

- General digital signal processing (DSP) challenges and trends
- Why "DSP in FPGA?"
 - Performance
 - Price
 - Power
 - Scalability
 - Other advantages
- Implementation example
- Conclusion

General DSP Challenges and FPGA Benefits

© 2007 Altera Corporation—Public

Slide 3

CY7 This meaning behind this graphic takes a while to grasp Christine Young, 6/1/2007

Why "DSP in FPGA"?

- Performance
 - Real-time video processing
 - H.264 encoding
 - Forward error correction (FEC) in the baseband
 - Intermediate frequency (IF) processing
 - Multi-channel signal processing
- Price Multiple DSP devices vs. FPGAs
- Power Multiple DSP devices vs. FPGAs
- Scalability to move to larger or smaller devices with the same footprint
- Other reasons that can include
 - FPGA familiarity
 - Consolidation of the DSP device + FPGAs \rightarrow FPGAs
 - High-end DSP device \rightarrow Low-cost DSP device + low-cost FPGAs

Conventional DSP Performance

- Fundamental unit of computation in a DSP device; multiplier-accumulator (MAC)
- For a typical 128-tap finite impulse response (FIR) filter
 - Conventional DSP processor with a single MAC unit would need 128 loops to process the data

FPGA DSP Performance

- FPGAs have significant logic, memory, and multiplier resources
- These can be used in a parallel manner to implement very highperformance DSP capabilities
- In this example, the 128-tap FIR filter can be implemented in a single loop by using
 - 128 multipliers
 - 128 registers

© 2007 Altera Corporation—Public

- And a single adder

High-Performance DSP Blocks

Cost Benchmarks – 2006 BDTI

New BDTI-Certified Cost-Performance Optimized Results

Slide 9	
CY2	Can we remove "optimized" from the graphic title? What does it mean here? Christine Young, 6/1/2007
CY3	I can't edit this graphic, but trademarks need to be added:
	Add a registered trademark at Altera and also at Stratix

Also, the Stratix device part number needs to be fully spelled out, ie: EP2S15 Christine Young, 6/1/2007

Performance → Price and Power Advantage

EP2S180 ~172 GMACS (Counting ONLY the embedded mults)

Multiple C6455 DSP devices (8 GMACS each)

Commentary on Power Consumption

- FPGAs have long been viewed as too power-hungry for most DSP applications – this is an obsolete perspective
- What matters is not the absolute power consumed, but the power consumed per function/channel
- Since FPGAs can process multiple channels (using time division multiplexing)
 - The real comparison is between one FPGA and a bank of DSP devices or
 - Between power/channel

Commentary on Power Consumption

- BDTI did its own "back of the envelope" comparisons of the energy efficiency of FPGAs and DSPs
- BDTI estimated that high-end FPGAs implementing demanding DSP applications, such as that embodied in the BDTI Communications Benchmark (OFDM), consume on the order of 10 watts
- High-end DSP devices consume roughly 2-3 watts
- However, benchmark results show that high-end FPGAs can support roughly 10 to 100 times more channels on this benchmark than high-end DSP devices
- Power consumed/channel

CY4

- FPGA 1 to 0.1 W/channel
- DSP 2-3 W/channel

CY4 Very text-heavy slide. Suggest discussing some of these points during the presentation (include in speakers notes instead of on the slide)...for example, the 1st bullet can be moved to speakers notes. Other bullets can be condensed Christine Young, 6/1/2007

Stratix III Programmable Power Technology

Logic Array

High-speed logic

Low-power logic

Unused low-power logic

Performance Where You Need It, Lowest Power Everywhere Else, Automated by Quartus[®] II Software

Selectable Core Voltage in Stratix III FPGAs

- Customer selects FPGA core voltage
 - 1.1 V for maximum performance
 - 0.9 V for minimum power
 - Programmable Power Technology is available to both voltages
- Quartus II software v7.1 includes timing models for both 1.1 V and 0.9 V

Core voltage	Dynamic power reduction from Stratix II FPGAs	Static power reduction from Stratix II FPGAs				
1.1 V	33%	52%				
0.9 V	55%	64%				

Total power reduction reflects reduced capacitance, Programmable Power Technology, and other Stratix III architectural optimizations

Cyclone III Low Power Process Technology Power Optimization

(Logic elements (LEs), RAM, multipliers)

© 2007 Altera Corporation—Public

Applying the TSMC Low-Power Process

Use low V_T transistors where performance is critical

- Datapath signals in LEs
- Extend the channel length of low V_T transistors to lower leakage current while maintaining needed performance
- Use slower high V_T transistors to reduce leakage in nonperformance-critical circuits
 - Configuration RAM bits and other non-datapath circuits

Quartus II Software Design Flow

Scalability within a Footprint: Vertical Migration

FPGA	Device	484- FPC	oin A		780-pin FPGA		1152-pin FPGA	1	I517-pin FPGA		1760-pin FPGA
variant		1.0 mm 23 x 23		1.0 mm 29 x 29		1.0 mm 35 x 35		1.0 mm 40 x 40			1.0 mm 43 x 43
	EP3SL50	28	в		480						
	EP3SL70	28	в	K	480						
	EP3SL110				480		736				
Stratix III L FPGAs	EP3SL150				480		736				
	EP3SL200						736		864		
	EP3SE260						736		960		
	EP3SL340		Ļ						960		1,104
	EP3SE50	28	В		480						
Stratix III E FPGAs	EP3SE80				480		736				
Stratix III E FPGAS	EP3SE110				480		736				
	EP3SE260						736		960		

Denotes vertical migration support

© 2007 Altera Corporation—Public

Integration

Replace multiple DSP processors

- Co-processor
- Pre/post processor
- Single chip solutions

Integrate other system blocks

- Specific interfaces
- Control processor(s)
- Custom logic

© 2007 Altera Corporation—Public

Wireless Systems Example: Leverage FPGA Performance

Fairlight

- Formed in 1975, invented first digital music sampling keyboard
- Today develops media processing platforms for film, television, and music
 - Stevie Wonder, Peter Gabriel, Moulin Rouge, Super Bowl XLI
- Two Academy Awards for audio technology
- Audio Technology Hall of Famer

Fairlight Development History

- In 2003, Fairlight's state-of-the art media processing platform:
 - Based on DSP processors
 - Took 5 years to create
 - Cost \$20M to develop
- In 2004, began development on next-generation platform for:
 - Guaranteed best-in-class performance
 - Best possible processing algorithms
 - Support for multiple applications
 - Price/performance advantage over other platforms

Fairlight's Original System

Fairlight's QDC Board

Fairlight's New System

FPGA Value Proposition to Fairlight

Performance

- 8.6 GFLOPs per card
- Price
 - One Stratix device replaced 64 Analog Devices DSP processors
- Power
 - 600 watts reduced to 8 watts = 98% reduction in power and heat

Integration

- CC-1 replaces 8 boards of 64x40-bit floating point DSP devices at ~2% of cost
- 8 RU of electronics replaced by pocket-sized processing module

CY5 What does the RU stand for? Should be spelled out Christine Young, 6/1/2007

CY6 Probably don't need this slide, since there is only one summary slide after this one Christine Young, 6/1/2007

Summary

Performance

- Parallelism offering 100s of GMACS
- Price
 - >10x the performance/price ratio of a DSP processor
 - Huge DSP performance from \$4 (Cyclone[®] III)
- Power
 - Power/channel or per function is an order of magnitude better than DSP devices
- Scalability
 - Scalability/vertical migration within a footprint lowers risks
- Integration

