

The ARM Microprocessor Architecture

- ARM customers include all the leading international electronics companies
- Shipping product in eight distinct markets:
 - wireless
 - automotive
 - mass storage
 - networking
 - consumer entertainment
 - imaging
 - industrial

ARM Success

- All eight end markets shipping product
- Billionth ARM chip shipped in Nov '01
- ARM Community
 - 30 ATAPS, 4 pure foundry, 77 Semi Partners,
 - Leading apps specific OS > 50
- Trends
 - Software standards become more important
 - Security is new growth driver
- New products to be announced this year and next

Market Share (Embedded 32-bit RISC Shipments)

Source: Andrew Allison, Inside The New Computer Industry, January 2002

ARM922T

Cached Processor for Platform OS-based Applications

- Core processor for Excalibur[™]
- 8K Instruction & Data Caches
- ARMv4 MMU for: Symbian OS, Linux, Windows CE & Palm OS
- ETM9 interface for real-time trace with ETM9 macrocell
- Hard Macro
 - 8.1mm² on 0.18µm
 - 3.2mm² on 0.13µm
- 250MHz* performance (0.13µm

* TSMC 0.13 μ m G - worst case: slow silicon, +125C, Vcc-10%

ARM922T Specifications

	ARM922T TSMC 0.18µm G	ARM922T TSMC 0.13µm G
•		
Area	8.1mm ²	3.2mm ²
Frequency (typical)**	290MHz	400MHz
Frequency (worst case)*	200MHz	250MHz
Average Power (mW)	0.8mW/MHz	0.25mW/MHz
Mips/W	1375	4400

** Typical frequency: std silicon, 25°C, nominal voltage
* Worst case frequency: slow silicon, 125°C, Vcc -10%

ARM922T Benefits

High performance with low power

- 250MHz @ 1.08V 0.13µm (TSMC G worst case)
- Power 0.25mW/MHz @ 1.2V (typical)
- Small die size for low cost applications
 - 4.7mm² & 3.2mm² on 0.13µm (including caches)

ETM9 interface

- Real time trace capability with ETM9 Macrocell
- Upward code compatibility from ARM7 Family

AMBATM

- AMBA the *de-facto* on-chip bus standard for the industry
- AMBA is an open specification
- Widely adopted by the semiconductor industry including over 90% of ARM partners
- Downloaded by over 2000 design engineers

AMBA - the on-chip bus standard

- AMBA's popularity has encouraged support from third party tool vendors including Altera's Excalibur FPGA
- AMBA remains central to ARM's strategy and is actively supported and developed in conjunction with ARM Partners

AMBA Roadmap

 With the development of AMBA 3.0, ARM is ensuring that AMBA will continue to meet the requirements of the semiconductor industry

AMBA Interface Protocol

- The AMBA 2.0 Specification defines protocol for two interfaces:
 - APB: Low complexity for low bandwidth slaves
 - AHB: High performance, multi-master capability
 - For systems with only one AHB master the interface can be simplified to AHB-Lite
 - Compatible sub-set of full AHB
 - No arbitration, no SPLIT or RETRY responses

AMBA Multi-layer AHB

- Enables the system architect considerable flexibility to optimize the bandwidth and latency
- Allows the flexible partitioning of resources between sub-systems
- Additional routing comparable to a wider bus of equivalent bandwidth
- All layers must operate from a single HCLOCK

Multi-layer AHB

Increased channel capacity

- multiplied by the number of layers
- Performance limits at peripherals, not interconnect
- Layers with a single master can use AHB-Lite

The AMBA Compliance Program

- Reduces risk and time-to-market by guaranteeing compliance of third party IP
- The AMBA Compliance Program exists to promote this added value to IP vendors and users
- IP developers claim AMBA Compliance using the AMBA Compliance Testbench (or other approved tool) to be members of the Program
- Altera part of Beta Program

Embedded Trace Buffer

- World-leading embedded debug technology
- Non-intrusive trace and debug
- Full-speed capture up to 200MHz
- System runs at full speed
- Traces both instructions and data
- Cycle-accurate trace
- Time-stamping allows data to be captured for later analysis and profiling
- Glueless connection to all supported ARM processors

Embedded Trace Macrocells

- Conventional debug tools cannot be used with deeplyembedded processor cores
- Consequently, debugging software on highly integrated SoC devices is complicated
- ARM's ETMs solve this problem by providing fullyfeatured real-time trace capabilities
- Developers can use the same debug facilities from prototype to final fully-integrated product

ETM features

- Zero performance overhead
- Trigger possible on complex sequential conditions
- Filter conditions control which data is captured
- Dedicated trace port, configurable for number of pins and bandwidth
- Data compression and small on-chip FIFO buffer
- User configurable for FIFO overflow condition
- Configured non-intrusively through JTAG

RealView[™] ARM Tools by ARM

RealView Development Solution delivers

- OEMs with the fastest time to market
 - More functional, lower cost OEM products
- Integrated development solution
- One brand family with the same quality promise
- Broadest compatibility between tools

The Benefits of RealView

- The best performance tools for the ARM architecture
- The best visibility of ARM cores and platforms
- Tools, Cores and Platforms are developed together

RealView Product Views

Debug view: RealView Debug solution

- Speeds development time, simultaneous multi-core debug, extended target visibility and OS 'awareness'
- Includes RealView Debugger, RealView ICE and RealView Trace

Software view: RealView Compilation tools

 Delivers tighter code density, reduces memory budget, increases performance

Platform view: Integrator[®] Platforms and boards

 Enables integration of software and hardware IP, reduces development times, early prototyping increases confidence in final silicon

RealView ICE and Trace

Modular Construction

- Scaleable hardware allows the users to build systems they need
- Trace Module for ETM trace capture
- New requirements, new modules e.g analyser module

Unbeatable performance

 Highly optimised, intelligent JTAG hardware acceleration

Supports all current ARM cores

 ARM7[™], ARM9[™], ARM9E[™], ARM10[™] families and Intel[®] XScale[™] microarchitecture

RealView ICE Key Features

High performance debug

- Code download 600k bytes/sec over JTAG @ 10MHz
- Stepping speed 100 steps/sec
- JTAG clocks up to 66MHz, 1 5V
- New differential signal probe for high JTAG frequencies, longer cable
- Both network and local host connection
 - Ethernet 10/100baseT
 - USB 1.1/2.0
- Non-ARM and co-processor (DSP) support
- Tightly coupled, synchronized multi-core control
- Trigger synchronisation with external events
 - to/from target
 - to/from logic analyser

RealView Trace Key Features

Trace support using on-chip Embedded Trace Buffer

- Trace support using add-on trace module
 - 4M deep buffer 4/8-bit trace port 2M 16-bit
 - Maximum target clock frequency 200+ MHz
 - 2.5 ns set-up, 1 ns hold
 - On-the-fly trace data upload, up to 8 MB/s
 - ETM trace ports modes supported:
 - ETM protocols v1.x, v2.x, v3.x for ETM7/9, ETM10 and ETM11 single and doubled edged clocking normal, multiplexed and de-multiplexed ports
 - 4, 8, 16-bit data port widths

Time stamp (48-bit) 10ns resolution 32 day duration

RealView Debugger: Overview

Multi-Core debug

- ARM + ARM or ARM +DSP
- Single debug kernel
- Real-time trace
- OS awareness
- Extended target visibility
 - Visualisation of the whole target
- Built in IDE
 - Own editor
 - Project manager
 - Build system

Multi-Core Debug Features

Multiple core connection

- Multiple ARM cores
- Connects to ARM(s) + DSP(s)

Multiple core control

- Support for Synchronised Start and Stop
- Support for Synchronised Stepping
- Support for Cross Triggered breakpoints
 - Target H/W support required

RealView Compilation Tools

Market leading compilers

- up to 30% better than 3rd party ARM compilers

Code size

Reduced product build cost for same functionality

Performance

Lower frequency for same performance – leading to longer battery life

Reliability

- Excellent code quality, improving time to market
- Mature continual development and improvements over 12 years

Roadmap

- Future code density and performance improvements
- Further support for new V6 architecture and beyond

RealView Platforms

Integrator part of the RealView solution

- Provides an early access platform for SoC developers
- Supports the full range of ARM cores
- Cost effective emulation of final system
 - Including Multi-core
- Increases confidence level of validation
 - Enables millions of lines of code to be run
- Increases confidence in first silicon
- Shortens design cycle

Summary

RealView Development Solution

- Offers best available ARM support
- Industry-leading debug methodology for ARM SoCs
 - -RealView ICE & Trace
 - -RealView Debugger
- Highest performance compilers
 - Best code density and performance
- Range of development boards for prototyping
- Accelerates product development
- Reduces risk

ARM CPU Processor Core Roadmap

ARM Architecture

Enhanced performance through innovation

Thumb[™]: DSP Extensions: Jazelle[™]: Media Extensions Up to 35% code compression Higher performance for fixed-point DSP Up to 8X performance for Java Up to 2X performance for audio & video

Preserve software investment through compatibility

Consumer OS Roadmap

