

Using the Chip Editor in the Quartus II Design Environment

Agenda

- Introduction to the Chip Editor
- The Resource Property Editor
 - LE Editor
 - I/O Editor
- The Chip Editor Tools
- Chip Editor Applications
 - 1. Design Analysis
 - 2. Design Flaw
 - 3. Timing Verification
 - 4. Last Minute ECO

Getting Started With Chip Editor

- What is the Chip Editor?
 - A Graphical Interface for Viewing Detailed Information About the Target Design & the Target Architecture
 - Designs Can Be Modified Without Performing a Recompilation!

More Detail Than the Quartus II Floorplan Editor !

Quartus II v2.2 Floorplan Editor

Quartus II v3.0 Chip Editor

Getting Started with Chip Editor

Why Would My Customer Use the Chip Editor?

- Quick Turn-around-Time
 - Corrects Design Flaws
 - Last Minute ECO
 - Tweak Timing Assignments

What Type of Customer Should use the Chip Editor?

- A Customer Who Has to Perform a <u>Minor</u> Change to Their Design
- Only Advanced Customers
 - Detailed Knowledge of the Target Architecture
 - Detailed Knowledge of the Design Being Implemented

General Flow with Chip Editor

Customer Flow with Chip Editor

Case 1: Incorrect Functionality

 Use the Chip Editor to Modify Device Resources to Correct Functionality

© 2004 Altera Corporation

Design Failure

Modify Failing

ATOM

Re-Configure

FPGA

Success

Customer Flow With Chip Editor

Case 2: Timing Analysis

Trace Critical Path with the Chip Editor to Determine where Improvements can be Made

Cloc	k Setup: 'cl	k'				
	Slack	Actual fmax (period)	Source Name	Destination Name	Source Clock Name	Destina
1	-0.279 ns	106.73 MHz (period = 9.369 ns)	taps:inst[xn[0]~reg0	acc:inst3 result[11]	clk	clk
2	-0.182 ns	107.85 MHz (period = 9.272 ns)	state_m:inst1 filter~10	acc:inst3 result[11]	clk	clk
3	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst[xn[0]~reg0	acc:inst3 result[10]	clk	clk
4	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:instlxn[0]~reg0	acc:inst3 result[9]	clk	clk
5	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst xn[0]~reg0	acc:inst3 result[8]	clk	clk
6	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst xn[0]~reg0	acc:inst3 result[7]	clk	clk
7	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst xn[0]~reg0	acc:inst3 result[6]	clk	clk
8	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3 result[10]	clk	clk
9	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3 result[9]	clk	clk
10	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3 result[8]	clk	clk
11	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3 result[7]	clk	clk
12	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3 result[6]	clk	clk
13	0.101 ns	111.25 MHz (period = 8.989 ns)	state_m:inst1 filter~12	acc:inst3 result[11]	clk	clk
14	0.116 ns	111.43 MHz (period = 8.974 ns)	taps:inst[xn[0]~reg0	acc:inst3 result[5]	clk	clk

Customer Flow With Chip Editor

Case 3: ECO Requests

 Use the Chip Editor to Modify Properties of Design to Implement ECO

Adjust Properties

Launching Chip Editor

1. Compilation Hierarchy

2. Floorplan Editor

Launching Chip Editor

3. Compilation Report

4. Design Source Code

Chip Editor Floorplan

- Can be used to View Details of the Device Resources in an Altera FPGA
 - Device Routing Channels
 - Routing Paths Between Device Resources
 - Internal Routing Channels Within LABs
- Hierarchical Abstraction Level Used to View Device Resources
 - Higher Zoom-Level \rightarrow Less Detail
- Launch the Resource Property Editor
 - Option in the Right-Mouse Click Menu

Chip Editor Views

- High Level View is Similar to the Timing Closure Floorplan View:
 - Used Device Resources are Shown in Yellow
 - Tooltips Available for all Device Resources Except Routing Channels
- Second Level Reveals Routing Channels in More Detail
 - Tooltips Available for All Routing Channels

Chip Editor Views

- Subsequent Zoom Levels Provide More Details
 - Routing Channels *in* and *out* of Device Resources Are Shown

Chip Editor Views LAB **Bottom-Level View Reveals Internal Routing** Channels in and out of LABs LEs Are Shown as They Are in Silicon LE 5 MAC M4K

LE 0

Example: From TAN Report

From Timing Analysis Report

- Traces Exact Path Between Source and Destination Registers
- The Interconnect Delay & Total Delay Are Shown
 When the Show Delay Poption is Used

Source Name	Destination Name	Source Clock Name	Destination Clock Name	Required Setup Relationship
inst1	inst2	clcok1	clcok1	10.000 ns
inst	inst1	clcok1 C	Iopy jelect All	Ctrl+C Ctrl+A
		L	ist Paths \ssignment Editor	Ctrl+Shift+A
			ocate in Chip Editor	
		L	ocate in Timing Closury Floorpla	an
		L	ocate in Last Compilation Floor ave Current Report Section As	plan

Example: From TAN Report (cont'd)

Agenda

- Introduction to the Chip Editor
- The Resource Property Editor
 - LE Editor
 - I/O Editor
 - PLL Editor
- The Chip Editor Tools
- Chip Editor Applications
 - 1. Design Analysis
 - 2. Design Flaw
 - 3. Timing Verification
 - 4. Last Minute ECO

Logic Element Editor

Allows Changes to be Made to the Properties of an LE

- 1. Locate LE in Chip Editor Floorplan
- 2. Select Locate in Resource Property Editor

LE Modes of Operations

- Operation Mode = {Arithmetic, Normal}
 - In Normal Mode the LUT is a Function of DATAA, DATAB, DATAC, & DATAD

Properties/Modes	Values	-111T equation	
LUT Mask	8000	Cum equation:	LABARAR
Sum LUT Mask	8000	Sum equation.	A & B & C & D
Carry LUT Mask	N/A		1
Operation Mode	Normal	Carry equation:	N/A
Synchronous Mode	Off		2
Register Cascade Mode	Off		Set equation
Register Cascade Mode	Off		Set equat

- In Arithmetic Mode the LUT is a Function of DATAA, DATAB & CARRY IN
 - DATAD is not Connected

Values	- LUT equation-	
FE01	Cup equation	Lunnung.
FEFE	Sum equation.	A#B#C
0101		2 11
Arithmetic	Carry equation:	IA & IB & IC
Off		
Off		Set equation
		secequation
	(i)	
	Values FE01 FEFE 0101 Arithmetic Off Off	Values FE01 FEFE 0101 Vrithmetic Off Off

Legal Changes to an LE

1. LUT Equation

Can Only Use Inputs That Are Currently Utilized by the LE

Legal Changes to an LE

2. Feedback Path in the LE

 DATAC Can No Longer Be Utilized if the Feedback Path is Enabled

Legal Changes to an LE

- 3. Signal Inversion
 - Only ALOAD, ACLEAR, CLOCK, ENABLE are Invertible

Illegal Changes to an LE

- 1. LUT Rotation
 - LUT Inputs Cannot be Swapped
 - Unused Inputs Cannot be Added to the LUT Equation

- 2. Enable the LE Register
 - Unused Register Can Not Be Enabled

Illegal Changes to an LE

- 3. Manual Routing
 - Unused Routes Out of the LE Can Not Be Enabled
 - COMBOUT, CARRY OUT, CASCADE OUT

- 4. Disable the Feedback Path in an LE
 - If the Feedback Path is Enabled with the Chip Editor,
 - Re-fit the Design to Wipe out Change

Caveats of the LUT Equation

The Logic That Was Implemented May Have Been Optimized and Absorbed into an LE

Example

Only use the LUT Equation if

- 1. You are Very Familiar with the Design
- 2. You Understand the Optimization that Quartus II Performed

Allows I/O Properties to Be Modified

Legal Changes – I/O Timing

Input Delay Options

- 1. Input Pin to Logic Array 0
- 2. Input Pin to Input Register Delay
- 3. Input Pin to Logic Array 1
- 4. Input Clock Enable Delay

Legal Changes – I/O Timing (cont'd)

Output Delay Options

- 1. Output Pin Delay
- 2. Logic Array to Output Register Delay
- 3. Output Clock Enable Delay

Legal Changes – I/O Timing (cont'd)

Output Enable Delay Options

- 1. Output Enable to Register TCO Delay
- 2. Output TZX Delay
- 3. Output Enable Clock Enable Delay

Other Legal Changes – I/O Editor

Signal Inversion VCC DATA IN1 OUT 0 DATA IN2 OUT **Output Pin** Clock IO YGR DIND Go to source atom VCC OUT 0 OUT **Output Pin** DD ΞŖ. © 2004 Altera Corporation

Other Legal Changes – I/O Editor

Reset/Clear Options for Sync/Async Signals

From/To	None	Reset	Preset
None		No	No
Reset	Yes		Yes
Preset	Yes	Yes	

- Power Up Options
 - High or Low for All Registers in the I/O

Illegal Changes with the I/O Editor

Adjusting the Current Strength That is Not Supported By the I/O Standard

I/O Standard	Legal Setting	Notes
3.3V LVTTL	24 , 16, 12, 8, 4	
3.3V LVCMOS	24, <mark>12</mark> , 8, 4, 2	
2.5V	<mark>16</mark> , 12, 8, 2	LVTTL/LVCMOS
1.8V	12 , 8, 2	LVTTL/LVCMOS
1.5V LVCMOS	8, 4, 2	

- Enabling the Register
 - If the Register is Not Used in the LE it Can Not be Enabled

Agenda

- Introduction to the Chip Editor
- The Resource Property Editor
 - LE Editor
 - I/O Editor
 - The Chip Editor Tools
- Chip Editor Applications
 - 1. Design Analysis
 - 2. Design Flaw
 - 3. Timing Verification
 - 4. Last Minute ECO

Chip Editor Toolbar Options

- Many New Options Exist That Allows Easily Navigation within the Chip Editor
 - Bird's Eye View
 - Route Fan-In and Fan-out
 - Detailed Tooltips

 \mathbf{b} € 岩 2 1 ⋧ 80 ¥ E+ Pere la 3 *₽*

Bird's Eye View

- Bird's Eye View
 - Provides an Overall View of the Entire Device
 - Used to Navigate Through the Chip Editor Floorplan

Route Fan-Out

Show Routing Fan-Out

Route Fan-In

Show Routing Fan-In

Tooltips in the Chip Editor

- Tooltips in the Chip Editor Provide General Information Regarding the Selected ATOM
 - Device Resource Name, e.g. LAB, M4K, etc
 - Location
 - Number of Atoms
 - Number of Oterms
 - Number of Iterms

Detailed Tooltips

- Detailed Tooltips are Enabled with the Detailed With the Detailed Tooltips are Enabled with the Detailed Wit
 - Provides the Names of all ATOMS, Oterms, and Iterms Assigned to the Device Resource

Icon

Change Manager

- A Utility that Reports all Changes Made with the Chip Editor
 - Change Manager (View menu)

- A Number of Operations Can Be Performed Within the Change Manager
 - Restore Old Value
 - Export to Tcl
 - Locate ATOM in the Resource Property Editor
 - Check & Save Netlist

The Change Manager (cont'd)

Column	Description
Node Name	Name of the Node that was Modified with Chip Editor
Change Type	Old Value of the Modified Node
Current Value	New Value of the Modified Node
Status	Current State of the Change Made to the Specified Node

×	Node Name	Change Type	Old Value	New Value	Current Value	Status
40	1 mini meldata out1	BOOL CORE TO	Off	On	Off	Not Applied
	2 mini_meldata_out1	BOOL_TCO_DELA	On	Off	Off	Applied
	3 mini_melpin_name2	BOOL_TCO_DELA	Off	On	Data Not Av	Not Valid
	4 mini_melinst6	LUT mask	8000	FFFE	8800	Not Valid
	5 mini_melinst6	data_to_lutc	DATAC	QFBK	DATAC	Not Applied
	6 mini_melinst6	LUT mask	8000	8800	8800	Applied
	7 mini_melmy_counter:inst1 pm_counter:pm	LUT mask	C3C3	3C3C	3C3C	Applied

ATOM Level Design Rule Checker

Ensures Changes Made to an ATOM Do Not Violate Any of the Device and/or Software Constraints

Example : Modify the LUT Equation to Include Unused Inputs

Properties/Modes Values LUT Mask F0F0 - Sum LUT Mask F0F0 - Carry LUT Mask N/A Operation Mode Normal Synchronous Mode On Register Cascade Mode Off	LUT equation Sum equation: C Carry equation: N/A Set equation	Properties/Modes Values LUT Mask CCCC Sum LUT Mask CCCC Carry LUT Mask N/A Operation Mode Normal Synchronous Mode On Register Cascade Mode Off	LUT equation Sum equation: B Carry equation: N/A Set equation
--	--	--	---

Result : Error: LCELL ATOM is Dependent on Unconnected Input Ports

ATOM Level Checker Runs Automatically When the ATOM Level Changes Are Saved

Design Rule Checker - Circuit Level

Ensures that All Independent Changes to the ATOM Do Not Result in an Illegal Circuit

Cases Exist When the ATOM Level DRC Passes, but the Circuit Level DRC Fails

Example: Two LEs in a LAB

Cause:

Invert the SLOAD for One but Not the Other

Result: Error: LAB Has 2 sload Signals, but Only 1 Signal is Sllowed

SLOAD Signal in a LAB is a Single Wire

Post - Chip Editor Options

- Simulation
 - Generate VO/VHO After Changes are Made with **Chip Editor** Tool settings Tool type: Simulation

Tool name

VCS Run this tool automatically after compilation

Generate netlist for functional simulation only

Allows Gate-Level Simulation to Be Performed with New Changes in a Third-**Party Simulation Tool**

Settings.

Post - Chip Editor Options (cont'd)

3. Quartus Timing Analysis

- Verify Timing After Changes Are Made with the Chip Editor

4. Quartus Assembler

Verify Circuit Behavior on the PCB

Xilinx FPGA Editor

- Advantages:
 - Capabilities far
 Exceed Those in
 Chip Editor
 - Able to Modify / Create Anything with the Editor
- Disadvantages:
 - No Way to Track
 Changes
 - Very Little
 Interaction
 Between TAN
 and Editor

<u> </u>	🖸 A 🛃						
тауі	- U × C	💱 List1				_ 🗆 🗙	e
		All Components				-	at at
		Name Filter					autor
		x			•	Apply	cle
			1	-			de de
		1 Name	Site	Type	#Pins	Hilite(▲	
		2 Clk	ALI22	GCLKIOB	1		edit
		3 clk_bufgp.	GCLKBUF	GCLK	2	no colo	editr
		4 intout(0)	C2	ЮВ	1	no colo	fii
		5 intout(1)	D17	IOB	1	no colo	yellow
		6 intout(2)	B17	IOB	1	no colo	ir
		7 intout(3)	AT18	IOB	1	no colo	pro
╾╴╴╴╵╵││┟┽┰ [╶] ╴┦ <mark>╵</mark> ││ ┝╌╶╴ <u>╴҇<mark>╹</mark>┤╴┝╌╴╴</u> ╸╵──┝╌╴╴╸╵		8 Intout(4)	AVVID AT17	IOB	1	no colo	auto
		10 intout(6)	AU17	IOB	1	no colo	
		11 intout(7)	AT15	IOB	1	no colo	
	-	12 intout(8)	AU10	IOB	1	no colo	unr
		13 intout(9)	AVV12	IOB	1	no colo	
ock1 - Edit Comp net_x_5(9) at Site CLB_R58C50.50		14 intout(10)	AU14	IOB	1	no colo	
📶 🛃 🛿 🕞 🖾 🔍 🔍 🕲 🛃 🎽		15 intout(11)	AV8	IOB	1	no colo	
		16 intout(12)	AU9 AV15	108	1		
		1 Interaction		100			
	5	😵 World1				- D ×	
ne net x 5(9)							
44040							
n ((A) ((A2)							
n (A1@A4)				_			
Na annana ƙasard	_						<u> </u>
<pre>- wore no DRC errors or warnings. p "net_x_5(9)", site "CLE_R\$8C50.50", type = SLICE p "net_x_5(9)", site "CLE_R\$8C50.50", type = SLICE</pre>							
- No errors found. re were no DRC errors or warnings.							

Agenda

- Introduction to the Chip Editor
- The Resource Property Editor
 - LE Editor
 - I/O Editor
 - PLL Editor
- The Chip Editor Tools
- Chip Editor Applications
 - 1. Design Analysis
 - 2. Design Flaw
 - 3. Timing Verification
 - 4. Last Minute ECO

Application: Design Analysis

Problem:

Cloc	Clock Setup: 'clk'									
	Slack	Actual fmax (period)	Source Name	Destination Name	Source Clock Name	Destinal				
1	-0.279 ns	106.73 MHz (period = 9.369 ns)	taps:inst[xn[0]~reg0	acc:inst3[result[11]	clk	clk				
2	-0.182 ns	107.85 MHz (period = 9.272 ns)	state_m:inst1 filter~10	acc:inst3[result[11]	clk	clk				
3	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst[xn[0]~reg0	acctinst3[result[10]	clk	clk				
4	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst[xn[0]~reg0	acctinst3[result[9]	clk	clk				
5	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst[xn[0]~reg0	acc:inst3 result[8]	clk	clk				
6	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst[xn[0]~reg0	acc:inst3[result[7]	clk	clk				
7	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst[xn[0]~reg0	acc:inst3 result[6]	clk	clk				
8	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acctinst3[result[10]	clk	clk				
9	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3[result[9]	clk	clk				
10	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3 result[8]	clk	clk				
11	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3 result[7]	clk	clk				
12	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acctinst3[result[6]	clk	clk				
13	0.101 ns	111.25 MHz (period = 8.989 ns)	state_m:inst1 filter~12	acc:inst3[result[11]	clk	clk				
14	0.116 ns	111.43 MHz (period = 8.974 ns)	taps:inst[xn[0]~reg0	acc:inst3 result[5]	clk	clk				

How do I Examine the Route in my Critical Path?

What Route Resources did Quartus II use to Connect Between the Source and Destination Nodes?

Design Analysis - Solution

Right-Mouse Click on Path

- Select Locate in Chip Editor

Cloc	Clock Setup: 'clk'									
	Slack	Actual fmax (period)	Source Name	Destination Name	Source Clock Name	Destinal				
1	-0.279 ns	106.73 MHz (period = 9.369 ns)	taps:inst[xn[0]~reg0	Copy	Chilac					
2	-0.182 ns	107.85 MHz (period = 9.272 ns)	state_m:inst1 filter~10	Select All	Ctrl+A					
3	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst xn[0]~reg0 -		Curre	_				
4	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst[xn[0]~reg0	List Paths						
5	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst[xn[0]~reg0	Assignment Editor	Ctrl+Shift+A					
6	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst xn[0]~reg0	Locate in Chip Editor						
7	-0.177 ns	107.91 MHz (period = 9.267 ns)	taps:inst xn[0]~reg0	Locate il Fiming Closure	Floorplan					
8	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	Locate in Last Compilatio	n Floorplan					
9	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10_	Save Current Report Sec	CCION AS					
10	-0.080 ns	109.05 MHz (period = 9.170 ns)	state_m:inst1 filter~10	acc:inst3 result[8]	clk	clk				

Design Analysis - Solution

Locate in Chip Editor

Enable Timing Delay

Design Analysis - Solution

- Select LE_4 and Enable the Route Fan-Out
- The Exact Route is Displayed with Timing Values

Application: Design Flaw

Problem:

Design Specification

Verilog Implementation

Designer did not Invert the Output of the OR Gate !

Design Flaw - Solution

- 1. Locate the "Problem LE" *Method 1*
 - Use "Design Knowledge" to Determine Where the LE is Located

Begin at Input Pin and Use the "Go To Destination ATOM" Option Until the "Problem LE" is Found

ADERA.

Design Flaw – Solution (cont'd)

Method 2

Highlight the LE in the Source Code and Select Locate in Chip Editor

8 assign AB = dataa & d 9 assign CD = datac & d 0 assign or out = AB	datab; //top AND datad; //bottom ANI CD; // or output	2
1 assign data_out = or 2 3 endmodule	Out: //invert for : Undo InsertText Redo	final result Ctrl+Z Ctrl+Y
4 // end of Verilog c ⁻⁵	Cut Copy Paste Delete	Ctrl+X Ctrl+C Ctrl+V Del
	Assignment Editor Locate in Timing Closure Floor	Ctrl+Shift+A plan
	Locate in Last Compilation Flo	orplan

This Method May Not Work if the Node Name Goes Through a Significant Change During the Synthesis Process

Design Flaw – Solution (cont'd)

- 2. Determine the Signals that Drive the Four Inputs to the LE
 - Use the "Go To Source ATOM" Option to Determine Connectivity
 - Provides Mapping of RTL Signals to Signals That Are Used in the LUT Equation

Example:

My Signal	LE Input	LUT Equation
my_input1	datad	D
my_input2	datab	В
my_input3	datac	С
my_input4	dataa	A

Design Flaw – Solution (cont'd)

3. Modify the LUT Equation in the LE Editor to Reflect the Changes

LUT equation Sum equation:	A & (C # B & D) # !A & B & D	LUT equation — Sum equation:	I((D & B) # (C & A))
Carry equation:	N/A Set equation	Carry equation:	N/A
_	- Sec equation		

4. Run the Circuit Level DRC

5. Run the Assembler to Generate a POF file

Application: Timing Verification

Problem:

Design Specification Calls for a Minimum TCO

Quartus II Timing Analysis Reports the Following TCO Results:

Possible Solution:

The Delay Chain Settings can be Enabled with the I/O

Property Editor to Increase the Output Delay to the Pin

Application: Timing Verification

Determine if Adjusting the Delay Chain Settings Can Help Solve the Problem

Info: Minimum slack time is -77 ps for clock clk between source register inst3 and destination pin data_out1 + Shortest register to pin delay is 2.445 ns 1: + IC(0.000 ns) + CELL(0.000 ns) = 0.000 ns; Loc. = IOC_X44_Y31_N2; REG Node = 'inst3' 2: + IC(0.000 ns) + CELL(2.445 ns) = 2.445 ns; Loc. = Pin_D7; PIN Node = 'data_out1'

Total cell delay = 2.445 ns

- Solve this Problem in Two Ways
 - 1. Move the Register Outside the I/O Element
 - Modify the Delay Chain Settings with the I/O Property Editor
 SOPC

Timing Verification – Solution (cont'd)

- Locate I/O Element in the Chip Editor
 - Launch the Resource Property Editor
 - Modify the Existing Delay Chain Setting

Timing Verification – Solution (cont'd)

3. Run a Circuit Level DRC

Module	Progress %	Time 🔕	
Processing Total	52 %	00:01:20	
Full Compilation	100 %	00:01:19	
Analysis & Synthesis	100 %	00:00:05	
Fitter	100 %	00:01:04	
Assembler	100 %	00:00:08	
Timing Analyzer	100 %	00:00:02	
Check Netlist	5 %	00:00:01	

4. Run Quartus II Timing Analysis to Verify Correct Behavior

Minimum tco						
	Minimum Slack	Required Min tco	Actual Min tco	Source Name	Destination Name	Source Clock Name
1	0.300 ns	5.000 ns	5.300 ns	inst3	data_out1	clk

5. Run the Assembler to Generate a POF file

Application – Last Minute ECO's

Problem: Design Changes Towards the Back End of the Design Cycle

ECO's - Solution

Locate the clear Signal in the Floorplan Editor

Open the **Resource Property Editor** for Each of the Signals That is Driven By the **clear** Signal

Delete	Del			
Show Details Hide Details				
Zoom		•		
Locate in Timing Closure Floo Locate in Last Compilation Fl	orplan oorplan			
Locate in Resource Property Editor				
Locate in Chip Editor				
Locate in Design File				
	Delete Show Details Hide Details Zoom Locate in Timing Closure Flor Locate in Last Compilation Fl Locate in Resource Property Locate in Chip Editor Locate in Design File	Delete Del Show Details		

ECO's – Solution (cont'd)

3. Invert the Value of the **synchronous clear** That Feeds the Register

• Which resource can't modify in Chip Editor?

1). Logic Element

2). I/O Element

3). M4K Memory Block

4). PLL

Summary

- Use the Chip Editor to Perform <u>Minor</u> Changes to your Design
 - May be Difficult to Use for New Customers
- Use this Feature to Modify Properties of ATOMS
 - A Logic Element
 - A PLL
 - An I/O
- Use This Feature to Analyze Your Critical Path
- Use This Feature Learn About the Target Architecture

