaptive CTLE (Continuous Time Linear Equalizer)	Yes	Yes	Yes
Adaptive DFE (Decision Feedback Equalizer)	No	Yes	Yes
Backplane Total Equalization Gain	No	25dB	>30dB

Arria 10 Delivers High-End Transceiver Performance

Arria 10 Transceiver Overview

	Arria 10 GX	Arria 10 GT
Transceiver Count	Up to 96	Up to 96
Max Data Rate	17.4 Gbps	28.05 Gbps
Number of 28G Channels	0	16
Max Backplane Data Rate	16 Gbps	17.4 Gbps



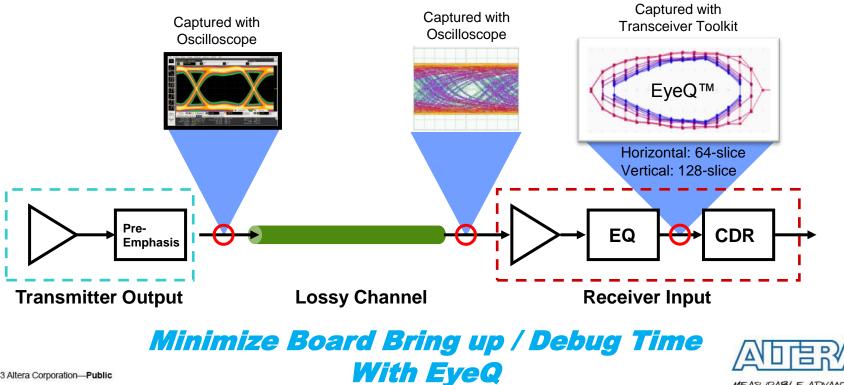
High Port Count and High Bandwidth Applications in a Mid-range platform

Arria 10 GT Backplane Support At 17.4Gbps

Example: Backplane Insertion Loss: $29.8" = 17" BP + \sim 12" (2 connectors + 2 paddle cards)$ $42.8" = 30" BP + \sim 12" (2 connectors + 2 paddle cards)$

MEASURABLE ADVANTAGE "

Arria 10 FPGA On-Die Instrumentation


View eye-opening at CDR input, inside receiver

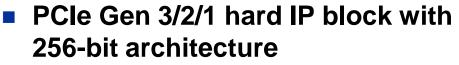
Complete X and Y reconstruction of post-equalized eye opening

Evaluate effectiveness of signal-conditioning techniques

Verify optimal pre-emphasis, CTLE, and DFE settings for largest eye opening

2X horizontal and 2X vertical resolution compared to Arria V GZ

MEASURABLE ADVANTAGE "

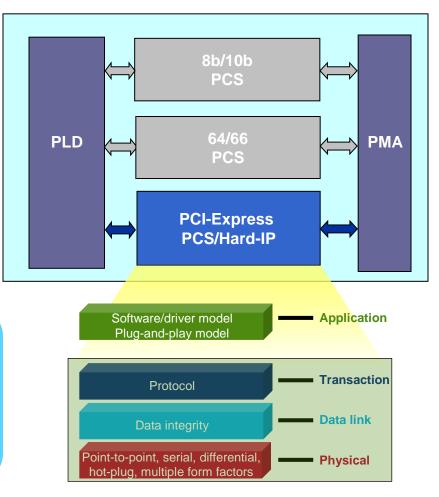

Arria 10 Protocol Specific Hard IP

Hard IP	Included Features
PCIe Gen3 x8	PCI Express compliant PHY, PCS, data link and transaction layers with bypass options
Interlaken	Gearbox/bit slip, block synchronization, disparity generator/checker, scrambler/descrambler, frame synchronization, CRC-32 generator/checker, frame generator and TX/RX FIFO
10GBASE-R	Gearbox/bit slip, block synchronization, scrambler/descrambler, 64b/66b encoder/decoder and TX/RX FIFO
10GBASE-KR 40GBASE-KR4	Gearbox/bit slip, block synchronization, KR FEC (<i>new</i>), scrambler/descrambler, 64b/66b encoder/decoder and TX/RX FIFO (with auto-negotiation and link training supported in soft IP)
Basic 8b/10b	Word aligner and bit slip, rate match FIFO, 8B/10B encoder/decoder, byte serializer, de-serializer, byte ordering and phase compensation FIFO
Basic 64b/66b	Gearbox/bit slip, block synchronization, scrambler/descrambler, 64b/66b encoder/decoder and TX/RX FIFO

Increased Productivity with Maximum Performance and Power Efficiency

MEASURABLE ADVANTAGE **

Arria 10 Industry-Leading PCI Express Support



- Provides built-in timing closure
- Reduces costs, power, and design time
- Live link within 100ms
- Supports root port and end point

Supports Configuration via Protocol (CvP) with PCIe

- ✓ First to offer hard PCIe Gen2 block
- ✓ First to offer hard PCIe Gen3 block
- ✓ First to demonstrate PCIe Gen3 interop

Industry's Most Mature and Trusted PCIe IP Comes to 20 nm

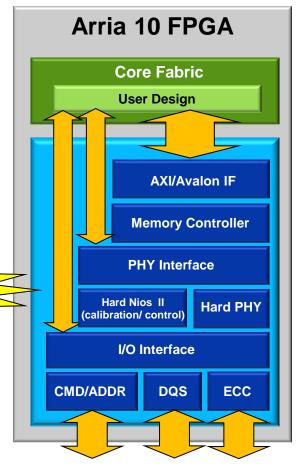
Parallel and Serial Memory Interfaces

MEASURABLE ADVANTAGE M

© 2013 Altera Corporation-Confidential

Arria 10 Hard Memory Controller & PHY

- Shortens engineering cycles
- Saves logic and memory resources
 - 5K LEs and 28 M20K blocks per x72 DDR3 IF
- Up to x144 support
- Up to 4x72 DDR3 interfaces in a single device


Supports multiple memory standards

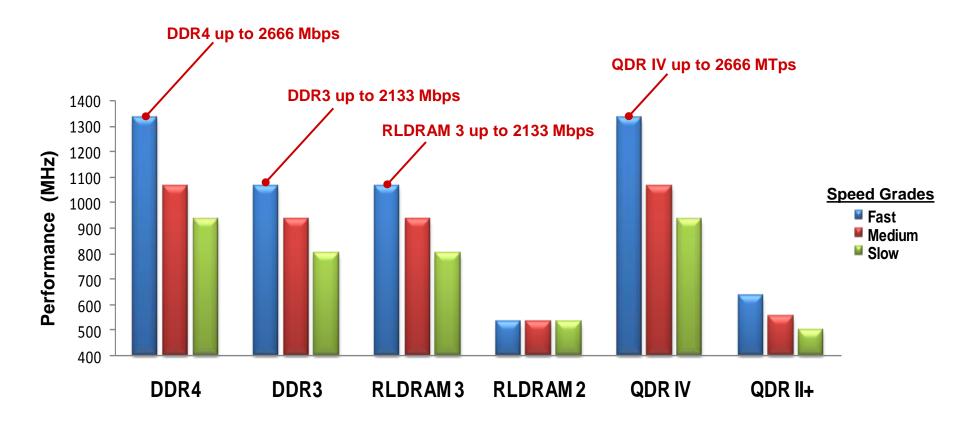
- DDR4, DDR3
- RLDRAM 3
- Hard controller and PHY bypassable for flexibility to support emerging and legacy standards

DDR4 Support

Up to 2666 Mbps

 Intelligent calibration and skew control via Hard Nios II processor

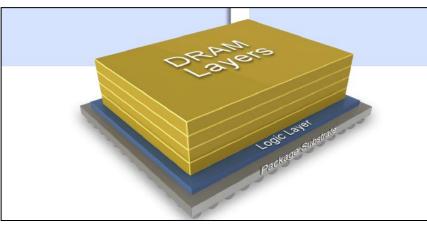
Hard Memory Controller & PHY



Feature	Arria V GX/GT	Arria 10
Interfaces Supported	DDR3, DDR2	DDR4, DDR3 RLDRAM III
Maximum Interface Width	x64	x144
Maximum Interface Rate	1066 Mbps (DDR3)	2133 Mbps (DDR3) 2666 Mbps (DDR4)
Maximum x32 I/F per Device	4	7
DIMM Support	None	DDR4, DDR3

Higher Performance and Greater Capability Compared to Prior Generation

Arria 10 External Memory Support – Parallel Interfaces


High Performance and Broad Support to Meet Your Application Needs

Hybrid Memory Cube (HMC) Technology

HMC technology basics

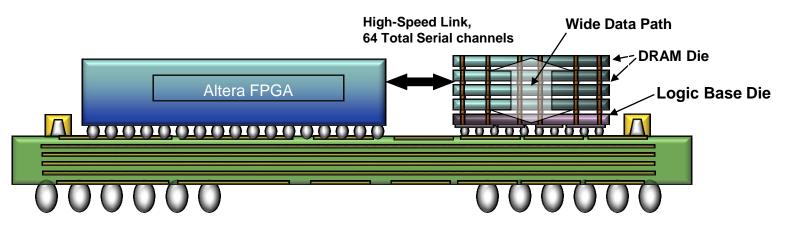
- Ultra high performance, multi-bank DRAM memory
- DRAM die stacked using state-of-the-art 3D process
- Built-in memory controller with logic base die

Parameters	Specification
Link	4
Speed	10,12.5,15 Gbps
Density	2GB, 4GB
Vaults	16
Banks	128, 256
DRAM B/W	160 GB/s (1.2 Tbps)
Vault B/W	10 GB/s (80 Gb/s)

MEASURABLE ADVANTAGE

Unparalleled gains with HMC

- Maximum DRAM bandwidth of up to 160 GB/s
- Four links running at 15 Gbps offering nearly 1 T bps raw interface bandwidth
- Up to 4GB density (storage) capacity, low PHY power (pj/bit)
- Best in class RAS feature set


Altera Technology Leadership in HMC

HMC interoperability demo planned mid 2013

- First interoperability with HMC
- Lead development platform to fully test and validate Altera HMC performance

Altera support for HMC technology

- Arria 10 and Stratix 10 FPGAs and SoCs
 - Up to 4 links (16 lanes per link) @ 10G ,12.5G, 15G

Industry's First Support for HMC

Arria 10 Memory Interface Support by Speed Grade

	Extended & Industrial (MHz)					
	-2 Grade		-3 Grade		-4 Grade	
Memory Standards	Parallel Memory					
	1 Rank / CS	2 Rank / CS	1 Rank / CS	2 Rank / CS	1 Rank / CS	2 Rank / CS
DDR4 UDIMM/RDIMM/Comp	1333	1200	1200	1066	1066	933
DDR4 LRDIMM	1333	1333	1333	1200	1066	1066
DDR3 / 3L	1066	933	1066	933	933	800
QDR IV	1333	1066	1066	933	933	800
QDR II+ / DDR II+ Extreme	633	633	550	550	500	500
RLDRAM 3	1200	1066	1066	933	933	800
RLDRAM 2	533	533	533	533	533	533
LPDDR3	800	800	800	800	667	667
	Serial Memory					
Hybrid Memory Cube (HMC)	16x15 Gbps per link, up to 4 links					

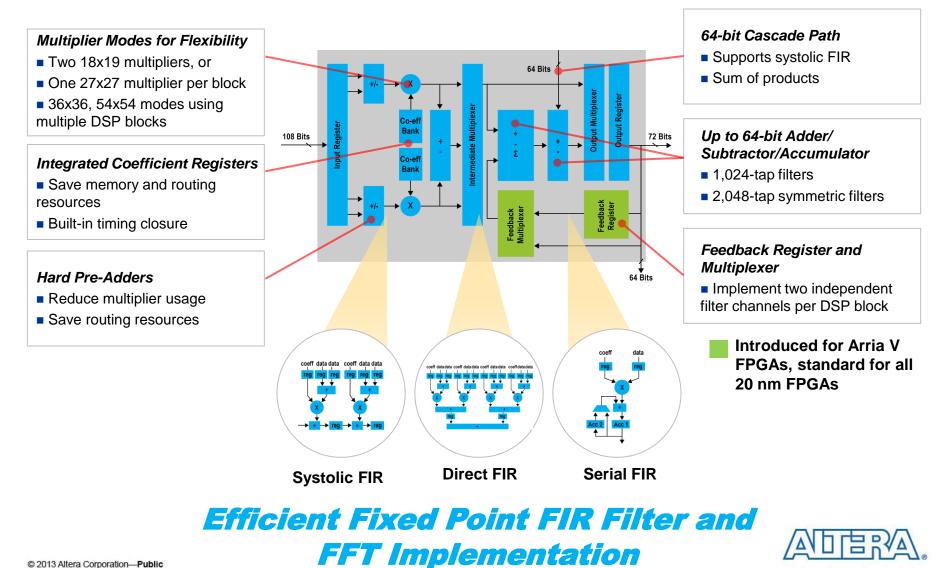
Full Support for Key Parallel and Serial Memory Interfaces

Variable Precision DSP Block

© 2013 Altera Corporation-Confidential

MEASURABLE ADVANTAGE M

Extending an Award-Winning DSP Architecture


Industry's First Variable-Precision DSP Block

Winner: DesignVision 2011 Award

- Introduced at 28 nm generation exclusive to Altera
- Refined and improved at 20 nm
- Expanded with new capabilities for high performance

Combines the Best of Stratix V & Arria V

MEASURABLE ADVANTAGE"

Arria 10 Core Fabric

© 2013 Altera Corporation-Confidential

MEASURABLE ADVANTAGE M

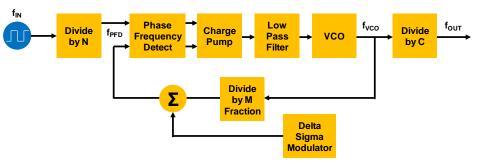
Arria 10 M20K Block Feature Summary

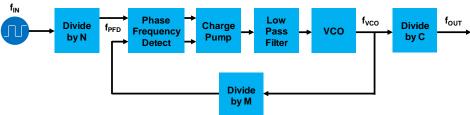
Feature		Arria V	Arria 10
Maximum Performance		380 MHz	730 MHz
Total RAM Bits per Block	k	10,240	20,480
Total M20K Memory Bits	(Mb) per Device	8-24	13-54
Port Width Configurations		8K x1, 4K x2 2K x 4, 5 1K x 8, 10 512 x 16, 20 256 x 32, 40	16K x 1, 8K x 2 4K x 4, 5 2K x 8, 10 1K x 16, 20 512 x 32, 40
Parity		✓	✓
Byte Enable		✓	✓
Packed Mode		✓	✓
Address Clock Enable		✓	✓
Mixed Clock		✓	✓
Mixed Width (for Dual Port modes)		✓	✓
ECC Support		Soft	Hard
	Single Port	✓	✓
Memory Modes	Simple & True Dual-Port	✓	✓
	Shift Register, ROM, FIFO	✓	✓

Higher Performance, More Port Configurations,

Arria 10 MLAB Feature Summary

	Feature	Arria V	Arria 10
Maximum Performance		300 MHz	700 MHz
Total RAM Bits per Block		640	640
Total Memory Bits (Mb) per Device		0.4 – 2.9	2-13
Port Width Configurations		32 x 16 32 x 18 32 x 20	x 64 deep mode supported in emulation mode
			32 x 16 32 x 18 32 x 20
Parity		✓	✓ ×
Byte Enable		✓	✓
Address Clock Enable		✓	✓
Mixed Clock		✓	✓
Mixed Width (for Dual Port modes)		✓	✓
ECC Support		✓	✓
Memory Modes	Single Port*	✓	✓
	Simple Dual-Port	✓	✓
	Shift Register, ROM, FIFO	✓	✓


Over 2X Performance Increase Compared to Prior Generation


Core PLLs

Fractional PLLs			
Feature	Description		
Number available	1 for every 3 transceivers on device		
Location on die	In the core, adjacent to transceivers		
Operating modes	Fractional-synthesis Integer (M/N where M,N = Integer)		
FPGA clock network access	Transceiver reference clock GCLK (global clock) PCLK (periphery clock) RCLK (regional clock)		

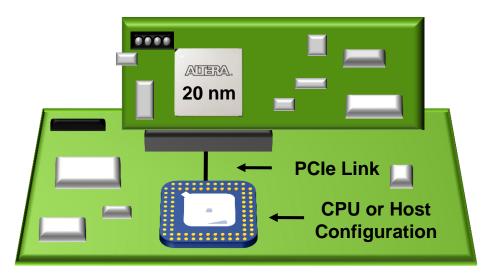
	RULK (regional clock)		
IO PLLs			
Feature	Description	f	
Number available	1 for every IO bank (48 GPIOs)		
Location on die	In the core, adjacent to IO banks]	
Operating modes	Integer (M/N where M,N = Integer)]	
FPGA clock network access	External Memory Interface LVDS SerDes Interface GCLK (global clock) PCLK (periphery clock) RCLK (regional clock)		

fPLLs Reduce Cost, Power and Circuit Board Space

IO PLLs Enable High-Bandwidth IO Interfaces

More PLLs, Optimized For Transceivers and IOs

69



Configuration Via Protocol Using PCIe

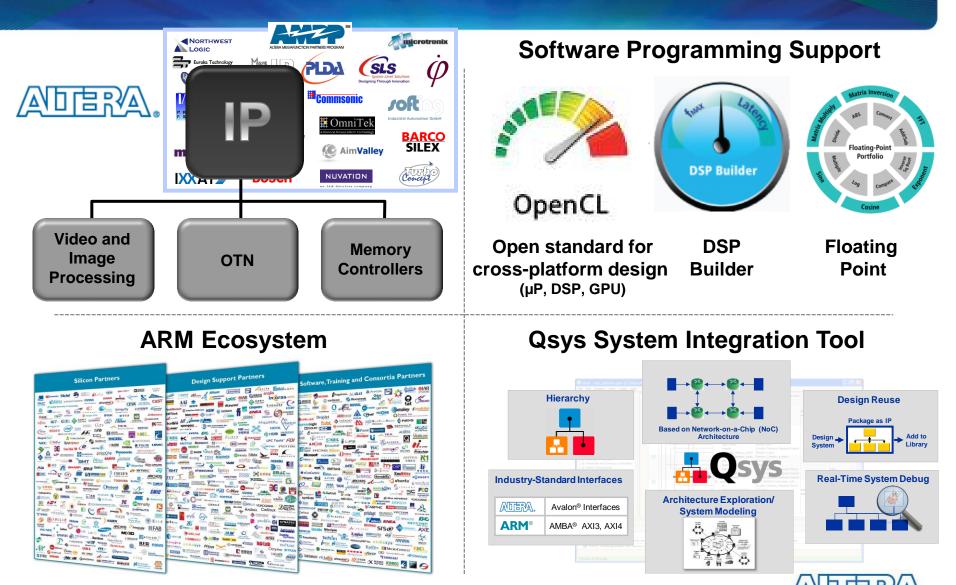
Full PCIe Gen3 x8 loading capability

- Low pin count, fast configuration
 - 3,000 Mbps vs. 30 Mbps via serial EPCS device configuration
- Greater flexibility for configuration storage
- Support of partial reconfiguration

Flexible, Low Pin Count Configuration Compliant with PCI-SIG®

MEASURABLE ADVANTAGE "

Software and Tools



© 2013 Altera Corporation-Confidential

MEASURABLE ADVANTAGE M

Requires More Than Just the Silicon

Enabling Productivity

MEASURABLE ADVANTAGE "

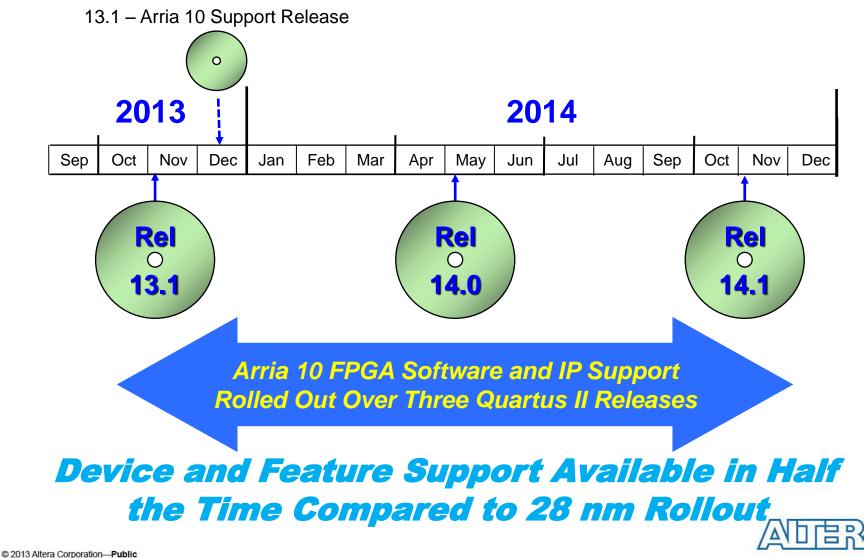
Maximizing Your Productivity at 20 nm

Leverage industry-leading Quartus II tools

- >3500 man years of engineering effort delivering scalable design support for 20 nm *and beyond*
- Full feature and IP support rolled out within half the time compared to 28 nm generation

ARM-based 20 nm SoC FPGAs expand your embedded options

- Leverage extensive ARM ecosystem
- Preserve your embedded code base


OpenCL support provides new options to enable system acceleration

– DSP capability at 20 nm unleashes potential of OpenCL

Maximum Return on Your Investment in AlteraFPGA Design DevelopmentALTER

MEASURABIE ADVANTAGE

Arria 10 Software and IP Support

MEASURABLE ADVANTAGE "

era Corporation—Public

Accelerating Arria 10 Feature and IP Rollout

- Customer IP and feature requirements for complete systems are inputs to the process
- Improvements in: goal alignment across organization, highlighting dependencies, and defining ownership

Increased hard IP value

Reduces software development complexity

Staffed up to meet development challenge

- 20% software engineering headcount increase in 2012

Enpirion Power Solutions

MEASURABLE ADVANTAGE M

© 2013 Altera Corporation-Confidential

Altera Acquires Enpirion

Altera to Deliver Breakthrough Power Solutions for FPGAs with Acquisition of Power Technology Innovator Enpirion

Industry's Most Integrated Power Solutions Reduce Power, Provide Smallest Form Factor and Simplify System Design

San Jose, Calif., May 14, 2013—Altera Corporation (NASDAQ: ALTR) today announced it has signed a definitive merger agreement to acquire Enpirion, Inc., the industry's leading provider of high-efficiency, integrated power conversion products known as PowerSoCs (power system-on-chip). The combination of Altera's FPGAs with Enpirion's PowerSoCs will offer customers higher performance, lower system power, higher reliability, smaller footprint and faster time-to-market.

"Power is increasingly a strategic choice for product differentiation in communications, computing and enterprise, and industrial applications," said John Daane, president, CEO and chairman of Altera. "By adding a power group to Altera, we will bring even more value to system-level designs. Altera's FPGA roadmap will be enhanced significantly with the addition of Enpirion's power technologies."

Ashraf Counder an CEO of Envirion will see

MEASURABLE ADVANTAGE

a Fellow

Enpirion Leadership in Integrated Power Conversion

High Efficiency + Low Noise

- Up to 97% efficiency with low ripple
- Lower system power

Increased System Reliability

- Fully simulated, characterized and validated power system
- Fewer components

Ease-of-Use; Faster Time-to-Market

- Simple design flow with fewer iterations
- Lower development costs

Smallest Footprint

Enpirion PowerSoCs Deliver Smallest Footprint

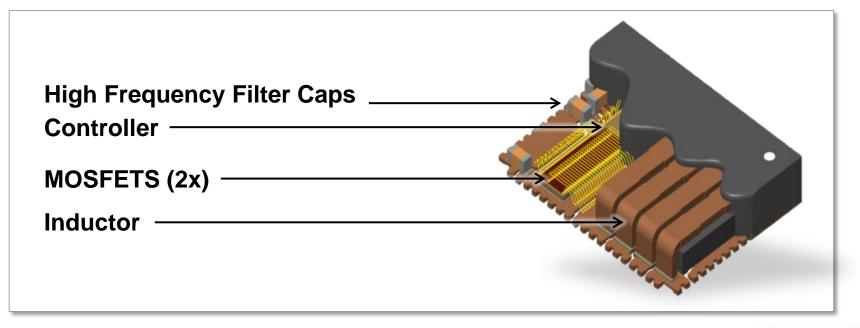
Up to 7x Size Reduction

Enpirion PowerSoC

Competitor A (Modules)

Competitor B (Discrete Regulators)

 20% lower height than the nearest module competitor


Broad Portfolio of Released Products Includes 100% Coverage of FPGA Point-of-Load Power Needs

Product Breadth

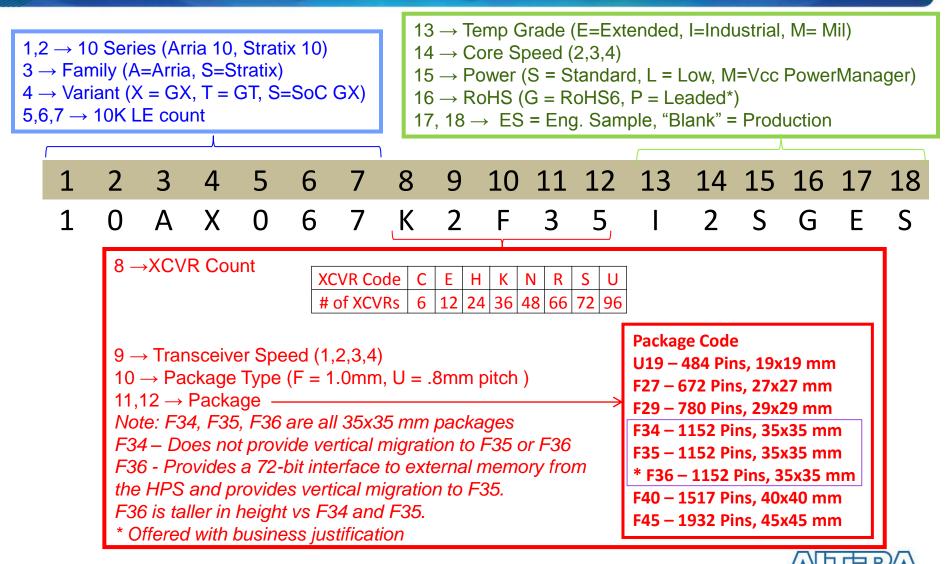
- 1.2V, 3.3V, 5V, &12V switchers
- VTT termination
- Up to 15A per device
- Up to 60A total


DC-DC Power Applications

- FPGAs
- DDR Memory (VDDQ & VTT)
- Processors/CPU
- DSP

Altera Validated Solutions Simplify Design Process Reduce Risk, Effort, Time, Costs

First Arria 10 Reference Designs in Q2 2014


Arria 10 Ordering Codes

MEASURABLE ADVANTAGE M

© 2013 Altera Corporation-Confidential

Arria 10 Family Ordering Code Scheme

Why Partner with Altera @20 nm?

MEASURABLE ADVANTAGE M

© 2013 Altera Corporation-Confidential

Partner With The Technology Leader

- 40 nm FPGAs
- 11.3 Gbps transceivers
- Hard IP for PCIe Gen1/2 x8
- DDR3 at 1067 Mbps
- LC tank-based PLLs for breakthrough XCVR jitter performance

28 nm

- High-performance and low cost 28 nm FPGAs
- Production 28 nm FPGAs
- 28 Gbps transceivers
- 14.1 Gbps backplane transceivers
- Hard IP for PCIe Gen1/2/3 x8
- DDR3 at 2132 Mbps
- DDR3/DDR2/LPDDR2 hard memory controllers
- Variable-Precision DSP blocks
- High-precision fractional synthesis PLLs
- Configuration via Protocol (CvP)

Partner With The Technology Leader

- 40 nm FPGAs
- 11.3 Gbps transceivers
- Hard IP for PCIe Gen1/2 x8
- DDR3 at 1067 Mbps
- LC tank-based PLLs for breakthrough XCVR i performance

28 nm	

- High-performance and low cost 28 nm FPGAs
- Production 28 nm FPGAs
 28 Gbps transceivers
- LLs for 14.1 Gbps backplane transceivers EVR industry ar FirstSen1/2/3 x8 -

From Altera DDR2

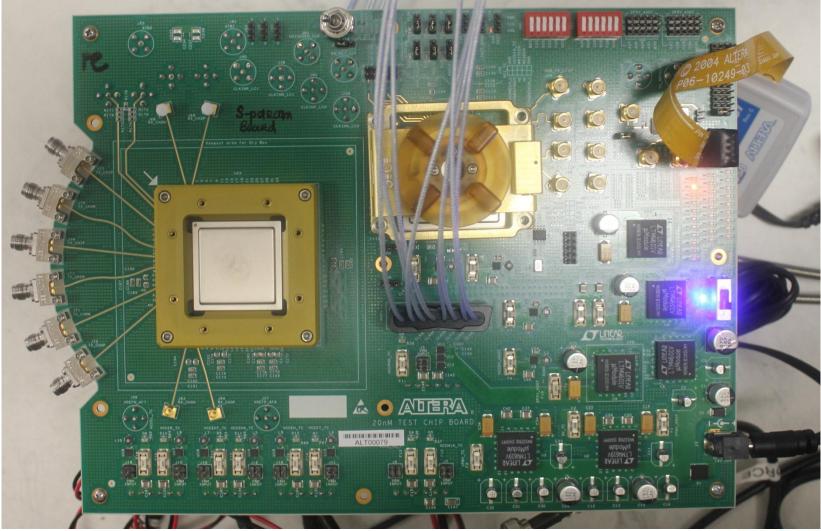
memory controllers

- ariable-Precision DSP blocks
- High-precision fractional synthesis PLLs
- Configuration via Protocol (CvP)

- 17.4 Gbps backplane XCVRs
- 28.05 Gbps XCVRs in a midrange FPGA
- DDR4 at 2600 Mbps
- Hard IP for 10GBase- KR/ 40GBase-KR4 Forward
 Error Correction (FEC)
- 1.5 GHz hard dual-core ARM processor
- SmartVoltage ID power reduction
- CvP with PCIe Gen3x8

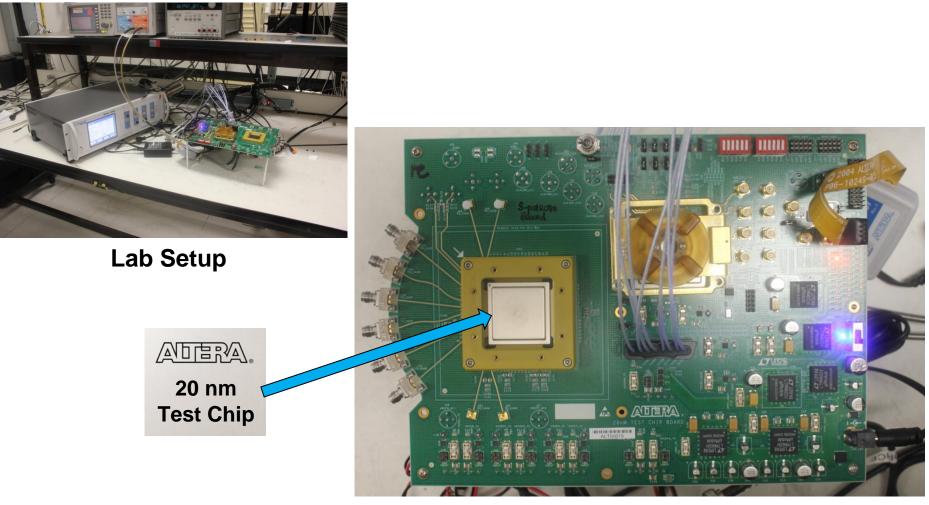
Continued Leadership at 20 nm

Proven Road To Successful 20 nm Deployment

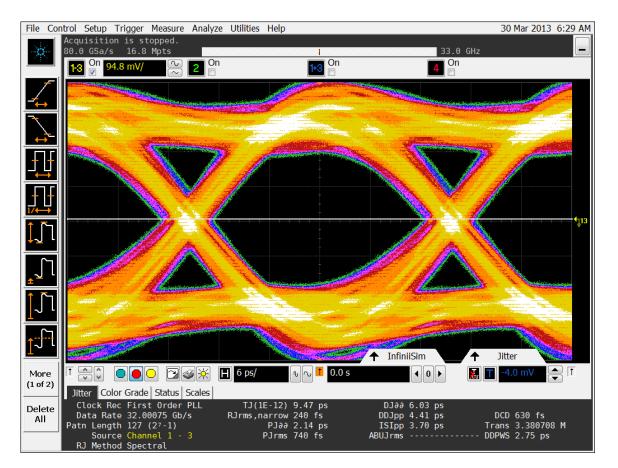

- Over two decades of close collaboration with TSMC
 - Industry's strongest foundry partnership
 - 20 nm co-development since 2010
- Test-chip methodology in place for multiple product generations
 - Validation of models and simulation
 - Early manufacturability checks across process, voltage and temperature
 - Test chips paving the way to 20 nm since early 2011
- Comprehensive test chip plan de-risks 20 nm technology for Altera customers

Test chips	Tape out	Major components
TC1	2011	28G transceivers revision 1
TC2	2011	3D evaluation vehicle
тСз	2011	ESD development, transistor test structures, logic element array, dual-port SRAM
TC4	2011	3D reliability
TC5	2012	RF and ESD structures, DC transistor modeling
TC6	2012	eFuse array, sensors and regulators, internal memory arbiter
TC7	2012	28G transceivers revision 2

Altera Delivers the Benefits of 20 nm Technology While Minimizing Customer Risk

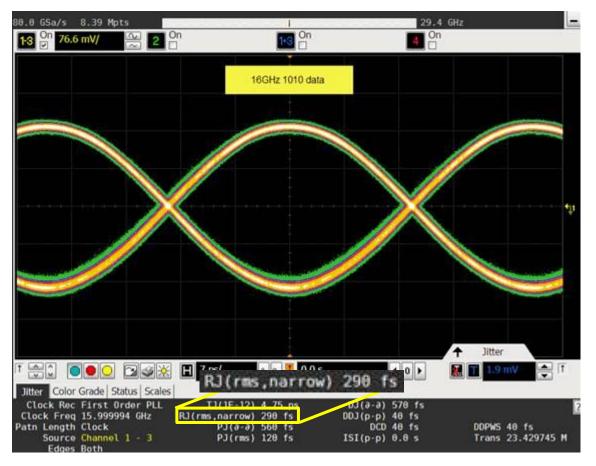


Altera 20 nm Transceiver Test Chip Eval Board

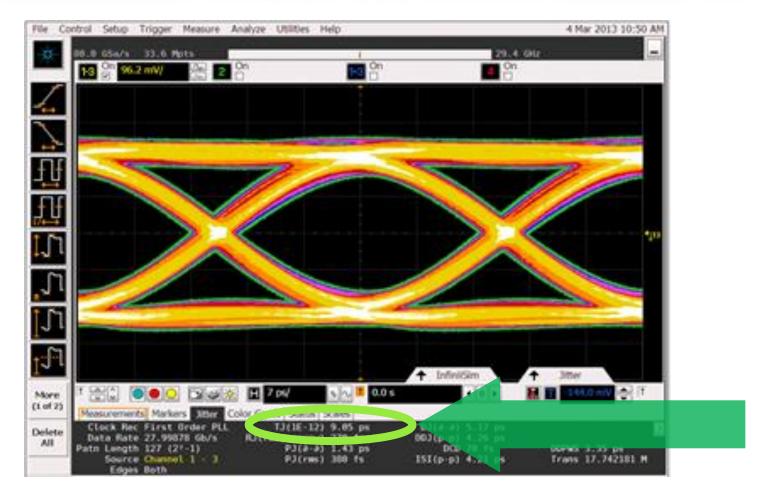

Altera 20 nm Transceiver Test Chip Lab Setup

20 nm Test Chip Eval Board

Industry's First Transceivers @20 nm Transmit Eye at 32 Gbps


First Transceivers @ 20 nm Validate 28G Operation for Arria 10

Altera 20 nm Test Chip, Transceiver Random Jitter


1010 Pattern indicates ultra-low jitter PLL up to 32 Gbps

- 290 fs Random Jitter

Altera 20 nm Test Chip Showing Transmit Eye at 28 Gbps

9.05ps Jitter Passes CEI-28G-VSR Specification With Margin AITEMA

MEASURABLE ADVANTAGE **

Arria 10 Summary

Highest performance, lowest power in the midrange

- Over 60% faster, up to 40% lower power compared to prior generation mid-range FPGAs
- Over 15% faster, up to 60% lower power compared to prior generation high-end FPGAs

Key features for midrange applications

- Up to 1.15M logic elements and 53 Mbits embedded block RAM
- Up to 96 transceivers up to 28.05G chip-to-chip, up to 17.4G backplane
- Footprint-compatible dual-core ARM Cortex A9 SoC options
- Over 850 Gbps DDR4 bandwidth

Maximum productivity

- Quartus II support rolled out in half the time compared to prior generation
- OpenCL support for system acceleration

Arria 10 FPGAs and SoCs Reinvent the Midrange!

© 2013 Altera Corporation-Public

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/legal.

MEASURABLE ADVANTAGE M

Backup

© 2013 Altera Corporation-Confidential

MEASURABLE ADVANTAGE M

The Need for a Suffix Change

Roman Numerals become challenging beyond "V"

- Stratix VI or Stratix IV is too close together
- Stratix VII, Stratix VIII, Stratix IX become very cumbersome/confusing

Introduction of Tri-Gate provides an opportunity

Full tailored approach with unprecedented product innovations

Why "10"?

- 10th Generation FPGA family
- Move from Roman to Cardinal numbers (X \rightarrow 10)
- Future families will be 20 then 30...
 - Changes the numbering scheme;
 - Retro to our Flex 10k and Apex 20k days

