

Maximizing
Productivity Using
Simplified DSP Design
Flow

FPGAs for DSP Applications

- Benefits of FPGAs
 - 10x more DSP Throughput than DSP Processors
 - Cost-effective for Multi-Channel Applications
 - Flexible Hardware Implementation
 - System Integration Benefits
- Challenges
 - Designing with FPGAs is Difficult

DSP System

Programmable Logic

DSP Design Flow Challenges

- System-Level Development & Verification
- Software/Hardware Co-Development
- Design Optimization

System Development & Verification Challenges

- Multi-Platform
 - Development across Different Tools
- Modeling Accuracy
 - Floating-Point Simulation & Fixed-Point
 Implementation Incompatible
- Conversion
 - Manual Translation from System Level to Hardware

Multi-Platform Challenges

- Lack of Integrated Design Environment
- Cannot Optimize During System Development Stage
 - Lacking Details on Underlying Architecture
- Risks DuringImplementation Stage
 - Ambiguous Interpretation of Specification

Modeling Accuracy

- Floating-Point Models
 - Commonly used for Simulation
 - Most Efficient & Quickest
 Solution for Early Analysis
- Fixed-Point Models
 - Commonly used for Implementation
 - Suffers from Finite Word Length Effect
 - Need Truncation,
 Rounding & Saturation

Simulation

Implementation

Conversion Challenges

- System Design to Hardware Implementation
 - Requires HDL Knowledge
 - Create RTL Model
 - Create Simulation
 Testbench
- Complex Conversion Rules
 - Bit Propagation
 - Multi-Rate Systems

Software/Hardware Co-Development Challenges

- System Partitioning
 - Trade-off Flexibility Versus Performance
 - Need Multiple Design Iterations to Find Optimal Solution
- Integration of IP & Custom Logic
 - Different Bus Interfaces
- Software/Hardware Dependency
 - Frequent Updates to Header Files & Drivers

Design Optimization Challenges

- C/C++ Coding
 - Inefficient Compiler
 - Needs to Be Tailored for DSP Specific Architectural Features
- Assembly Coding
 - Need Understanding of Specific Machine Instruction
 Set for Specific Processor for Optimization
 - Systems Getting Larger & More Complex
 - Not Feasible for Hand-Coding
 - May Not Be Sufficient for Certain Intensive Number-Crunching Requirements

Addressing Challenges

- System-Level Development and Verification
 - DSP Builder Tool
 - System Integration
 - Bit-True & Cycle Accurate Models
 - Automatic Translation into Hardware
- Hardware/Software Integration
 - SOPC Builder Tool and Nios Processor
 - C-based design flow
- Design Optimization
 - Hardware Acceleration
 - Flexibility in System Partitioning

Traditional DSP Design Flow in FPGA

System Algorithm Design & FPGA Design Separated

Verification **Development Implementation System Level Simulation RTL** Implementation **System Level Verification of** of Algorithm Model **RTL Simulation Hardware Implementation Synthesis Algorithm** System-level Place & Route Modeling Verification **Simulation** (C/C++,M,MDL)(POF) (VHDL/Verilog) **MATLAB/Simulink Hardware Exemplar/Symplify** Quartus II **ModelSim**

Integration Using DSP Builder

System Algorithm Design and FPGA Design Integrated

Verification **Development Implementation System Level Simulation System Level Verification of RTL** Implementation of Algorithm Model **RTL Simulation Hardware Implementation Algorithm System-Level** Single Simulink Representation Modeling Verification Synthesis, Place & Route, **RTL Simulation MATLAB/Simulink Hardware Exemplar/Symplify** Quartus II **ModelSim**

Bit-True & Cycle-Accurate Models

- DSP Builder Provides Bit-True & Cycle-Accurate Simulink Blocks
- Ideal for System-Level Simulation
- Benefits
 - High-Level Abstraction
 - Don't Model Hardware Detail Involving Unnecessary Data Path Calculations
 - Faster than RTL Simulation
 - Most Important Prior to Architecture Mapping
 - Accurate Hardware Results

Automatic Hardware Translation

Creates HDL Code

HDL Synthesis

Place & Route

Creates Plug In to Processor

Creates Simulation Testbench

Model Technology

Download Design to DSP Development Kits

Accelerated Path to Co-Design

- SOPC Builder Tool
 - Combines Existing Soft & Hard IP Blocks & Associated Software
 - Generates Interfaces between Hardware & Software
 - Solves Problem of Linking IP Cores from Several Vendors
 - Available in Quartus II Software
- Supports Existing Altera Intellectual Property (IP) & ARM®-Based Excalibur & Nios® Embedded Processors
- Allows Flexibility for Changes to Software/Hardware Partitioning

Hardware/Software DSP Design Flow

Hardware Acceleration

- Implement Computationally Intensive & Repetitive Tasks in Hardware
 - Filters, Encoders/Decoders
- Examples in DSP Processors
 - TI TMS320C6416
 - VCP Viterbi Coprocessor
 - 350 Voice Channels at 12.2 Kbps
 - Motorola MSC8102
 - EFCOP Enhanced Filter Coprocessor
 - 4 Processors at 300 MHz
- Dedicated Hardware Accelerators Are Inflexible

Optimization Using FPGAs

- Fixed CPU Architecture
- Fixed Memory Structure
- Fixed Bus Structure
- Predefined Hardware Accelerator Blocks
- Few MAC Blocks

- Customizable CPU Structure
- **Customizable Memory Structure**
- Customizable Bus Structure
- User-Defined Hardware Accelerator Blocks
- Large Number of MAC Blocks

Hardware Acceleration in FPGA

- Two Implementation Options
 - Custom Peripheral
 - Custom Instruction
- Custom Peripheral
 - Interface to Nios through Avalon Bus
- Custom Instruction
 - Adds Customized Logic to Nios ALU
 - Generates C & Assembly Macros

Custom Instructions

Performance Using Custom Instructions

Floating-Point Operation (32-Bit Data)	CPU Clock Cycles		Speed
	Software Library	Custom Instruction	Increase
Multiplication axb	2874	19	151x
Multiply & Negate –(axb)	3147	19	165x
Absolute a	1769	18	98x
Negate –(a)	284	19	15x

Note: These Performance Calculations are Compiler-Dependant. Taken Using the Cygnus Compiler Included in Version 2.1 of Nios Embedded Processor

Acceleration in DSP Builder

Custom Instruction

Algorithms Developed in DSP Builder become Integral Part of ALU

Custom Peripheral
Algorithms Developed in DSP

Builder Can Be Connected to

Summary

- Integrated Design Platform for Efficient DSP Design Flow
 - DSP Builder Tool
 - Accurate Modeling
 - Seamless Flow from System to Hardware
- Versatile Tool for Software/Hardware Integration
 - SOPC Builder and Nios Embedded Processor
 - Easy System Partitioning
- Hardware Acceleration for Design Optimization
 - Hardware Flexibility
- DSP Design with FPGAs Becoming Easier

