

© 2002

Maximizing
Productivity Using
Simplified DSP Design
Flow

Maximizing
Productivity Using
Simplified DSP Design
Flow

FPGAs for DSP Applications FPGAs for DSP Applications
Benefits of FPGAs
− 10x more DSP Throughput than

DSP Processors
− Cost-effective for Multi-Channel

Applications
− Flexible Hardware

Implementation
− System Integration Benefits

Challenges
− Designing with FPGAs is

Difficult

ProgrammableProgrammable
LogicLogic

Software
Embedded
Processor

HardwareHardware

DSP System

Software
DSP

DSP Design Flow ChallengesDSP Design Flow Challenges
System-Level Development & Verification
Software/Hardware Co-Development
Design Optimization

System Development & Verification
Challenges
System Development & Verification
Challenges

Multi-Platform
− Development across Different Tools

Modeling Accuracy
− Floating-Point Simulation & Fixed-Point

Implementation Incompatible
Conversion
− Manual Translation from System Level to

Hardware

Multi-Platform ChallengesMulti-Platform Challenges
Lack of Integrated
Design Environment
Cannot Optimize During
System Development
Stage
− Lacking Details on

Underlying Architecture
Risks During
Implementation Stage
− Ambiguous Interpretation

of Specification

System-Level
Development

Implementation HDL
Quartus II

MATLAB
Simulink

Modeling AccuracyModeling Accuracy
Floating-Point Models
− Commonly used for

Simulation
− Most Efficient & Quickest

Solution for Early Analysis
Fixed-Point Models
− Commonly used for

Implementation
− Suffers from Finite Word

Length Effect
− Need Truncation,

Rounding & Saturation

Simulation

Fixed-Point Model

Floating-Point Model

Implementation

Conversion ChallengesConversion Challenges
System Design to
Hardware
Implementation
− Requires HDL

Knowledge
− Create RTL Model
− Create Simulation

Testbench
Complex Conversion
Rules
− Bit Propagation
− Multi-Rate Systems

System Model

Testbench

HDL Code

System Partitioning
− Trade-off Flexibility Versus Performance
− Need Multiple Design Iterations to Find

Optimal Solution
Integration of IP & Custom Logic
− Different Bus Interfaces

Software/Hardware Dependency
− Frequent Updates to Header Files & Drivers

Software/Hardware Co-
Development Challenges
Software/Hardware Co-
Development Challenges

Design Optimization ChallengesDesign Optimization Challenges
C/C++ Coding
− Inefficient Compiler
− Needs to Be Tailored for DSP Specific Architectural

Features
Assembly Coding
− Need Understanding of Specific Machine Instruction

Set for Specific Processor for Optimization
− Systems Getting Larger & More Complex

Not Feasible for Hand-Coding
− May Not Be Sufficient for Certain Intensive Number-

Crunching Requirements

Addressing ChallengesAddressing Challenges
System-Level Development and Verification
− DSP Builder Tool

System Integration
Bit-True & Cycle Accurate Models
Automatic Translation into Hardware

Hardware/Software Integration
− SOPC Builder Tool and Nios Processor

C-based design flow

Design Optimization
− Hardware Acceleration
− Flexibility in System Partitioning

System Level Simulation
of Algorithm Model

MATLAB/Simulink

System Level Verification of
Hardware Implementation

Hardware

RTL Implementation
RTL Simulation

Exemplar/Synplify
Quartus II
ModelSim

Traditional DSP Design Flow in FPGATraditional DSP Design Flow in FPGA

Development Implementation Verification

System-level
Verification

(POF)

Synthesis
Place & Route

Simulation
(VHDL/Verilog)

Algorithm
Modeling

(C/C++,M,MDL)

System Algorithm Design & FPGA Design Separated

System Level Simulation
of Algorithm Model

MATLAB/Simulink

System Level Verification of
Hardware Implementation

Hardware

RTL Implementation
RTL Simulation

Exemplar/Synplify
Quartus II
ModelSim

Development Implementation Verification

System Algorithm Design and FPGA Design Integrated

System-Level
Verification

Synthesis, Place & Route,
RTL Simulation

Algorithm
Modeling Single Simulink Representation

Integration Using DSP BuilderIntegration Using DSP Builder

Bit-True & Cycle-Accurate ModelsBit-True & Cycle-Accurate Models
DSP Builder Provides Bit-True & Cycle-
Accurate Simulink Blocks
Ideal for System-Level Simulation
Benefits
− High-Level Abstraction
− Don’t Model Hardware Detail Involving

Unnecessary Data Path Calculations
− Faster than RTL Simulation
− Most Important Prior to Architecture Mapping
− Accurate Hardware Results

HDL Synthesis
Download Design

to DSP
Development Kits

Creates HDL Code Place & Route

Creates Plug In to
Processor

Creates Simulation
Testbench

Automatic Hardware TranslationAutomatic Hardware Translation

Accelerated Path to Co-DesignAccelerated Path to Co-Design
SOPC Builder Tool
− Combines Existing Soft & Hard IP Blocks &

Associated Software
− Generates Interfaces between Hardware &

Software
− Solves Problem of Linking IP Cores from

Several Vendors
− Available in Quartus II Software

Supports Existing Altera Intellectual
Property (IP) & ARM®-Based Excalibur
& Nios® Embedded Processors
Allows Flexibility for Changes to
Software/Hardware Partitioning

Hardware/Software DSP Design FlowHardware/Software DSP Design Flow

Download

System
Simulation

System
Level

Synthesis,
Place-&-Route

& Simulate

HDL Code

Programming
File

Verify

Interface
Hardware
Level

FPGAFPGA

SystemSystem
GenerationGeneration

DSP
Builder

SOPC
Builder

GNUPro

AssemblyAssembly
CodeCodeCompile, Compile,

AssembleAssemble
& Link& Link

BinaryBinary
ExecutableExecutable

LibraryLibrary

C/C++ CodeC/C++ Code

Software
Level

DebugDebug

Hardware AccelerationHardware Acceleration
Implement Computationally Intensive &
Repetitive Tasks in Hardware
− Filters, Encoders/Decoders

Examples in DSP Processors
− TI TMS320C6416

VCP – Viterbi Coprocessor
− 350 Voice Channels at 12.2 Kbps

− Motorola MSC8102
EFCOP – Enhanced Filter Coprocessor
− 4 Processors at 300 MHz

Dedicated Hardware Accelerators Are Inflexible

Optimization Using FPGAsOptimization Using FPGAs

CPU
Core

MAC

MAC

MAC

MAC

Turbo Turbo
CoprocessorCoprocessor

ViterbiViterbi
CoprocessorCoprocessor

Filter Filter
CoprocessorCoprocessor

Memory

DSP Processors
Embedded
Processor IP Block1IP Block1

IP Block3IP Block3

Memory
Blocks

Memory
Blocks

MAC
Blocks

MAC
Blocks

FPGAs

Embedded
Processor

Fixed CPU Architecture
Fixed Memory Structure
Fixed Bus Structure
Predefined Hardware Accelerator
Blocks
Few MAC Blocks

Customizable CPU Structure
Customizable Memory Structure
Customizable Bus Structure
User-Defined Hardware
Accelerator Blocks
Large Number of MAC Blocks

Complete
Hardware
Flexibility

Complete
Hardware
Flexibility

Hardware Acceleration in FPGAHardware Acceleration in FPGA
Two Implementation
Options
− Custom Peripheral
− Custom Instruction

Custom Peripheral
− Interface to Nios through

Avalon Bus
Custom Instruction
− Adds Customized Logic to

Nios ALU
− Generates C & Assembly

Macros

c

Optional FIFO, Memory, Other Logic

Custom
Logic

A

B

+-
>>
<<

&

Nios
ALUA

B

Out

Nios Processor

Define Custom Define Custom
Instruction in Instruction in
DSP BuilderDSP Builder

Import Custom Import Custom
Instruction in Instruction in
SOPC BuilderSOPC Builder

Custom InstructionsCustom Instructions

Performance Using Custom
Instructions
Performance Using Custom
Instructions

15x19284Negate –(a)
98x181769Absolute |a|
165x193147Multiply & Negate –(axb)
151x192874Multiplication axb

Custom Custom
InstructionInstruction

SoftwareSoftware
LibraryLibrary

Speed Speed
IncreaseIncrease

CPU Clock CyclesCPU Clock CyclesFloatingFloating--Point Operation Point Operation
(32(32--Bit Data)Bit Data)

Note: These Performance Calculations are Compiler-Dependant. Taken Using the
Cygnus Compiler Included in Version 2.1 of Nios Embedded Processor

CPU

A
va

lo
n

B
us

UART

PIO

Timer

SPI

SDRAM
Controller

On-Chip
ROM

On-Chip
RAM

Custom Instruction
Algorithms Developed in DSP Builder

become Integral Part of ALU

Custom Peripheral
Algorithms Developed in DSP
Builder Can Be Connected to
Nios Processor as Peripheral

Acceleration in DSP Builder

SummarySummary
Integrated Design Platform for Efficient DSP
Design Flow
− DSP Builder Tool
− Accurate Modeling
− Seamless Flow from System to Hardware

Versatile Tool for Software/Hardware Integration
− SOPC Builder and Nios Embedded Processor
− Easy System Partitioning

Hardware Acceleration for Design Optimization
− Hardware Flexibility

DSP Design with FPGAs Becoming Easier

