
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Video and Image Processing Suite

User Guide

Suite Version: 7.1
Document Date May 2007

http://www.altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

UG-VIPSUITE-4.0

Altera Corporation
May 2007
Contents
About This User Guide
Revision History ... vii
How to Contact Altera ... vii
Typographic Conventions .. viii

Chapter 1. About This MegaCore Function Suite
Release Information ... 1–1
Device Family Support ... 1–2
Features ... 1–2
General Description ... 1–3

Color Space Converter ... 1–3
Chroma Resampler .. 1–3
Gamma Corrector ... 1–3
2D FIR Filter .. 1–3
2D Median Filter ... 1–4
Alpha Blending Mixer ... 1–4
Scaler .. 1–4
Deinterlacer ... 1–4
Line Buffer Compiler ... 1–4
Example Design .. 1–4
DSP Builder Support .. 1–5
OpenCore Plus Evaluation .. 1–5

Performance .. 1–6
Color Space Converter ... 1–6
Chroma Resampler .. 1–7
Gamma Corrector ... 1–7
2D FIR Filter .. 1–8
2D Median Filter ... 1–9
Alpha Blending Mixer ... 1–9
Scaler .. 1–10
Deinterlacer ... 1–11
Line Buffer Compiler ... 1–11

Chapter 2. Getting Started
Design Flow .. 2–1
Video and Image Processing Suite Tutorial ... 2–2

Create a New Quartus II Project .. 2–3
Launch the MegaWizard Plug-In Manager .. 2–4
Parameterize ... 2–6

Color Space Converter ... 2–6
Chroma Resampler ... 2–10
Suite Version 7.1 iii
 Video and Image Processing Suite User Guide

Contents
Gamma Corrector ... 2–12
2D FIR Filter ... 2–13
2D Median Filter ... 2–18
Alpha Blending Mixer .. 2–19
Scaler ... 2–20
Deinterlacer .. 2–25
Line Buffer Compiler .. 2–27

Set Up Simulation ... 2–28
Generate Files .. 2–29

Simulate the Design ... 2–32
Compile the Design ... 2–33
Program a Device .. 2–33
Set Up Licensing .. 2–33

Chapter 3. Interfaces
Interface Types ... 3–1
Avalon-ST Interfaces ... 3–1

Examples .. 3–3
Data Transfer in Parallel .. 3–3
Data Transfer in Sequence ... 3–6

Image Streaming Protocol Specification ... 3–8
Parameters of the Image Streaming Protocol ... 3–8
Specification of the Type of Avalon Streaming Interfaces Used .. 3–9
Rules of the Image Streaming Protocol .. 3–9

Avalon-MM Slave Interfaces .. 3–13
Specification of the Type of Avalon-MM Slave Interfaces Used ... 3–15

Avalon-MM Master Interfaces ... 3–15
Specification of the Type of Avalon-MM Master Interfaces Used .. 3–16

Chapter 4. Specifications
Functional Description .. 4–1

Color Space Converter ... 4–1
Input and Output Data Types ... 4–1
Color Space Conversion ... 4–2
Constant Precision .. 4–3
Calculation Precision .. 4–3
Result to Output Data Type Conversion ... 4–3

Chroma Resampler .. 4–5
Gamma Corrector ... 4–8
2D FIR Filter .. 4–9

Calculation Precision .. 4–10
Coefficient Precision ... 4–10
Scaling of the Result ... 4–10
Data Type Conversion for Output ... 4–10

2D Median Filter ... 4–11
Alpha Blending Mixer ... 4–12
Scaler .. 4–13
iv Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Contents
Nearest Neighbor Algorithm .. 4–14
Bilinear Algorithm .. 4–15
Polyphase and Bicubic Algorithms .. 4–16

Deinterlacer ... 4–23
Deinterlacing Methods ... 4–23
Output Frame Rate ... 4–23
Triple Buffering ... 4–23

Line Buffer Compiler ... 4–24
Stall Behavior .. 4–26

Color Space Converter ... 4–27
Chroma Resampler .. 4–27
Gamma Corrector ... 4–27
2D FIR Filter .. 4–28
2D Median Filter ... 4–28
Alpha Blending Mixer ... 4–28
Scaler .. 4–28
Deinterlacer ... 4–29

OpenCore Plus Time-Out Behavior .. 4–30
Parameters .. 4–30

Color Space Converter ... 4–30
Chroma Resampler .. 4–33
Gamma Corrector ... 4–33
2D FIR Filter .. 4–34
2D Median Filter ... 4–36
Alpha Blending Mixer ... 4–37
Scaler .. 4–39
Deinterlacer ... 4–42
Line Buffer Compiler ... 4–42

Signals ... 4–43
Color Space Converter ... 4–43
Chroma Resampler .. 4–43
Gamma Corrector ... 4–44
2D FIR Filter .. 4–45
2D Median Filter ... 4–46
Alpha Blending Mixer ... 4–47
Scaler .. 4–48
Deinterlacer ... 4–49
Line Buffer Compiler ... 4–51

MegaCore Verification .. 4–51
References ... 4–51
Altera Corporation Suite Version 7.1 v
May 2007 Video and Image Processing Suite User Guide

Contents
vi Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Altera Corporation
May 2007
About This User Guide
Revision History The following table displays the revision history for this User Guide.

How to Contact
Altera

For the most up-to-date information about Altera® products, refer to the
following table.

Date Version Changes Made

May 2007 7.1 ● Updated tutorial and functional description for enhancements to the Scaler
● Updated tutorial for enhancements to the Color Space Converter
● Updated tutorial and functional description for arbitrary assignment of bit

depths and resolutions enhancement to all MegaCore functions
● Updated Interfaces chapter for enhancements to the run-time control facilities
● Added Arria™ GX support

December 2006 7.0 Added Cyclone® III support.

December 2006 6.1 ● Added support for Stratix® III devices
● Added new Interfaces chapter
● Updated MegaWizard® Plug-In Manager interface
● Updated functional description for the Scaler MegaCore® function
● Updated functional description for the 2D FIR MegaCore Function
● Replaced walkthrough with new tutorial procedures

April 2006 1.0 First revision of this user guide

Information Type Contact Note (1)

Technical support www.altera.com/mysupport/

Product literature www.altera.com

Altera literature services literature@altera.com

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.
Suite Version 7.1 vii
 Video and Image Processing Suite User Guide

http://www.altera.com/mysupport/
http://www.altera.com
mailto:literature@altera.com
ftp://ftp.altera.com

Typographic Conventions
Typographic
Conventions

This document uses the typographic conventions shown in the following
table.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN
75: High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c The caution calls attention to a condition that could damage the product or design
and should be read prior to starting or continuing with the procedure or process.

w The warning calls attention to a condition that could cause injury to the user and
should be read prior to starting or continuing the procedure or processes.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
viii Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Altera Corporation
May 2007
1. About This MegaCore
Function Suite
Release
Information

The Altera® Video and Image Processing Suite includes the following
MegaCore® functions:

■ Color Space Converter
■ Chroma Resampler
■ Gamma Corrector
■ 2D FIR Filter
■ 2D Median Filter
■ Alpha Blending Mixer
■ Scaler
■ Deinterlacer
■ Line Buffer Compiler

Table 1–1 provides information about this release of the Video and Image
Processing Suite MegaCore® functions.

Table 1–1. Video and Image Processing Suite Release Information

Item Description

Version 7.1 (All MegaCore functions)

Release Date May 2007

Ordering Code IPS-VIDEO (Video and Image Processing Suite)

Product IDs 0003 (Color Space Converter)
00B1 (Chroma Resampler)
00B2 (Gamma Corrector)
00B3 (2D FIR Filter)
00B4 (2D Median Filter)
00B5 (Alpha Blending Mixer)
00B6 (Deinterlacer)
00B7 (Scaler)
00B8 (Line Buffer Compiler)

Vendor ID(s) 6AF7
Suite Version 7.1 1–1
 Video and Image Processing Suite User Guide

Device Family Support
Device Family
Support

MegaCore functions provide either full or preliminary support for target
Altera device families, as described below:

■ Full support means the MegaCore function meets all functional and
timing requirements for the device family and may be used in
production designs.

■ Preliminary support means the MegaCore function meets all
functional requirements, but may still be undergoing timing analysis
for the device family; it may be used in production designs with
caution.

Table 1–2 shows the level of support offered by the Video and Image
Processing Suite MegaCore functions to each Altera device family.

Features ■ All the MegaCore functions in the Video and Image Processing Suite
can be connected using a common Avalon® Streaming interface and
image streaming protocol.

■ Avalon Memory-Mapped interfaces are used for run-time control
input and connections to external memory blocks.

■ Easy-to-use MegaWizard® interface for parameterization and
hardware generation.

■ IP functional simulation models for use in Altera-supported VHDL
and Verilog HDL simulators.

■ Support for OpenCore Plus evaluation.
■ DSP Builder ready.

Table 1–2. Device Family Support

Device Family Support

Arria™ GX Preliminary

Cyclone® II Full

Cyclone III Preliminary

HardCopy® II Full

Stratix® Full

Stratix II Full

Stratix II GX Full

Stratix III Preliminary

Stratix GX Full

Other device families No support
1–2 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

About This MegaCore Function Suite
General
Description

The Altera Video and Image Processing Suite is a collection of MegaCore
functions that can be used to facilitate the development of customer video
and image processing designs.

The MegaCore functions are suitable for use in a wide variety of image
processing and display applications.

Color Space Converter

The Color Space Converter MegaCore function transforms video data
between color spaces. These color spaces allow you to specify colors
using three coordinate values. The color space converter supports some
pre-defined conversions between standard color spaces, and allows the
entry of custom coefficients to translate between any two three-valued
color spaces.

Chroma Resampler

The Chroma Resampler MegaCore function resamples video data to and
from common sampling formats. The human eye is more sensitive to
brightness than it is to tone. Using this fact, video transmitted in the
Y’CbCr color space often subsamples the color components (Cb and Cr)
to save on data bandwidth. The specification of how this subsampling is
done provides a sampling format. These sampling formats are part of the
MPEG-1, MPEG-2, H.261 and other standards.

Gamma Corrector

The Gamma Corrector MegaCore function allows video streams to be
corrected for the physical properties of display devices. For example, the
brightness displayed by a cathode-ray tube monitor has a non-linear
response to the voltage of a video signal. To account for this, the Gamma
Corrector MegaCore function can be programmed with a look-up-table
that models the non-linear function which it then uses to transform the
video data and get the best image on the display.

2D FIR Filter

The 2D FIR Filter MegaCore function performs 2D convolution using
matrices of 3×3, 5×5, or 7×7 coefficients. The MegaCore function retains
full precision throughout the calculation while making efficient use of
FPGA resources. With suitable coefficients, the MegaCore function can
perform operations such as sharpening, smoothing and edge detection.
Altera Corporation Suite Version 7.1 1–3
May 2007 Video and Image Processing Suite User Guide

General Description
2D Median Filter

The 2D Median Filter MegaCore function provides a means to apply 3×3,
5×5 or 7×7 pixel median filters to video images. Median filtering can be
used to remove speckle noise and salt-and-pepper noise while preserving
the sharpness of edges in video images.

Alpha Blending Mixer

The Alpha Blending Mixer MegaCore function can mix together up to
eight image layers. The function supports both picture-in-picture mixing
and image blending.

Scaler

The Scaler MegaCore function provides a means to resize and/or clip
video streams. The MegaCore function supports nearest neighbor,
bilinear, bicubic, and polyphase scaling algorithms. It can be configured
to change resolutions and/or filter coefficients at runtime using an
Avalon Memory-Mapped (Avalon-MM) Slave interface.

Deinterlacer

The Deinterlacer MegaCore function converts interlaced video to
progressive video using either "Bob" or "Weave" algorithms. Interlaced
video is commonly used in television standards such as phase alternation
line (PAL) and national television system committee (NTSC), but
progressive video is required by LCD displays and is often more useful
for subsequent image processing functions.

Line Buffer Compiler

The Line Buffer Compiler MegaCore function can be used to efficiently
map video line buffers to Altera on-chip memories.

1 The Line Buffer Compiler MegaCore function is not available in
DSP Builder.

Example Design

An example design is available that illustrates the cost, performance, and
quality capabilities of Video and Image Processing MegaCore functions
in the Altera design flow.

f For more information about this example design, refer to AN427: Video
and Image Processing Up Conversion Example Design.
1–4 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

http://www.altera.com/literature/an/an427.pdf
http://www.altera.com/literature/an/an427.pdf

About This MegaCore Function Suite
DSP Builder Support

Altera’s DSP Builder product shortens digital signal processing (DSP)
design cycles by helping you create the hardware representation of a DSP
design in an algorithm-friendly development environment.

DSP Builder integrates the algorithm development, simulation, and
verification capabilities of The MathWorks MATLAB® and Simulink®
system-level design tools with Altera Quartus® II software and third-
party synthesis and simulation tools. You can combine existing Simulink
blocks with Altera DSP Builder MegaCore function variation blocks to
verify system level specifications and perform simulation.

After installing any of the Video and Image Processing Suite MegaCore
functions, a Simulink symbol for the MegaCore function appears in the
Simulink library browser. The MegaCore functions are available from the
Altera DSP Builder blockset in the Video and Image Processing library.

1 The Line Buffer Compiler MegaCore function is not supported
in DSP Builder.

DSP Builder also supports integration with SOPC Builder using Avalon®

Memory-Mapped (Avalon-MM) master/slave and Avalon Streaming
(Avalon-ST) source/sink interfaces. The Video and Image Processing
Suite MegaCore functions have built-in Avalon-MM and Avalon-ST
interfaces that allow you to manually insert hardware boundary blocks to
define the contents of an SOPC Builder class.ptf file.

f For information on DSP Builder, refer to the DSP Builder User Guide and
DSP Builder Reference Manual. For information about SOPC Builder, refer
to volume 4 of the Quartus II Handbook. Refer to the Avalon Streaming
Interface Specification and the Avalon Memory-Mapped Interface Specification
for more information about these interface types.

OpenCore Plus Evaluation

With Altera’s free OpenCore Plus evaluation feature, you can perform the
following actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function
or AMPPSM megafunction) within your system

■ Verify the functionality of your design, as well as quickly and easily
evaluate its size and speed

■ Generate time-limited device programming files for designs that
include MegaCore functions

■ Program a device and verify your design in hardware
Altera Corporation Suite Version 7.1 1–5
May 2007 Video and Image Processing Suite User Guide

http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_dsp_builder.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp

Performance
You only need to purchase a license for the MegaCore function when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

f For more information on OpenCore Plus hardware evaluation using
MegaCore functions, see “OpenCore Plus Time-Out Behavior” on
page 4–30 and AN 320: OpenCore Plus Evaluation of Megafunctions.

Performance This section shows typical expected performance for the Video and Image
Processing Suite MegaCore functions when using the Quartus II software
version 7.1.

1 Cyclone III devices use logic elements; Stratix III devices use
combinational adaptive look-up tables (ALUTs) and logic
registers.

Color Space Converter

Table 1–3 shows the performance figures for the Color Space Converter.

Table 1–3. Color Space Converter Performance

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX
(MHz)(9x9) (18x18)

Converting 1024×768 14-bit Y’UV to Computer R’G’B’ using 18-bit coefficients and 15-bit summands.
14_1024x768_18c_YUV2cRGB

Cyclone III 662 — — 6 — — 193

Stratix III — 296 535 — 6 — 304

Converting 1,080 pixel 10-bit Studio R’G’B’ to HDTV Y’CbCr using 18-bit coefficients and 27-bit summands.
10b_1920x1080_sRGB2HDYcc_18b

Cyclone III 559 — — 6 — — 193

Stratix III — 316 510 — 6 — 314

Converting 720×576 8-bit Computer R’G’B’ to Y’UV using 9-bit coefficients and 8-bit summands.
8bit_720x576_cRGBtoYUV_9bit

Cyclone III 408 — — 3 — — 193

Stratix III — 216 353 — 3 — 322

Converting 640×480 8-bit SDTV Y’CbCr to Computer R’G’B’ using 9-bit coefficients and 16-bit summands, color
planes in parallel. csc_8b_640x480_SDYcc2cRGB_9bit_p

Cyclone III 758 — — 9 — — 243

Stratix III — 351 536 — 9 — 383
1–6 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

http://www.altera.com/literature/an/an320.pdf

About This MegaCore Function Suite
Chroma Resampler

Table 1–4 shows the performance figures for the Chroma Resampler.

Gamma Corrector

Table 1–5 shows the performance figures for the Gamma Corrector.

Table 1–4. Chroma Resampler Performance

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX (MHz)
(9x9) (18x18)

Downsampling to 4:2:2 using linear interpolation, working on 64×64 frames with 8-bit data.

Cyclone III 163 — — — — — 293

Stratix III — 79 140 — — — 517

Downsampling to 4:2:0 using linear horizontal interpolation, and no vertical interpolation. Video frames are
256×256 with 10-bit data.

Cyclone III 299 — — — — 2 257

Stratix III — 154 211 — — 2 398

Upsampling from 4:2:2 using linear interpolation, working on 1,080 pixel frames with 12-bit data.

Cyclone III 379 — — — — — 241

Stratix III — 194 309 — — — 400

Upsampling from 4:2:0 using no interpolation. Video frames are 352×288 with 10-bit data.

Cyclone III 304 — — — — 3 253

Stratix III — 176 194 — — 3 390

Table 1–5. Gamma Corrector Performance (Part 1 of 2)

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Gamma correcting 64×64 three color 8-bit data.

Cyclone III 132 — — — — 1 259

Stratix III — 79 98 — — 1 496

Gamma correcting 720×576 one color 10-bit data.

Cyclone III 152 — — — — 3 259

Stratix III — 91 116 — — 3 490
Altera Corporation Suite Version 7.1 1–7
May 2007 Video and Image Processing Suite User Guide

Performance
2D FIR Filter

Table 1–6 shows the performance figures for the 2D FIR Filter.

Gamma correcting 128×128 three color 8-bit data.

Cyclone III 134 — — — — 1 259

Stratix III — 82 101 — — 1 517

Gamma correcting 1,080 pixel one color 10-bit data.

Cyclone III 154 — — — — 3 259

Stratix III — 91 117 — — 3 472

Table 1–5. Gamma Corrector Performance (Part 2 of 2)

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Table 1–6. 2D FIR Filter Performance

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Smoothing 3×3 symmetric filter, working on 640×480 8-bit R’G’B’, using 9 bit coefficients.

Cyclone III 985 — — 6 — 4 230

Stratix III — 613 691 — 4 4 351

Edge detecting 3×3 asymmetric filter, working on 352×288 8-bit R’G’B’, using 3 bit coefficients

Cyclone III 1,036 — — 9 — 4 224

Stratix III — 601 630 — 9 4 354

Sharpening 5×5 symmetric filter, working on 640×480 in 8-bit R’G’B’, using 9 bit coefficients.

Cyclone III 1,824 — — 12 — 8 210

Stratix III — 1,037 1,249 — 8 8 336

Smoothing 7×7 symmetric filter, working on 1,280×720 in 10-bit R’G’B’, using 15 bit coefficients

Cyclone III 3,712 — — 20 — 30 182

Stratix III — 1,999 2,704 — 20 30 317
1–8 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

About This MegaCore Function Suite
2D Median Filter

Table 1–7 shows the performance figures for the 2D Median Filter.

Alpha Blending Mixer

Table 1–8 shows the performance figures for the Alpha Blending Mixer.

Table 1–7. 2D Median Filter Performance

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Median filtering 64×64 pixel R’G’B frames using a 3×3 kernel of pixels.

Cyclone III 1,520 — — — — 2 228

Stratix III — 804 1,056 — — 2 343

3×3 median filtering HDTV 720 pixel monochrome video.

Cyclone III 1,613 — — — — 6 216

Stratix III — 867 1,132 — — 6 319

Median filtering 352×288 pixel two color frames using a 5×5 kernel of pixels.

Cyclone III 5,442 — — — — 8 186

Stratix III — 2,486 3,699 — — 8 276

7×7 median filtering 352×288 pixel monochrome video.

Cyclone III 10,979 — — — — 6 175

Stratix III — 4,741 7,200 — — 6 255

Table 1–8. Alpha Blending Mixer Performance (Part 1 of 2)

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Drawing a 64×64 pixel picture-in-picture window over the top of a 128×128 pixel background image in 8-bit
R’G’B’ color.

Cyclone III 380 — — — — 1 214

Stratix III — 237 287 — — 1 346

Rendering two 64×64 pixel images over 352×240 pixel background 8-bit R’G’B’ video.

Cyclone III 579 — — — — 1 224

Stratix III — 348 448 — — 1 346
Altera Corporation Suite Version 7.1 1–9
May 2007 Video and Image Processing Suite User Guide

Performance
Scaler

Table 1–9 shows the performance figures for the Scaler.

Alpha blending an on-screen display within a 176×120 pixel region of 1,024×768 pixel 10-bit Y’CbCr 4:4:4 video.
Alpha blending is performed using 16 levels of opacity from fully opaque to fully translucent.

Cyclone III 637 — — 4 — 1 210

Stratix III — 327 450 — 4 1 324

Using alpha blending to composite three layers over the top of PAL resolution background video in 8-bit
monochrome. Alpha blending is performed using 256 levels of opacity from fully opaque to fully translucent.

Cyclone III 1,640 — — 12 — 1 182

Stratix III — 669 1,246 — 12 1 284

Table 1–8. Alpha Blending Mixer Performance (Part 2 of 2)

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Table 1–9. Scaler Performance

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Scaling 640×480, 8-bit, three color data up to 1,024×768 with linear interpolation. This could be used to convert
VGA to VESA 1024×768.

Cyclone III 4,061 — — 4 — 6 203

Stratix III — 422 470 — 4 6 366

Scaling RGB Quarter common intermediate format (QCIF) to common intermediate format (CIF) with no
interpolation.

Cyclone III 390 — — — — 3 235

Stratix III — 186 190 — — 3 414

Scaling NTSC standard definition (720x480) RGB to high definition 1080p using a bicubic algorithm.

Cyclone III 1,040 — — — — 3 248

Stratix III — 792 943 — 8 12 314

Scaling up or down between NTSC standard definition and 1080 pixel high definition using 10 taps horizontally
and 9 vertically. Resolution and coefficients are set by a runtime control interface.

Cyclone III 3,408 — — 19 — — 176

Stratix III — 1,754 2,321 — 19 62 286
1–10 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

About This MegaCore Function Suite
Deinterlacer

Table 1–10 shows the performance figures for the Deinterlacer.

Line Buffer Compiler

Table 1–11 shows the performance figures for the Line Buffer Compiler.

Table 1–10. Deinterlacer Performance

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Deinterlacing 64×64 pixel 8-bit R’G’B’ frames using Bob with scanline duplication.

Cyclone III 179 — — — — 1 259

Stratix III — 119 145 — — 1 475

Bob deinterlacing with scanline interpolation working on 352×288 pixel 12-bit Y’CbCr 4:2:2 frames.

Cyclone III 348 — — — — 2 259

Stratix III — 254 273 — — 2 456

Deinterlacing HDTV 1080i resolution with 12-bit Y’CbCr 4:4:4 color using the Weave algorithm.

Cyclone III 1,309 — — — — 6 165

Stratix III — 982 1,003 — — 6 247

Bob deinterlacing with scanline interpolation working on 176×144 pixel 12-bit monochrome video.

Cyclone III 324 — — — — 1 259

Stratix III — 221 254 — — 1 471

Table 1–11. Line Buffer Compiler Performance (Part 1 of 2)

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)

Three 8-bit wide 64 pixel lines.

Cyclone III 23 — — — — 1 259

Stratix III — 21 22 — — 1 599

Two 8-bit wide 720 pixel lines. This configuration would be appropriate for 8-bit PAL line buffering.

Cyclone III 37 — — — — 4 259

Stratix III — 40 30 — — 4 599

Four 10-bit wide 1,280 pixel lines. This parameterization might be used for 10-bit HDTV 720 pixel line buffering.

Cyclone III 35 — — — — 12 259

Stratix III — 37 31 — — 12 582
Altera Corporation Suite Version 7.1 1–11
May 2007 Video and Image Processing Suite User Guide

Performance
Two 10-bit wide 1,920 pixel lines. This configuration could be used in an HDTV 1080i system.

Cyclone III 33 — — — — 9 259

Stratix III — 34 31 — — 12 582

Table 1–11. Line Buffer Compiler Performance (Part 2 of 2)

Device
Family

Logic
Elements

Combinational
ALUTs

Logic
Registers

DSP Blocks Memory
M9K

fMAX

(MHz)(9x9) (18x18)
1–12 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Altera Corporation
May 2007
2. Getting Started
Design Flow To evaluate a Video and Image Processing Suite MegaCore® function
using the OpenCore Plus feature, include these steps in your design flow:

1. Obtain and install the MegaCore function.

The Video and Image Processing Suite is part of the MegaCore IP Library,
which is distributed with the Quartus® II software and downloadable
from the Altera website: www.altera.com

f For system requirements and install instructions, refer to the Quartus II
Installation & Licensing for Windows manual or the Quartus II Installation &
Licensing for UNIX and Linux manual on the Altera Literature website.

Figure 2–1 shows the directory structure for a typical Video and Image
Processing Suite MegaCore function where <path> is the installation
directory. The default installation directory on Windows is c:\altera\71;
or on UNIX and Linux, the default installation directory is /opt/altera/71.

Figure 2–1. Directory Structure

2. Create a custom variation of the MegaCore function.

3. Implement the rest of your design using the design entry method of
your choice.

4. Use the IP functional simulation model to verify the operation of
your design.

 common
 Contains shared components.

 <product>
 Contains the <product> MegaCore function files and documentation.

 doc
 Contains the documentation for the MegaCore function.

 lib
 Contains encrypted lower-level design files and other support files.

<path>
Installation directory

 ip
 Contains the MegaCore IP Library
Suite Version 7.1 2–1
 Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf
http://www.altera.com/literature/lit-index.jsp

Video and Image Processing Suite Tutorial
f For more information on IP functional simulation models, refer to the
Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Handbook.

5. Use the Quartus II software to compile your design.

6. Generate an OpenCore Plus time-limited programming file, which
you can use to verify the operation of your design in hardware on
the Altera® DSP development board.

7. Program the Altera device or devices with the completed design.

8. Perform design verification.

9. Purchase a license for the MegaCore function.

After you have purchased a license for the MegaCore function, the design
flow requires the following additional steps:

1. Set up licensing.

2. Generate a programming file for the Altera® device or devices on
your board.

3. Program the Altera device or devices with the completed design.

Video and Image
Processing Suite
Tutorial

This tutorial explains how to create a Video and Image Processing Suite
MegaCore function variation using the Altera MegaWizard® Plug-In
Manager and the Quartus II software. When you have finished
generating a MegaCore function variation, you can incorporate it into
your overall project.

1 The MegaWizard interface only allows you to select legal
combinations of parameters, and warns you of any invalid
configurations.

This tutorial involves the following steps:

■ Create a New Quartus II Project
■ Launch the MegaWizard Plug-In Manager
■ Parameterize
■ Set Up Simulation
■ Generate Files
2–2 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

http://www.altera.com/literature/quartus2/lit-qts-verification.jsp

Getting Started
Create a New Quartus II Project

You need to create a new Quartus II project with the New Project Wizard,
which specifies the working directory for the project, assigns the project
name, and designates the name of the top-level design entity.

To create a new project, follow these steps:

1. Choose Programs > Altera > Quartus II <version> (Windows Start
menu) to run the Quartus II software. Alternatively, you can use the
Quartus II Web Edition software.

2. Choose New Project Wizard (File menu).

3. Click Next in the New Project Wizard Introduction page (this page
does not display if you turned it off previously).

4. In the New Project Wizard: Directory, Name, Top-Level Entity
page, enter the following information:

a. Specify the working directory for your project. For example,
this tutorial uses the d:\mydesigns\vip directory.

b. Specify the name of the project. This tutorial uses example for
the project name.

1 The Quartus II software automatically specifies a top-level
design entity that has the same name as the project. This
tutorial assumes that the names are the same.

5. Click Next to close this page and display the New Project Wizard:
Add Files page.

1 When you specify a directory that does not already exist, a
message asks you if the specified directory should be
created. Click Yes to create the directory.

6. If you installed the MegaCore IP Library in a different directory
from where you installed the Quartus II software, you must add the
user library:

a. Click User Libraries.

b. Type <path>\ip in the Library name box, where <path> is the
directory in which you installed the MegaCore IP library.

c. Click Add to add the path to the Quartus II project.
Altera Corporation Suite Version 7.1 2–3
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
d. Click OK to save the library path in the project.

7. Click Next to close this page and display the New Project Wizard:
Family & Device Settings page.

8. On the New Project Wizard: Family & Device Settings page,
choose the target device family in the Family list. For example,
Stratix III.

9. The remaining pages in the New Project Wizard are optional. Click
Finish to complete the Quartus II project.

You have finished creating your new Quartus II project.

Launch the MegaWizard Plug-In Manager

To launch the MegaWizard Plug-In Manager in the Quartus II software,
follow these steps:

1. Start the MegaWizard Plug-In Manager by choosing MegaWizard
Plug-In Manager (Tools menu). The MegaWizard Plug-In Manager
dialog box is displayed (Figure 2–2).

1 Refer to the Quartus II Help for more information on how
to use the MegaWizard Plug-In Manager.

Figure 2–2. MegaWizard Plug-In Manager

2. Specify that you want to create a new custom megafunction
variation and click Next.
2–4 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
3. Expand the DSP directory under Installed Plug-Ins by clicking the
+ icon next to the name.

4. Expand the Video and Image Processing folder and select
<function><version> for the required MegaCore function in this
directory.

5. Check that the device family is the same as you specified in the New
Project Wizard.

6. Choose the top-level output file type for your design; the
MegaWizard interface supports VHDL, and Verilog HDL.

7. The MegaWizard Plug-In Manager shows the project path that you
specified in the New Project Wizard. Append a variation name for
the MegaCore function output files <project path>\<variation name>.

Figure 2–3 shows the MegaWizard interface after you have made
these settings.

Figure 2–3. Select the MegaCore Function
Altera Corporation Suite Version 7.1 2–5
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
8. Click Next to display the Parameter Settings page for the selected
MegaCore function.

1 You can change the page that is displayed by clicking Next
or Back. You can move directly to a named page by clicking
Parameter Settings, Simulation Model, Summary, or the
name of an individual parameter setting page.

Parameterize

To parameterize your Video and Image Processing Suite MegaCore
function follow the steps in the following sections:

■ “Color Space Converter” on page 2–6
■ “Chroma Resampler” on page 2–10
■ “Gamma Corrector” on page 2–12
■ “2D FIR Filter” on page 2–13
■ “2D Median Filter” on page 2–18
■ “Alpha Blending Mixer” on page 2–19
■ “Scaler” on page 2–20
■ “Deinterlacer” on page 2–25
■ “Line Buffer Compiler” on page 2–27

The parameters available depend on the MegaCore function you have
selected.

Color Space Converter

A typical application for a Color Space Converter would be to convert
Y'CbCr standard definition television images to R'G'B' for display on a
computer monitor. To configure the MegaCore function to perform this
function, follow these steps:

1. Set the image format in the Parameter Settings: General page (see
Figure 2–4 on page 2–7) by choosing the image width and height:

● Image width: 720
● Image height: 576

This is the resolution of Phase Alternation Line (PAL) video, a
common standard definition television format.

2. Set the color plane configuration to Three color planes in sequence.

This assumes the core will be receiving data channels in sequence,
not parallel.
2–6 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
Figure 2–4. General Parameter Settings for the Color Space Converter

3. Set the input data type:

● Bits per pixel per color plane: 8 Bits
● Data type: Unsigned
● Guard bands: On
● Max: 240
● Min: 16

This assumes that the core will never receive data in the guard bands,
in this case between 241 to 255 and from 0 to 15.
Altera Corporation Suite Version 7.1 2–7
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
4. Set the output data type:

● Bits per pixel per color plane: 8 Bits
● Data type: Unsigned
● Guard bands: Off

The guard bands option is turned off because the full output range of
0 to 255 is required.

f See Table 4–10 on page 4–30 for more information about the options on
the Color Space Converter Parameter Settings: General page.

5. Click Next to display the Parameter Settings: Operands page
(Figure 2–5).

Figure 2–5. Coefficients Parameter Settings for the Color Space Converter
2–8 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
6. Choose Y'CbCr: SDTV to Computer R'G'B' from the list of
predefined color model conversion options.

Notice that the coefficient values are updated to preset values.
Editing these values would cause the color model conversion option
to change to Custom.

7. Set the precision for coefficients and summands:

● Coefficients Signed: On
● Coefficients Integer bits: 2
● Summands Signed: On
● Summands Integer bits: 9
● Coefficient and summand fraction bits: 7

Notice how the actual constants (purple cells) change: Turning on
signed, allows negative values; increasing integer bits, increases the
magnitude range; increasing the fraction bits, increases the precision.

f See Table 4–11 on page 4–32 for more information about the options on
the Color Space Converter Parameter Settings: Operands page.

8. Click Back to re-display the Parameter Settings: General page.

Notice that after changing the coefficients, the ranges shown in the
Result-Output Data Type Conversion section have changed.

9. Set the Multiply results by option to 1

10. Change the Remove fraction bits by option to Round values to
nearest integer.

Notice that the “scaled integer results” no longer have a fractional
part.

11. Set the Convert from signed to unsigned by option to Replacing
negative values with zero.

Notice that the “scaled, integer, sign converted results" no longer
include negative values.

12. Set the Constrain to output range by option to Saturating to
min and max values.

Notice that the label shows the result range prior to constraining, it
also shows the output type has a range smaller than this. Therefore
the results must be constrained to this range.
Altera Corporation Suite Version 7.1 2–9
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
Figure 2–6 shows the updated Result-Output Data Type Conversion
section in the Parameter Settings: General page.

Figure 2–6. Updated General Parameter Settings for the Color Space Converter

If a set of custom coefficient is required, these can be typed into the
white cells in the tables on the Parameter Settings: Operands page.

1 Custom coefficients can also be pasted into the table from a
spreadsheet (such as Microsoft Excel). Blank lines must be left in
your input data for the non editable cells.

13. Click Next twice to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).

Chroma Resampler

To configure your Chroma Resampler to upsample a high-definition 4:2:2
video stream, follow these steps:

1. Set the image data format in the Parameter Settings page (see
Figure 2–7 on page 2–11) by choosing the image resolution and the
number of bits per pixel per color plane:

● Image width: 1920
● Image height: 1080
● Bits per pixel per color plane: 8
2–10 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
1 The color plane configuration is always set to Three
planes in sequence for this MegaCore function.

Figure 2–7. Parameter Settings for the Chroma Resampler

2. Set the following conversion format and interpolation behavior:

● Conversion format: 4:2:2 to 4:4:4
● Horizontal interpolation: Linear

Notice that the Vertical interpolation control is disabled
when the format conversion does not involve 4:2:0.

f See Table 4–12 on page 4–33 for more information about the options on
the Chroma Resampler Parameter Settings page.

3. Click Next to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).
Altera Corporation Suite Version 7.1 2–11
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
Gamma Corrector

To configure your Gamma Corrector to correct a 704x480 monochrome
video stream for the properties of a display device, follow these steps:

1. Set the image data format in the Parameter Settings page (see
Figure 2–8) by choosing the image resolution, the number of bits per
pixel per color plane, and the number of color planes that are
received and transmitted in sequence:

● Image width: 704
● Image height: 480
● Bits per pixel per color plane: 8
● Number of color planes in sequence: 1

1 The actual gamma corrected intensity values are programmed at
run time using the Avalon slave interface.

f See Table 4–13 on page 4–33 for more information about the options on
the Gamma Corrector Parameter Settings page.

Figure 2–8. Parameter Settings for the Gamma Corrector

2. Click Next to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).
2–12 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
2D FIR Filter

A typical application of the 2D FIR Filter is to apply sharpening to a
standard definition television picture converted to R’G’B’. To configure
the 2D FIR to perform this operation follow these steps

1. Set the image width to 720 and the image height to 576 in the
Parameter Settings: General page (see Figure 2–9). This is the
resolution of PAL video, a common standard definition television
format.

Figure 2–9. General Parameter Settings for the 2D FIR Filter
Altera Corporation Suite Version 7.1 2–13
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
2. Set the number of color planes that are received and transmitted in
sequence to be 3.

3. Set input options for the number of bits per pixel per color plane,
unsigned or signed 2’s complement data type, and the maximum
and minimum values for the input guard bands:

● Bits per pixel per color plane: 8
● Data type: Unsigned
● Guard bands: Off

1 Turning the guard bands option off assumes that the entire
8-bit input range is used for video data. That is, the
minimum value is 0 and the maximum value is 255.

4. Set output options for the number of bits per pixel per color plane,
unsigned or signed 2’s complement data type, and the maximum
and minimum values for the output guard bands:

● Bits per pixel per color plane: 8
● Data type: Unsigned
● Guard bands: Off

1 When the guard bands option is turned off, the entire
output range is allowed for video data.

The Precision section displays three lines of information about the
configuration of the 2D FIR Filter that you have specified:

● The first line describes the data type of the FIR calculation result
before any output type conversion.

● The second line gives the data range of the FIR calculation result
before any output type conversion.

● The third line describes the output type, and states how any
potential underflow or overflow on the output of the FIR filter is
handled.

5. Choose the Precision option to discard fractional bits by choosing
Round values to nearest integer.

f See Table 4–15 on page 4–34 for more information about the options on
the 2D FIR Filter Parameter Settings: General page.

6. Click Next to display the Parameter Settings: Coefficients page
(Figure 2–10 on page 2–15).
2–14 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
Figure 2–10. Coefficients Parameter Settings for the 2D FIR Filter

7. Choose a filter size of 3×3.

Notice that the size of the coefficient grid changes to match the filter
size when this option is changed.

8. Choose Simple Smoothing from the drop-down list of predefined
coefficient sets.

Notice that the values in the coefficient grid change when you choose
a different coefficient set.
Altera Corporation Suite Version 7.1 2–15
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
The kernel is represented by a grid matrix where each coefficient is
represented by two boxes. The white box contains the desired value,
and the purple box shows the actual value for the current coefficient
precision.

9. Turn on Enable symmetric mode.

Notice that when symmetric mode is set, a limited number of matrix
cells are editable and many of the values are automatically inferred.
For example in Figure 2–10, values need only be edited in the three
white cells. These values are automatically updated symmetrically in
the remaining cells to complete the 3×3 matrix. A corresponding
optimization reduces the number of multiplications that need to be
performed in the hardware.

If you are setting custom coefficients, you can disable symmetric
mode to allow edits to any of the desired coefficient values.

10. Edit the desired coefficients so that the sharpening is less strong as
follows:

● Set the central desired coefficient to: 1.5
● Set the top left desired coefficient to: –0.0625
● Set the top central desired coefficient to: –0.0625

Notice that the coefficient set changes to Custom.

11. Set the following options for Coefficient Precision:

● Signed: On
● Integer bits: 1
● Fraction bits: 4

Notice how the actual coefficients change. Turning Signed on allows
negative values, increasing Integer bits increases the magnitude
range, and increasing Fraction bits increases the precision. The
actual coefficients in the purple boxes should now be a close match
to the desired coefficients in the white boxes.

12. Set the scaling factor Prior to multiply results by to 1.

f See Table 4–16 on page 4–35 for more information about the options on
the 2D FIR Filter Parameter Settings: Coefficients page.

13. Click Back to re-display the Parameter Settings: General page.
2–16 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
Notice that after changing the coefficients the result range has
changed and now includes negative values. This has enabled the
Convert from signed to unsigned option.

The result range is also beyond the minimum and maximum values
allowed by the output type. This has enabled the Constrain to range
option. (See Figure 2–11.)

Figure 2–11. Updated Precision Section in the Parameter Settings: General Page

14. Set the method for converting signed to unsigned by choosing:
Replacing negative values with zero.

15. Set the method for constraining to range by choosing: Saturating
to min and max values.

This will saturate the sign converted results to the minimum and
maximum values allowed by the output data type (or output guard
bands, when specified).

16. It may be decided at a later date that a higher precision output is
required. For example, if 12 bits per pixel per color plane are
required:

a. Set the output Bits per pixel per color plane to 12.

b. Navigate to the Parameter Settings: Coefficients page.

c. Set the Prior to multiply results by to 16

d. Navigate to the Parameter Settings: General page.

Notice that the result range has increased. The result now has no
fraction bits causing the discard fraction bits control to be disabled.

17. Click Next to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).
Altera Corporation Suite Version 7.1 2–17
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
2D Median Filter

To configure your 2D Median Filter for 5×5 filtering of an example high
resolution monochrome image format, follow these steps:

1. Set the image data format in the Parameter Settings page (see
Figure 2–12) by choosing the image resolution, the number of bits
per pixel per color plane, and the number of color planes that are
received and transmitted in sequence:

● Image width: 1024
● Image height: 768
● Bits per pixel per color plane: 12
● Number of color planes in sequence: 1

2. Choose the filter size to 5×5.

f See Table 4–17 on page 4–36 for more information about the options on
the 2D Median Filter Parameter Settings page.

Figure 2–12. Parameter Settings for the 2D Median Filter

3. Click Next to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).
2–18 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
Alpha Blending Mixer

A typical application of the Alpha Blending Mixer is to layer an on-screen
display and a picture-in-picture window over the top of a standard
definition television picture. To configure your Alpha Blending Mixer to
perform this function, follow these steps:

1. Use the Parameter Settings page to set the number of bits per pixel
per color plane, the number of color planes that are received and
transmitted in sequence, and the number of layers being mixed:

● Bits per pixel per color plane: 8
● Number of color planes in sequence: 3
● Number of layers being mixed: 3
● Alpha blending: On
● Alpha bits per pixel: 4

Notice that the option to specify the number of bits for alpha
blending is available when you set alpha blending on. Setting this
option to 4 ensures that the background layer and layer 2 are not
completely obscured. The dialog box page allows three input layer
resolutions (background, layer 2, and foreground) to be set and the
entry fields for the remaining layers are dimmed. (See Figure 2–13 on
page 2–20.)

2. Choose the required resolution for each layer:

● Background Layer Width: 720
● Background Layer Height: 576
● Layer 2 Width: 352
● Layer 2 Height: 288
● Foreground Layer Width: 720
● Foreground Layer Height: 576

1 This background resolution is the resolution of PAL video
(a common standard television format). The Level 2
resolution is close to quarter screen size (suitable for a
picture-in-picture window). Setting the foreground image
resolution to the same value as the background screen
resolution makes it easy to draw on-screen display
information anywhere on the screen.

f See Table 4–18 on page 4–37 for more information about the options on
the Alpha Blending Mixer Parameter Settings page.
Altera Corporation Suite Version 7.1 2–19
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
Figure 2–13. Parameter Settings for the Alpha Blending Mixer

3. Click Next to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).

Scaler

The Scaler MegaCore function can be used to resize video streams and
apply brightness coefficients.

For example, to resize a 640×480 resolution video stream to a resolution
of 1024×768 while at the same time applying a brightening effect, follow
these steps:

1. Check that Run-time control of image size and clipping is turned
off in the Parameter Settings: Resolution page (see Figure 2–14 on
page 2–21).
2–20 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
Figure 2–14. Resolution Parameter Settings for the Scaler

2. Set the image data format by choosing the input and output image
width and height, the number of bits per pixel per color plane, and
the number of color planes in sequence and parallel:

● Input image width: 640
● Input image height: 480
● Output image width: 1,024
● Output image height: 768
● Bits per pixel per color plane: 8
● Number of color planes: 3
● Color plane transmission format: Sequence

1 The scaling direction must be the same in each dimension.
Notice that if you pass through a state where the scaling is
640×768 to 1024×480, a warning message appears because
horizontal upscaling is not supported at the same time as
vertical downscaling.
Altera Corporation Suite Version 7.1 2–21
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
3. Check that Enable image clipping is turned off.

f See Table 4–20 on page 4–39 for more information about the options on
the Scaler Parameter Settings: Resolution page.

4. Click Next to display the Parameter Settings: Algorithm and
Precision page (Figure 2–15).

Figure 2–15. Algorithm and Precision Parameter Settings for the Scaler

5. Review the settings in the Algorithm and Precision page.

The scaling algorithm should default to Polyphase. All parameters
on this page can be left at their default values for this tutorial. Notice
that with signed coefficients, 1 integer bit, and 7 fraction bits, the total
word length of each coefficient is 9 and that 9 bits are preserved
between vertical and horizontal filtering. This means that with 4
vertical and 4 horizontal taps, the scaler uses a total of 8 9×9 DSP
blocks.
2–22 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
f See Table 4–21 on page 4–40 for more information about the options on
the Scaler Parameter Settings: Algorithm and Precision page.

6. Click Next to display the Parameter Settings: Coefficients page
(Figure 2–16).

Figure 2–16. Coefficients Parameter Settings for the Scaler
Altera Corporation Suite Version 7.1 2–23
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
7. Click Preview coefficients on the Coefficients page to view the
quantized Lanczos 2 coefficients. (The default coefficients are the
same for vertical and horizontal data, see Figure 2–17).

Figure 2–17. Scaler Default Lanczos 2 Coefficients

8. Use Shift+click and Ctrl+c to select all these coefficients and copy
them to the clipboard.

9. Paste the coefficients into a suitable program such as Microsoft
Excel or the MATLAB Array Editor and edit the data as follows:

a. Delete the first column. This column indicates the phase and is
not part of the required data.

b. Multiply the remaining coefficient data by 1.1, convert it to
integer type, and then export the data values to a comma-
separated value (CSV) file.

The 1.1 scaling factor increases the brightness of the resized image.

1 Each row of coefficients should be must sum to the same value
See “Choosing and Loading Coefficients” on page 4–19.

10. For each of the vertical and horizontal coefficient data panes in the
Coefficients page:

a. Set the Filter function to Custom.

b. Click Browse, and select the CSV file that you created.
2–24 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
c. Click Preview coefficients to confirm that the data has been
read correctly (see Figure 2–18).

Figure 2–18. Scaler Custom Coefficients

d. Perform these steps for both the vertical and horizontal
coefficient data using the same CSV file.

f See Table 4–22 on page 4–40 for more information about the options on
the Scaler Parameter Settings: Coefficients page.

11. Click Next to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).

Deinterlacer

To configure your Deinterlacer function to convert NTSC video input to
progressive output using the weave deinterlacing algorithm, follow these
steps:

1. Set the image data format in the Parameter Settings page (see
Figure 2–19 on page 2–26) by choosing the image resolution, the
number of bits per pixel per color plane, and the number of color
planes that are received and transmitted in sequence:

● Image width: 720
● Image height: 486
● Bits per pixel per color plane: 8
● Number of color planes in sequence: 2
Altera Corporation Suite Version 7.1 2–25
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
2. Choose the Weave deinterlacing method.

Notice that the option to specify the base address for the frame
buffers is now available.

3. Specify the base address of frame buffers to be 0x00001000.

Figure 2–19. Parameter Settings for the Deinterlacer

f See Table 4–24 on page 4–42 for more information about the options on
the Deinterlacer Parameter Settings page.

4. Click Next to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).
2–26 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
Line Buffer Compiler

To parameterize your Line Buffer Compiler function for a set of four line
buffers each capable of holding 320 24-bit words, follow these steps:

1. Set the line length, line width and number of lines in the Parameter
Settings page (see Figure 2–20):

● Line length: 320
● Line width: 24
● Number of lines: 4

Figure 2–20. Parameter Settings for the Line Buffer Compiler

f See Table 4–25 on page 4–42 for more information about these options.

2. Click Next to complete the parameterization and display the
Simulation Model page (Figure 2–21 on page 2–28).
Altera Corporation Suite Version 7.1 2–27
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
Set Up Simulation

An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model produced by the Quartus II software. The model allows for
fast functional simulation of IP using industry-standard VHDL and
Verilog HDL simulators.

c You may only use these models for simulation and expressly not
for synthesis or any other purposes. Using these models for
synthesis creates a nonfunctional design.

To generate an IP functional simulation model for your MegaCore
function, follow these steps:

1. Turn on Generate Simulation Model in the Simulation Model
page. (Figure 2–21 shows the Simulation Model page for the Color
Space Converter.)

Figure 2–21. Simulation Model page for the Color Space Converter

2. Choose the required HDL language from the Language list.
2–28 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
3. Click Next to display the Summary page (Figure 2–22 shows the
Summary page for the Color Space Converter.)

Figure 2–22. Summary Page for the Color Space Converter

Generate Files

You can use the check boxes on the Summary page to enable or disable
the generation of specified files:

1. For this tutorial, turn on all of the check boxes.

1 The variation file check box is always enabled and cannot
be turned off. At this stage, you can still click Back to
display the previous page or click Parameter Settings,
Simulation Model or Summary, if you want to change any
of the MegaWizard options.

2. To generate your MegaCore function and close the MegaWizard
Plug-In manager, click Finish.
Altera Corporation Suite Version 7.1 2–29
May 2007 Video and Image Processing Suite User Guide

Video and Image Processing Suite Tutorial
The generation phase may take several minutes to complete. The
generation progress and status is displayed in a report window.
(Figure 2–23 shows a typical generation report displayed for the
Color Space Converter.)

Figure 2–23. Generation Report for the Color Space Converter

A MegaCore function report file containing a list of the design files
and ports defined for your MegaCore function variation is saved as
a HTML file if you turned on the MegaCore function report file
check box in the Summary page.

3. Open the MegaCore function report file in your HTML browser.

The file is saved at the location you specified in the MegaWizard
Plug-In Manager and was also displayed in the Summary page
before you generated the files. (For this tutorial, the specified
location was: d:\mydesigns\vip.) Table 2–1 describes the generated
files. The files in the report vary based on various design factors and
parameters. For example, a different set of files are created based on
whether you create your design in Verilog HDL or VHDL.

Table 2–1. Generated Files Note (1), Note (2) (Part 1 of 2)

Filename Description

<entity name>.fsi Fast functional simulation information file.

<entity name>.ocp Encyrypted OpenCore Plus file.

<entity name>.vhd A hardware file that defines the design entity. This file is automatically generated
when you click Finish in the MegaWizard Plug-in Manager and contains different
hardware for each instance of the MegaCore function.
2–30 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Getting Started
<entity name>_setup.tcl Generated Tcl script that can be used to add the MegaCore function's design files
to a Quartus II project.

<entity name>_*.hex Intel format HEX files for pre-loading on-chip memories used by the MegaCore
function.

vip_setup.tcl Top-level Tcl script that invokes <entity name>_setup.tcl within an open
Quartus II project.

build_quartus.tcl Generated Tcl script that can be used to create a fresh Quartus II project and
compile the MegaCore function variation in the Quartus II software.

<variation name>.bsf Quartus II symbol file for the MegaCore function variation. You can use this file in
the Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore function variation. Add the
contents of this file to any VHDL architecture that instantiates the MegaCore
function.

<variation name>.html The MegaCore function variation report file.

<variation name>.vhd, or .v A MegaCore function variation file that defines a VHDL or Verilog HDL top-level
description of the custom MegaCore function variation. Instantiate the entity
defined by this file inside your design. Include this file when compiling your design
in the Quartus II software.

<variation name>.vho or .vo VHDL or Verilog HDL IP functional simulation model.

<variation name>_bb.v A Verilog HDL black box file for the MegaCore function variation. Use this file
when using a third-party EDA tool to synthesize your design.

alt_*.vhd, tta_x*.vhd, VHDL component modules used by the MegaCore function.

hopt_*.vqm Verilog Quartus Mapping (VQM) modules used by the MegaCore function.

Note to Table 2–1:
(1) The <variation name> prefix is added automatically using the base output file name you specified in the

MegaWizard Plug-In Manager.
(2) The <entity name> prefix is added automatically. The VHDL code for each MegaCore instance is generated

dynamically when you click Finish so that the <entity name> is different for every instance. It is generated from
the <variation name> by appending an underscore and a three character code unique to the MegaCore function:
Color Space Converter _csc, Chroma Resampler _crs, Gamma Corrector _gam, 2D FIR Filter _fir, 2D Median Filter
_med, Alpha Blending Mixer _mix, Scaler _scl, Deinterlacer _dil, Line Buffer Compiler _lbc.

Table 2–1. Generated Files Note (1), Note (2) (Part 2 of 2)

Filename Description
Altera Corporation Suite Version 7.1 2–31
May 2007 Video and Image Processing Suite User Guide

Simulate the Design
The MegaCore function report also lists the MegaCore function
variation file ports. (Figure 2–24 shows a ports list for the Color
Space Converter).

f For a full description of the signals supported on external ports for your
MegaCore function variation, refer to “Signals” on page 4–43.

Figure 2–24. Ports List in the MegaCore Function Report

4. After you have reviewed the generation report, click Exit to return
to the Quartus II software.

You can now integrate your custom MegaCore function variation into
your design.

Simulate the
Design

You can simulate your design using the MegaWizard-generated VHDL
and Verilog HDL IP functional simulation models. These are defined by
the .vo or .vho file you specified in “Set Up Simulation” on page 2–28.
Compile the file in your simulation environment and perform functional
simulation of your custom MegaCore function variation.

f For more information on IP functional simulation models, refer to the
Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Handbook.

Video and Image Processing Suite MegaCore functions are usually
simulated within DSP Builder.

f For information about simulating MegaCore functions in DSP Builder,
refer to the DSP Builder User Guide.
2–32 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

http://www.altera.com/literature/quartus2/lit-qts-verification.jsp

Getting Started
Compile the
Design

You can use the Quartus II software to compile your design. Refer to
Quartus II Help for instructions on compiling your design.

Program a
Device

After you have compiled your design, program your targeted Altera
device, and verify your design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate a
Video and Image Processing Suite MegaCore function before you
purchase a license. OpenCore Plus evaluation allows you to generate an
IP functional simulation model, and produce a time-limited
programming file to evaluate your design in hardware.

f For more information on OpenCore Plus hardware evaluation using the
Video and Image Processing Suite MegaCore function, see “OpenCore
Plus Time-Out Behavior” on page 4–30 and AN 320: OpenCore Plus
Evaluation of Megafunctions.

Set Up Licensing You need to purchase a license for the MegaCore function only when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

After you purchase a license, you can request a license file from the Altera
website at www.altera.com/licensing and install it on your computer.
When you request a license file, Altera e-mails you a license.dat file. If
you do not have Internet access, contact your local Altera representative.
Altera Corporation Suite Version 7.1 2–33
May 2007 Video and Image Processing Suite User Guide

www.altera.com/literature/an/an320.pdf
www.altera.com/literature/an/an320.pdf

Set Up Licensing
2–34 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Altera Corporation Suite
May 2007
3. Interfaces
Interface Types The MegaCore® functions in the Video and Image Processing Suite use
standard interfaces for data input and output, control input and random
access to external memory. These standard interfaces ensure that video
systems can be quickly assembled by connecting MegaCores functions
together, and facilitate the use of Altera® system level design tools such
as DSP Builder and SOPC Builder.

Three types of interface are used:

■ Avalon® Streaming (Avalon-ST) interfaces pass serialized streams of
pixel data into and out of the video MegaCore functions. A standard
image streaming protocol defines how any type of video data can be
broken down into Avalon-ST streams of pixel data. This is the main
method provided for connecting the MegaCore functions together to
form image processing datapaths.

■ Avalon Memory-Mapped (Avalon-MM) slave interfaces provide
run-time control input.

■ Avalon-MM master interfaces are used where the MegaCore
functions require external memory.

f Refer to the Avalon Streaming Interface Specification and the Avalon
Memory-Mapped Interface Specification for more information about these
interface types.

These three types of interface cover all of the data input and output
requirements for eight of the nine MegaCore functions in the Video and
Image Processing Suite. The only exception is the Line Buffer Compiler
MegaCore function which uses a lower level interface. For information
about the interface used by this MegaCore function, refer to the functional
description of the “Line Buffer Compiler” on page 4–24.

Avalon-ST
Interfaces

Avalon-ST interfaces are used to pass video data into and out of the video
MegaCore functions. A standard image streaming protocol is used to
define how video frames can be broken down into serialized streams of
data suitable for transmission according to the Avalon Streaming Interface
Specification.
Suite Version 7.1 3–1
 Video and Image Processing Suite User Guide

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Avalon-ST Interfaces
The image streaming protocol defines a mechanism for transmitting
video data between the MegaCore functions on an FPGA which is
sufficiently flexible to be useful across a wide range of video and image
processing applications.

There are many types of video data, differing in for example, resolution,
interlacing, color spaces, and bit depths. There are also many ways to
transmit the same video data, but there is no best way because different
applications place differing priorities on factors such as cost, performance
and external memory bandwidth.

The image streaming protocol defines a set of five parameters which are
used to describe serialized streams of pixel data. These five parameters
contain enough information to describe how any stream of pixel data
conforming to the protocol should be reconstructed into a sequence of
video images.

Table 3–1 lists the parameters and gives some examples of how they can
be used.

Table 3–1. Examples of Image Streaming Protocol Parameters

Parameters

DescriptionFrame
Width

Frame
Height

Interlaced /
Progressive

Bits per
Color
Sample

Color
Pattern

640 480 Progressive 8 640×480 pixel progressive scanned R’G’B’ video
where the three color planes, R, G, and B are
transmitted in alternating sequence and each R,
G, or B sample is represented using 8 bits of data.

1920 1080 Progressive 10 1920×1080 pixel progressive scanned R’G’B’
video where the three color planes are transmitted
in parallel, leading to higher throughput than when
transmitted in sequence, usually at higher cost.
Each R, G, or B sample is represented using 10
bits of data, so that, in total, 30 bits of data are
transmitted in parallel.

720 576 Interlaced 10 720×576 pixel interlaced video in the Y’CbCr color
space, where there are twice as many Y samples
as Cb or Cr samples and one Y’ sample and one
of either a Cb or a Cr sample is transmitted in
parallel. Each sample is represented using 10 bits
of data. This is an example of PAL television
transmitted according to the BT.656 standard.

R G B

R

G

B

Y Y

Cb Cr
3–2 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Interfaces
Examples

Consider a video sequence consisting of 640×480 pixel progressive frames
in full R’G’B’ color. Each frame contains 480 lines, each of which contains
640 pixels. Each pixel has three color values associated with it, red, green
and blue.

Let Rx,y Gx,y and Bx,y be the red, green and blue components of the pixel at
coordinates (x,y) with the origin at the top left of the frame, 0 ≤ x < 640
and 0 ≤ y < 480.

Figure 3–1 shows part of the top left corner of a frame with color samples
labelled in this way. The three different color values for each pixel are
shown as three superimposed planes.

Figure 3–1. Part of a R’G’B’ Frame

The number of binary bits used to represent each color sample varies
between different video systems. In the following examples, assume that
the video data has eight bits per pixel per color plane. This means that all
of the Rx,y Gx,y and Bx,y values for all x and y are eight bit values. The total
number of bits used to represent each pixel is therefore 24.

The image streaming protocol can be used to describe different ways to
transfer the same video data by using different values of the color pattern
parameter. For example, the R’G’B’ video data described above could be
transferred in parallel for maximum throughput or in an alternating
sequence for reduced cost.

Data Transfer in Parallel

Figure 3–2 on page 3–4 shows a timing diagram illustrating how the first
few pixels of a frame in the video format described above might be
processed by a MegaCore function which handles R’G’B’ in parallel.

B1,0B0,0 B2,0 B3,0

B0,1 B1,1 B2,1

B0,2 B1,2 B2,2

B0,3

G1,0G0,0 G2,0

G0,1 G1,1

G0,2

R1,0R0,0 B1,0B0,0 B2,0 B3,0

B0,1 B1,1 B2,1

B0,2 B1,2 B2,2

B0,3

B1,0B0,0 B2,0 B3,0

B0,1 B1,1 B2,1

B0,2 B1,2 B2,2

B0,3

G1,0G0,0 G2,0

G0,1 G1,1

G0,2

G1,0G0,0 G2,0

G0,1 G1,1

G0,2

R1,0R0,0 R1,0R0,0
Altera Corporation Suite Version 7.1 3–3
May 2007 Video and Image Processing Suite User Guide

Avalon-ST Interfaces
Figure 3–2. Timing Diagram Showing R’G’B’ Transferred in Parallel

The example has one Avalon-ST port named din and one Avalon-ST port
named dout. Data flows into the MegaCore function through din, is
processed and flows out of the MegaCore function through dout.

There are three signals (ready, valid and data) associated with each port.
The din_ready signal is an output from the MegaCore function and
indicates when the input port is ready to receive data. The din_valid
and din_data signals are both inputs. The source connected to the input
port sets din_valid to logic '1' when din_data has useful information
which should be sampled. The three output port signals have equivalent
but opposite semantics.

The sequence of events shown in Figure 3–2 is as follows:

1. Initially, din_ready is logic '0', indicating that the MegaCore
function is not ready to receive data. Many of the Video and Image
Processing Suite MegaCore functions are not ready for a few clock
cycles in between rows of image data or in between video frames.
See the “Specifications” on page 4–1 for further details of each
MegaCore function.

clock

din_ready

din_valid

din_data

23:16

15:8

7:0

dout_ready

dout_valid

dout_data

23:16

15:8

7:0

R0,0 R1,0

G0,0 G1,0

B0,0 B1,0

R2,0 R3,0

G3,0

B2,0 B3,0

G2,0

R0,0 R1,0

G0,0 G1,0

B0,0 B1,0

1. 2. 3. 4. 5. 6. 7.
3–4 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Interfaces
2. The MegaCore function sets din_ready to logic '1', indicating that
the input port will be ready to receive data one clock cycle later. The
number of clock cycles of delay which should be applied to a ready
signal is referred to as ready latency in the Avalon Streaming Interface
Specification. All of the Avalon-ST interfaces used by the Video and
Image Processing Suite have a ready latency of one clock cycle.

3. The source feeding the input port sets din_valid to logic '1'
indicating that it is sending data on the data port, and puts all three
color values of the top left pixel of the frame on to din_data.

4. The source holds din_valid at logic '1' and the pixel to the right of
the first pixel is transferred on din_data.

5. No data is transmitted for a cycle even though din_ready was
logic '1' during the previous clock cycle and therefore the input port
is still asserting that it is ready for data. This could be because the
source has no data to transfer. For example if the source is a FIFO
then it could have become empty.

6. Data transmission resumes on the input port: din_valid
transitions to logic '1' and the third pixel is transferred on
din_data. Simultaneously, the MegaCore function begins
transferring data on the output port. The example MegaCore
function has an internal latency of three clock cycles so the top left
processed output pixel is transferred out three cycles after being
input. See the “Specifications” on page 4–1 for guidelines about the
latencies of each Video and Image Processing MegaCore function.

7. The fourth pixel is input and the second processed pixel is output.

In this example, both streams of pixel data have the image streaming
protocol parameters shown in Table 3–2.

Table 3–2. Parameters for Example of Data Transferred in Parallel

Parameter Value

Frame Width: 640

Frame Height: 480

Interlaced/Progressive: Progressive

Bits per Color Sample: 8

Color Pattern:
R

G

B

Altera Corporation Suite Version 7.1 3–5
May 2007 Video and Image Processing Suite User Guide

Avalon-ST Interfaces
Data Transfer in Sequence

Figure 3–3 shows a timing diagram illustrating how the first few pixels of
a frame in the video format described on page 3–3 could be processed by
another MegaCore function, this time handling R'G'B' in sequence.

Figure 3–3. Timing Diagram Showing R’G’B’ Transferred in Sequence

This example is similar to the previous example in all respects except that
it is configured to accept R'G'B' data in sequence rather than parallel. The
signals shown in the timing diagram are therefore the same but with the
exception that the two data ports are only 8 bits wide.

The sequence of events shown in Figure 3–3 is as follows:

1. Initially, din_ready is logic '1'. The source driving the input port
sets din_valid to logic '1' and puts the red color value of the top
left pixel of the frame on the din_data port.

2. The source holds din_valid at logic '1' and the green color value
of the top left pixel of the frame is input.

3. The corresponding blue color value is input.

4. The MegaCore function sets dout_valid to logic '1' and outputs
the red color value of the first processed color sample on the
dout_data port. Simultaneously the sink connected to the output
port sets dout_ready to logic '0'. The Avalon Streaming Interface
Specification states that sinks may set ready to logic '0' at any time,
for example because the sink is a FIFO and it has become full.

clock

din_ready

din_valid

din_data 7:0 R0,0R0,0 R1,0
G0,0G0,0 B0,0B0,0 B1,0B1,0

1. 2. 3. 4. 5. 6. 7.

dout_ready

dout_valid

dout_data 7:0 R0,0

8. 9.

G1,0G1,0

G0,0G0,0 B0,0B0,0
3–6 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Interfaces
5. The MegaCore function sets dout_valid to logic '0' and stops
putting data on the dout_data port because the sink is not ready
for data. The MegaCore function also sets din_ready to logic '0'
because there is no way to output data and the MegaCore function
must stop the source from sending more data before all internal
buffer space is used up. The sink holds din_valid at logic '1' and
transmits one more color sample. This is legal because the ready
latency of the interface means that the change in the MegaCore
function's readiness does not take effect for one clock cycle.

6. Both the input and output interfaces transfer no data - the
MegaCore function is stalled waiting for the sink.

7. The sink sets dout_ready to logic '1'. This could be because space
has been cleared in a FIFO.

8. The MegaCore function sets dout_valid to logic '1' and resumes
transmitting data. Now that the flow of data is again unimpeded, it
sets din_ready to logic '1'.

9. The source responds to din_ready by setting din_valid to logic
'1' and resuming data transfer.

In this example, both streams of pixel data have the image streaming
protocol parameters shown in Table 3–3.

Table 3–3. Parameters for Example of Data Transferred in Sequence

Parameter Value

Frame Width: 640

Frame Height: 480

Interlaced/Progressive: Progressive

Bits per Color Sample: 8

Color Pattern:
R G B
Altera Corporation Suite Version 7.1 3–7
May 2007 Video and Image Processing Suite User Guide

Avalon-ST Interfaces
Image Streaming Protocol Specification

The following specification is in three parts:

■ The first part describes the parameters used by the image streaming
protocol to describe a serialized stream of pixel data.

■ The second part details the particular type of Avalon-ST interface
used by the protocol and shows how that interface type depends
upon the parameters of the data being transferred.

■ The third part formally defines the rules governing how sequences
of video images are serialized for transmission.

Parameters of the Image Streaming Protocol

Table 3–4 lists the parameters used by the image streaming protocol.

A set of values for these parameters can be used to describe any type of
of video data stream that can be transmitted according to the protocol.
The example parameter values given in Table 3–4 describe a stream of
progressive Y’CbCr 4:2:0 (horizontally and vertically subsampled) video
in 320×240 resolution with 8 bits per color plane transmitted in sequence.

Table 3–4. Image Streaming Protocol Parameters

Parameter Name Description Example

Pixel Ordering Parameters:

Frame Width Width in pixels for the frames of the video stream. Must be a positive
integer.

320

Frame Height Height in pixels for the frames of the video stream. Note that in the case
of interlaced video streams, height refers to the number of rows in each
frame, not in each field. Must be a positive integer.

240

Interlaced/Progressive "Interlaced" if this is an interlaced video stream, "Progressive" if it is
progressive.

Progressive

Color Parameters:

Bits per Color Sample Maximum number of binary bits used to represent each color sample. 8

Color Pattern A matrix that defines a repeating pattern of color samples to be
transmitted. The height of the matrix indicates the number of samples
transmitted in parallel, the width determines how many cycles of data
are transmitted before the pattern repeats. In the common case, each
element of the matrix contains the name of a color plane from which a
sample should be taken. The exception is for vertically subsampled
color planes. These are indicated by writing the names of two color
planes in a single element, one above the other. Samples from the
upper color plane are transmitted on even rows and samples from the
lower plane are transmitted on odd rows.

Cb
CrY Y
3–8 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Interfaces
Specification of the Type of Avalon Streaming Interfaces Used

The Avalon Streaming Interface specification defines parameters which can
be used to specify any type of Avalon-ST interface.

Table 3–5 on page 3–9 lists the values of these parameters that are defined
for the Avalon-ST interfaces used by the Video and Image Processing
Suite MegaCore functions.

All parameters not explicitly listed in the table have undefined values.

The Avalon Streaming Interface specification defines many signal types
many of which are optional.

Table 3–6 lists the signals used by the Avalon-ST interfaces for the Video
and Image Processing Suite MegaCore functions. Any signal type not
explicitly listed in the table is not included.

Rules of the Image Streaming Protocol

This section specifies in detail the rules of the image streaming protocol.
These rules, combined with a set of image streaming protocol parameters,
define how MegaCore functions that are compatible with the protocol
send and receive video data.

Table 3–5. Avalon-ST Interface Parameters

Parameter Name Value

BITS_PER_SYMBOL Variable. Always equal to the Bits per Color Sample
parameter value of the stream of pixel data being
transferred.

SYMBOLS_PER_BEAT Variable. Always equal to the number of color samples
being transferred in parallel. This is equivalent to the
number of rows in the color pattern parameter value of
the stream of pixel data being transferred.

READY_LATENCY 1

Table 3–6. Avalon-ST Interface Signal Types

Signal Width Direction

ready 1 Sink to Source

valid 1 Source to Sink

data BITS_PER_SYMBOL × SYMBOLS_PER_BEAT Source to Sink
Altera Corporation Suite Version 7.1 3–9
May 2007 Video and Image Processing Suite User Guide

Avalon-ST Interfaces
A working definition of a video clip is given. The relationship between
the image streaming protocol parameters and the type of video clip
transmitted is described. A procedure is then shown for reconstructing a
video clip from any image streaming protocol stream, given a set of
parameter values. This procedure is the specification of the rules of the
image streaming protocol.

A flexible definition of a video clip is required because there are many
different types of video that can be transferred using the image streaming
protocol. A video clip is defined to be an ordered sequence of frames.
Each frame consists of either one field (progressive video) or two fields
numbered 0 and 1 (interlaced video). Field 0 is the field that includes the
top line of the frame. A field contains a set of color planes. For example,
R, G and B color planes in full color R’G’B’ video.

Because the image streaming protocol supports various kinds of
subsampled video data, the color planes of a field are allowed to be of
differing sizes. For example, a 720×576 pixel frame of Y’CbCr 4:2:2
progressive video contains one field having three color planes, Y, Cb and
Cr. Because the video is 4:2:2 subsampled, only the Y plane is 720×576
samples in size and each of the Cb and Cr planes have 360×576 samples.

The image streaming protocol parameters define the type of video clip
represented by a stream. The Interlaced/Progressive parameter defines
whether the video clip is interlaced or progressive. The number of bits
used for each sample is defined by the Bits per Color Sample parameter.
The names, widths and heights of each color plane of each field are
derived from the Frame Width, Frame Height and Color Pattern parameters
as follows. For each color C, represented in the Color Pattern matrix:

(1)

where IC is the number of times C appears in the Color Pattern, and R
is equal to the Frame Width divided by the maximum value of IC for
all color planes. (The image streaming protocol specification requires
that R be an integer.)

(2)
 if C is not vertically subsampled

(3)
 otherwise

where Number of Fields is the number of fields per frame (2 for
interlaced, or 1 for progressive).

WidthC IC R×=

HeightC
FramepHeight

NumberpofpFields
--=

HeightC
FramepHeight

2 NumberpofpFields×
---=
3–10 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Interfaces
For example, consider a stream of pixel data with the parameters shown
in Table 3–7.

Three color planes are represented in the color pattern, Y, Cb and Cr.
Consequently, the video clip being transmitted has the same three color
planes. Y occurs twice in the pattern, Cb and Cr occur once each:

(4) IY = 2;

(5) ICb = ICr = 1

The value of R can be calculated using the occurrence of each plane and
the Frame Width parameter:

(6)

Using IY, ICb, ICr and R it is then possible to calculate the width of each
color plane:

(7) WidthY = IY × R = 2 × 160 = 320

(8) WidthCb = ICb × R = 1 × 160 = 160

(9) WidthCr = 1Cr × R = 1 × 160 = 160

You can also calculate the height of each of the three color planes. The
stream is progressive, so the number of fields per frame is 1.

Plane Y is shown as not being vertically subsampled in the color pattern:

(10)

Table 3–7. Parameters for Video Clip Calculation Example

Parameter Value

Frame Width: 320

Frame Height: 240

Interlaced/Progressive: Progressive

Bits per Color Sample: 8

Color Pattern: Cb
CrY Y

R FramepWidth
max IY ICb ICr, ,()
-- 320

2
--------- 160= = =

HeightY
FramepHeight

NumberpofpFields
-- 240

1
--------- 240= = =
Altera Corporation Suite Version 7.1 3–11
May 2007 Video and Image Processing Suite User Guide

Avalon-ST Interfaces
The two color difference planes, Cb and Cr, appear as a vertically
subsampled pair in the color pattern:

(11)

The stream described by the parameter values in this example therefore
describes a video clip containing three color planes named Y, Cb and Cr,
where the Y plane is 320×240 pixels, and the Cb and Cr planes are both
160×120 pixels, a quarter the size of the Y plane. This is consistent with
4:2:0 format video. Video clips can be reconstructed by repeatedly
applying the same process to construct one frame at a time. The process
can be considered in two stages.

In the following code, Color Pattern [i, j] refers to the element of the Color
Pattern matrix found at the intersection of column i and row j, where
column zero is the far left column and row zero is the top row. This
element E can be vertically subsampled, in which case top(E) selects the
color plane written in the top half of the element and bottom(E) selects the
color plane written below it. If the element is not vertically subsampled,
then plane(E) refers to the color plane in the element. D(j) refers to symbol
j in data word D read from an Avalon-ST interface. According to the
Avalon-ST specification, symbol 0 occupies the most significant bits in the
data word, symbol 1 is next and so on.

1. Firstly, input data is read and split it into a set of ordered sequences
CS, of samples for each color, C by using the information held in the
Color Pattern:

for (0 ≤ y < Frame Height)
for (0 ≤ x < R)

for (0 ≤ i < width of Color Pattern)
D ← next word of data

for (0 ≤ j < height of Color Pattern)
E ← Color Pattern(i, j)
if E is vertically subsampled then

C ← top(E) if y is even, bottom(E) otherwise
else

C ← plane(E)
end if
append D(j) to CS

end for
end for

end for
end for

HeightCb
FramepHeight

2 NumberpofpFields×
--- 240

2
--------- 120= = =
3–12 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Interfaces
2. Secondly, construct a video frame using the sequences of color
samples CS:

Frame ← create a new empty frame
for (0 ≤ f < Number of Fields)
Field ← create a new empty field in Frame
for each color C, represented in Color Pattern

Color Plane ← new plane of size WidthC × HeightC

for j in 0 to HeightC

for i in 0 to WidthC

Color Plane (i, j) ← next element of CS

end for
end for

end for
end for

Avalon-MM
Slave Interfaces

The Video and Image Processing Suite MegaCore functions which permit
run-time control of some aspects of their behavior use a common type of
Avalon-MM slave interface for this purpose.

Each slave interface provides access to a set of control registers. These
registers should be assumed to power up in an undefined state. The set of
available control registers and the width in binary bits of each register
varies with each control interface.

1 For a full description of the control registers, see the Parameters
section for each MegaCore function in the “Specifications”
chapter.

The first two registers of every control interface perform the same
function as described below, the others vary with each control interface.

■ Register 0 is the Go register. Bit zero of this register is the Go bit, all
other bits are unused. A few cycles after the MegaCore function
comes out of reset, it writes a zero into the Go bit (remember that all
registers in Avalon-MM control slaves power up in an undefined
state).

The MegaCore function does not process any data until the Go bit is
set by external logic connected to the control port. This allows run-
time control data to be programmed before the core begins
processing. A few cycles after Go is set, the core begins processing
data. If the Go bit is unset while the core is processing data, then the
core will stop processing data again at the end of the current video
frame, and wait until the Go bit is set again by external logic.
Altera Corporation Suite Version 7.1 3–13
May 2007 Video and Image Processing Suite User Guide

Avalon-MM Slave Interfaces
■ Register 1 is the Status register. Bit zero of this register is the
Status bit, all other bits are unused. The MegaCore function sets the
Status bit to 1 when it is running, and zero otherwise. External
logic attached to the control port should not attempt to write to the
Status register.

The Go and Status registers can be used in combination to synchronize
changes in control data to the start and end of frames. For example,
suppose you want to build a system with a Gamma Corrector MegaCore
function where the gamma look-up table is updated between each video
frame. You can build logic (or program a Nios II processor) to control the
gamma corrector as follows:

1. Set the Go bit to zero. This causes the MegaCore function to stop
processing at the end of the current frame.

2. Poll the Status bit until the MegaCore function sets it to zero. This
occurs at the end of the current frame, after the MegaCore function
has stopped processing data.

3. Update the gamma look-up table.

4. Set the Go bit to one. This causes the MegaCore function to start
processing the next frame.

5. Poll the Status bit until the MegaCore function sets it to one. This
occurs when the MegaCore function has started processing the next
frame (and therefore setting the Go bit to zero causes it to stop
processing at the end of the next frame).

6. Go to step 1.

The procedure above ensures that the update is performed exactly once
per frame and that the core is not processing data while the update is
performed. When using MegaCore functions which double buffer control
data, such as the Alpha Blending Mixer and Scaler, a more simple process
may be sufficient:

1. Set the Go bit to zero. This causes the MegaCore function to stop if it
gets to the end of a frame while the update is in progress.

2. Update the control data.

3. Set the Go bit to one.

The next time a new frame is started after the Go bit is set to one, the new
control data is loaded into the MegaCore function.
3–14 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Interfaces
Specification of the Type of Avalon-MM Slave Interfaces Used

The Avalon Memory-Mapped Interface Specification defines many signal
types, many of which are optional. Table 3–8 lists the signals used by the
Avalon-MM slave interfaces in the Video and Image Processing Suite.
Any signal type that is not explicitly listed in the table is not used.

1 Note that clock and reset signal types are not included. Video
and Image Processing Suite v7.1 does not support Avalon-MM
interfaces in multiple clock domains. Instead, all of the Video
and Image Processing MegaCore functions have one clock input
and one reset input. The Avalon-MM slave interfaces must
operate synchronous to this clock.

The Avalon Memory-Mapped Interface Specification defines a set of transfer
properties which may or may not be exhibited by any Avalon-MM
interface. Together with the list of supported signals, these properties
fully define an interface type.

The control interfaces of the Video and Image Processing Suite MegaCore
functions exhibit the following transfer properties:

■ Zero wait states on write operations
■ Two wait states on read operations

Avalon-MM
Master
Interfaces

The Video and Image Processing Suite MegaCore functions use a
common type of Avalon-MM master interface for access to external
memory. These master interfaces should be connected to external
memory resources via arbitration logic such as that provided by the
system interconnect fabric.

Table 3–8. Avalon-MM Slave Interface Signal Types

Signal Width Direction

chipselect 1 Input

address Variable Input

readdata Variable Output

write 1 Input

writedata Variable Input
Altera Corporation Suite Version 7.1 3–15
May 2007 Video and Image Processing Suite User Guide

Avalon-MM Master Interfaces
Specification of the Type of Avalon-MM Master Interfaces Used

The Avalon Memory-Mapped Interface Specification defines many signal
types, many of which are optional. Table 3–9 lists the signals used by the
Avalon-MM master interfaces in the Video and Image Processing Suite.
Any signal type not explicitly listed in the table is not used.

1 Note that clock and reset signal types are not included. Video
and Image Processing Suite v7.1 does not support Avalon-MM
interfaces in multiple clock domains. Instead, all of the Video
and Image Processing MegaCore functions have one clock input
and one reset input. The Avalon-MM master interfaces must
operate synchronous to this clock.

Some of the signals in Table 3–9 are read-only and not required by a
master interface which only performs write transactions. Some other
signals are write-only and not required by a master interface which only
performs read transactions. To simplify the Avalon-MM master interfaces
and improve efficiency, read-only ports are not present in write-only
masters, and write-only ports are not present in read-only masters. Read-
write ports are present in all Avalon-MM master interfaces. Refer to the
description of each MegaCore function for information about whether the
master interface is read-only, write-only or read-write.

The Avalon Memory-Mapped Interface Specification defines a set of transfer
properties which may or may not be exhibited by any Avalon-MM
interface. Together with the list of supported signals, these properties
fully define an interface type.

The external memory access interfaces of the Video and Image Processing
Suite MegaCore functions exhibit the following transfer property:

■ Pipeline with variable latency

Table 3–9. Avalon-MM Master Interface Signal Types

Signal Width Direction Usage

waitrequest 1 Input Read-write

address 32 Output Read-write

read 1 Output Read-only

readdata 64 Input Read-only

write 1 Output Write-only

writedata 64 Output Write-only

readdatavalid 1 Input Read-only
3–16 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Altera Corporation Suite
May 2007
4. Specifications
Functional
Description

Each Video and Image Processing MegaCore function is implemented
such that it generates hardware to perform its operation on multiple color
planes (typically three).

Color Space Converter

The Color Space Converter MegaCore function provides a flexible and
efficient means to convert image data from one color space to another.

A color space is a method for precisely specifying the display of color
using a three-dimensional coordinate system. Different color spaces are
best for different devices, such as R'G'B' (red-green-blue) for computer
monitors or Y'CbCr (luminance-chrominance) for digital television.

Color space conversion is often necessary when transferring data
between devices that use different color space models. For example, to
transfer a television image to a computer monitor, you may need to
convert the image from the Y'CbCr color space to the R'G'B' color space.
Conversely, transferring an image from a computer display to a television
may require a transformation from the R'G'B' color space to Y'CbCr.

Different conversions may be required for standard definition television
(SDTV) and high definition television (HDTV). You may also want to
convert to or from the Y'IQ (luminance-color) color model for National
Television System Committee (NTSC) systems or the Y'UV (luminance-
bandwidth-chrominance) color model for Phase Alternation Line (PAL)
systems.

Input and Output Data Types

The Color Space Converter MegaCore function inputs and outputs
support signed or unsigned data and 4 to 20 bits per pixel per color plane.
Minimum and maximum guard bands are also supported. The guard
bands specify ranges of values that should never be received by, or
transmitted from the MegaCore function. Using input guard bands can
reduce the resource usage of the MegaCore function, and using output
guard bands allows the output to be constrained, such that it does not
enter the guard bands.
Suite Version 7.1 4–1
 Video and Image Processing Suite User Guide

Functional Description
Color Space Conversion

Conversions between color spaces are achieved by providing an array of
9 constant coefficients and 3 constant summands that relate the color
spaces.

Given a set of 9 constant coefficients [A0, A1, A2, B0, B1, B2, C0, C1, C2]
and a set of 3 constant summands [S0, S1, S2], the output values on
channels 0, 1, and 2 (denoted dout_0, dout_1, and dout_2) are calculated as
follows:

(1) dout_0 = (A0 × din_0) + (B0 × din_1) + (C0 × din_2) + S0

(2) dout_1 = (A1 × din_0) + (B1 × din_1) + (C1 × din_2) + S1

(3) dout_2 = (A2 × din_0) + (B2 × din_1) + (C2 × din_2) + S2

where din_0, din_1, and din_2 are inputs read from channels 0, 1, and
2 respectively.

User-specified custom constants and the following predefined
conversions are supported:

■ Computer R'G'B' to Y'CbCr: SDTV
■ Y'CbCr: SDTV to Computer R'G'B'
■ Computer R'G'B' to Y'CbCr: HDTV
■ Y'CbCr: HDTV to Computer R'G'B'
■ Studio R'G'B' to Y'CbCr: SDTV
■ Y'CbCr: SDTV to Studio R'G'B'
■ Studio R'G'B to Y'CbCr: HDTV
■ Y'CbCr: HDTV to Studio R'G'B'
■ Y'IQ to Computer R'G'B'
■ Computer R'G'B' to Y'IQ
■ Y'UV to Computer R'G'B'
■ Computer R'G'B' to Y'UV

The values are assigned in the order indicated by the conversion name.
For example, if you choose Computer R'G'B' to Y'CbCr: SDTV, din_0 = R’,
din_1 = G’, din_2 = B’, dout_0 = Y’, dout_1 = Cb, and dout_2 = Cr.

1 Predefined conversions only support unsigned input and
output data. If signed input or output data is selected, the
predefined conversion will produce incorrect results. When
using a predefined conversion, the precision of the constants
must still be defined.
4–2 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Constant Precision

The Color Space Converter MegaCore function requires fixed point types
to be defined for the constant coefficients and constant summands. The
user entered constants (in the white cells of the dialog box matrix) are
rounded to fit into the chosen fixed point type (these are shown in the
purple cells of the dialog box matrix).

Calculation Precision

The Color Space Converter MegaCore function does not loose calculation
precision during the conversion. The calculation and result data types are
derived from: the range of input data type, the fixed point types of the
constants, and the values of the constants. If scaling is selected, the result
data type is scaled up appropriately such that precision is not lost.

Result to Output Data Type Conversion

After the calculation, it is necessary to convert the fixed point type of the
results to the integer data type of the output. This is performed in four
stages, in the following order:

1. Result Scaling. The results can be scaled up, increasing their range.
This is useful to quickly increase the color depth of the output. The
available options are powers of 2, from 1 to 64. This is implemented
as a simple shift operation so it does not require multipliers.

2. Removal of Fractional Bits. If any fractional bits exist, this option
becomes available. There are two methods:

a. Truncation of fractional bits. Fractional bits are removed from
the data. This is equivalent to rounding towards negative
infinity.

b. Rounding to nearest integer. Fractional bits are removed,
rounding to the closest integer. If the fractional bits are equal to
0.5 then rounding is towards positive infinity.

3. Conversion from Signed to Unsigned. If any negative numbers can
exist in the results and the output type is unsigned, then this option
becomes available. There are three methods:

a. Saturate negative numbers to 0.

b. Convert negative numbers to their absolute positive value
(negate).
Altera Corporation Suite Version 7.1 4–3
May 2007 Video and Image Processing Suite User Guide

Functional Description
c. Ignore the possibility. This option treats signed 2's complement
numbers as unsigned numbers; that is, in 8-bit output, -1 would
equal 255.

4. Constrain to Range. If any of the results are beyond the range
specified by the output data type, this option becomes available.
There are two methods:

a. Saturate to the minimum and maximum values allowed by the
specified range (output guard bands, or if unspecified the
minimum and maximum values allowed by the output bits per
pixel).

b. Ignore the possibility. The output is the least significant bits of
the result that will fit into the selected output type. If output
guard bands are selected, they are not used.

1 Ignoring the possibility (3c and 4b) can be useful if within the
input color space not all combinations of channel values are
legal colors. With this information, it may be known that the
actual range of results is less than the Color Space Converter
MegaCore function calculates, and as such the logic to constrain
to the output data type, or convert signed to unsigned is
unnecessary.

The Color Space Converter MegaCore function can process streams of
pixel data of the types shown in Table 4–1.

Table 4–1. Color Space Converter Image Streaming Protocol Parameters

Parameter Value

Frame Width: As selected in the MegaWizard interface.

Frame Height: As selected in the MegaWizard interface.

Interlaced/Progressive: Either.

Bits per Color Sample: As selected in the MegaWizard interface.

Color Pattern: For color planes in sequence:

For color planes in parallel:

210

0

1

2

4–4 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Chroma Resampler

The Chroma Resampler MegaCore function allows you to change
between 4:4:4, 4:2:2 and 4:2:0 sampling rates where:

■ 4:4:4 specifies full resolution in planes 1, 2, and 3
■ 4:2:2 specifies full resolution in plane 1; half width resolution in

planes 2 and 3
■ 4:2:0 specifies full resolution in plane 1; half width and height

resolution in planes 2 &3

1 One of the input or output sampling rates must be 4:4:4.

Independent control of the horizontal and vertical format conversion
methods is provided. For each, you may choose between no interpolation
(nearest neighbor pixel) or linear interpolation.

4:4:4 sampling of Y'CbCr is represented diagrammatically in Figure 4–1.

Figure 4–1. Y'CbCr with 4.4.4 Sampling Rate

For resampling between 4:4:4 and 4:2:2 with no interpolation, every other
sample in the horizontal planes of Cb, Cr are dropped as shown in
Figure 4–2.

Figure 4–2. Resampling 4.4.4 to 4.2.2 Without Interpolation

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++++ ++ ++

3

4

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

++
++ ++ ++ ++++
++ ++ ++ ++++
++ ++ ++ ++++

++ ++++
++ ++++
++ ++++

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

++ ++
++ ++
++ ++

++ ++
++ ++
++ ++
Altera Corporation Suite Version 7.1 4–5
May 2007 Video and Image Processing Suite User Guide

Functional Description
The data ports of the Chroma Resampler MegaCore expect 4:2:2 data to
be transmitted in the order Y' Cb Y' Cr. Each row of an image that is W
pixels wide will therefore be represented by W/2 repetitions of the
pattern Y' Cb Y' Cr.

With linear interpolation, each pair of values in the horizontal planes Cb,
Cr are averaged to provide calculated values between the originals as
shown in Figure 4–3.

Figure 4–3. Resampling 4.4.4 to 4.2.2 With Linear Interpolation

For resampling between 4:4:4 and 4:2:0 with no interpolation, 4:2:0
samples are arranged as shown in Figure 4–4.

Figure 4–4. Resampling 4.4.4 to 4.2.0 Without Interpolation

The data ports of the Chroma Resampler MegaCore expect 4:2:0 data to
be transmitted in the order Y'(Cb+Cr)Y'; that is, a Y', followed by a Cb or
a Cr, followed by another Y'.

On even rows of an image represented in this way, the middle sample of
this pattern will be a Cb. On odd rows, the middle sample will be a Cr.
Each row of an image that is W pixels wide will therefore be represented
by W/2 repetitions of the pattern Y'(Cb+Cr)Y'. An entire frame of data for
an image that is H pixels high will consist of H such rows.

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

++ ++
++ ++
++ ++

++ ++
++ ++
++ ++

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr
++ ++++ ++
4–6 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
With horizontal interpolation, the samples are arranged as shown in
Figure 4–5.

Figure 4–5. Resampling 4.4.4 to 4.2.0 With Horizontal Interpolation

With vertical interpolation (MPEG-2 standard), they are arranged as
shown in Figure 4–6.

Figure 4–6. Resampling 4.4.4 to 4.2.0 With Vertical Interpolation

With both horizontal and vertical interpolation (MPEG-1, H.261, and
H.263 standards), they are arranged as shown in Figure 4–7.

Figure 4–7. Resampling 4.4.4 to 4.2.0 With Horizontal & Vertical Interpolation

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4

++ ++ ++ ++

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4
++ ++ ++ ++

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4
++ ++ ++ ++

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr
Altera Corporation Suite Version 7.1 4–7
May 2007 Video and Image Processing Suite User Guide

Functional Description
1 All input data samples must be in unsigned format. If the
number of bits per pixel per color plane is N, this means that
each sample consists of N bits of data which are interpreted as
an unsigned binary number in the range [0, 2N – 1]. All output
data samples produced by the Chroma Resampler MegaCore
function are also in the same unsigned format.

The Chroma Resampler MegaCore function can process streams of pixel
data of the types shown in Table 4–2.

Gamma Corrector

The Gamma Corrector MegaCore function provides a look-up table
(LUT) accessed through an Avalon-MM slave port. The gamma values
can be entered into the LUT by external hardware using this interface. See
Table 4–28 on page 4–44 for information about the control signals used for
this interface.

When dealing with image data with N bits per pixel per color plane, the
address space of the Avalon-MM slave port spans 2N + 2 registers where
each register is N bits wide.

Registers 0 and 1 are the Go and Status registers. These can be used to stop
and restart the Gamma Corrector MegaCore function. All Video and
Image Processing MegaCore functions which have control interfaces
provide Go and Status registers which operate in exactly the same way.
For details of the register map for this control port, see Table 4–14 on
page 4–34.

f For general information about using Avalon-MM slave interfaces for
run-time control in the Video and Image Processing Suite, refer to
“Avalon-MM Slave Interfaces” on page 3–13.

Table 4–2. Chroma Resampler Image Streaming Protocol Parameters

Parameter Value

Frame Width: As selected in the MegaWizard interface.

Frame Height: As selected in the MegaWizard interface.

Interlaced/Progressive: Progressive.

Bits per Color Sample: As selected in the MegaWizard interface.

Color Pattern: For 4:4:4 data:

For 4:2:2 data:

For 4:2:0 data:

CrCbY

CrCbY Y

Cb
CrY Y
4–8 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Registers 2 to 2N + 1 are the look-up values for the gamma correction
function. Image data with a value x will be mapped to whatever value is
in the LUT at address x + 2. For full details of the register map for this
control port, see Table 4–14 on page 4–34.

The Gamma Corrector MegaCore function can process streams of pixel
data of the types shown in Table 4–3.

2D FIR Filter

The 2D FIR Filter performs 2D convolution, using matrices of 3×3, 5×5
and 7×7 constant coefficients. The core retains full precision throughout
the calculation, while making efficient use of FPGA resources. With
suitable coefficients, the core can perform several operations including,
but not limited to: sharpening, smoothing and edge detection.

An output pixel is calculated from the multiplication of input pixels in a
filter size grid (kernel) by their corresponding coefficient in the filter.
These values are summed together. Prior to output, this result is scaled,
has its fractional bits removed, is converted to the desired output data
type, and is constrained to a specified range. The position of the output
pixel corresponds to the mid point of the kernel.

If the kernel runs over the edge of an image, then 0's are used for the out
of range pixels.

The 2D FIR Filter allows its input, output and coefficient data types to be
fully defined. Constraints are 4 to 20 bits per pixel per color plane for
input and output, and up to 35 bits for coefficients.

The 2D FIR Filter also supports symmetric coefficients. This reduces the
number of multipliers, resulting in smaller hardware.

Table 4–3. Gamma Corrector Image Streaming Protocol Parameters

Parameter Value

Frame Width: As selected in the MegaWizard interface.

Frame Height: As selected in the MegaWizard interface.

Interlaced/Progressive: Either.

Bits per Color Sample: As selected in the MegaWizard interface.

Color Pattern: One, two or three channels in sequence. For
example if three channels in sequence is selected:

 where α, β and γ can be any color plane.γβα
Altera Corporation Suite Version 7.1 4–9
May 2007 Video and Image Processing Suite User Guide

Functional Description
Calculation Precision

The 2D FIR Filter does not lose calculation precision during the FIR
calculation. The calculation and result data types are derived from the
range of input values (as specified by the input data type, or input guard
bands if provided), the coefficient fixed point type and the coefficient
values. If scaling is selected, then the result data type is scaled up
appropriately such that precision is not lost.

Coefficient Precision

The 2D FIR Filter requires a fixed point type to be defined for the
coefficients. The user entered coefficients (shown in white boxes in the
GUI) are rounded to fit into the chosen coefficient fixed point type (shown
in the purple boxes of the GUI).

Scaling of the Result

After the FIR calculation, the result can be scaled up, and used to provide
higher precision value for an existing coefficient set by choosing a wider
output range. The available options are powers of 2, from 1 to 64. This is
implemented as a shift operation so it does not require multipliers.

Data Type Conversion for Output

After the scaling, it may be necessary to lose result precision and/or
range to match the selected output data type. Conversion to the selected
output type is performed in three stages in the following order:

1. Removal of fractional bits. If any fractional bits exist, this option
becomes available. There are two methods:

a. Truncation of fractional bits. Fractional bits are removed from
the data. This is equivalent to rounding towards negative
infinity.

b. Rounding to nearest integer. Fractional bits are removed,
rounding to the closest integer. If the fractional bits are equal to
0.5 then rounding is towards positive infinity.

2. Converting from signed to unsigned. If the result of the FIR calculation
is signed and the output type is unsigned, then this option becomes
available. There are three methods:

a. Saturate negative numbers to 0.
4–10 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
b. Convert negative numbers to their absolute positive value
(negate).

c. Ignore the possibility. This will treat signed 2's complement
numbers as unsigned numbers; that is, in 8-bit output, -1 would
equal 255.

3. Constrain to range. If the result of the FIR is beyond the output range
specified by the output guard bands, or the maximum and
minimum for the given output data type, this option becomes
available. There are two methods:

a. Saturate to the minimum and maximum values allowed by the
specified range (output guard bands, or if unspecified the
minimum and maximum of the output data type).

b. Ignore the possibility. The output is the least significant bits of
the result that will fit into the selected output type. If output
guard bands are selected, they are not used.

The 2D FIR Filter MegaCore function can process streams of pixel data of
the types shown in Table 4–4.

2D Median Filter

The 2D Median Filter MegaCore function provides a means to perform
2D median filtering operations using matrices of 3×3, 5×5, or 7×7 kernels.

Each output pixel is the median of the input pixels found in a 3x3, 5x5, or
7×7 kernel centered on the corresponding input pixel. Where this kernel
runs over the edge of the input image, zeros are filled in.

Table 4–4. 2D FIR Filter Image Streaming Protocol Parameters

Parameter Value

Frame Width: As selected in the MegaWizard interface.

Frame Height: As selected in the MegaWizard interface.

Interlaced/Progressive: Progressive.

Bits per Color Sample: As selected in the MegaWizard interface.

Color Pattern: One, two or three channels in sequence. For
example if three channels in sequence is selected:

 where α, β and γ can be any color plane.γβα
Altera Corporation Suite Version 7.1 4–11
May 2007 Video and Image Processing Suite User Guide

Functional Description
Larger kernel sizes require many more comparisons to perform the
median filtering function and therefore require correspondingly large
increases in the number of logic elements used. Larger sizes have a
stronger effect, removing more noise but also potentially removing more
detail.

1 All input data samples must be in unsigned format. If the
number of bits per pixel per color plane is N, this means that
each sample consists of N bits of data which are interpreted as
an unsigned binary number in the range [0, 2N – 1]. All output
data samples produced by the 2D Median Filter MegaCore
function are also in the same unsigned format.

The 2D Median Filter MegaCore function can process streams of pixel
data of the types shown in Table 4–5.

Alpha Blending Mixer

The Alpha Blending Mixer MegaCore function provides an efficient
means to mix together up to eight image layers. The function provides
support for both picture-in-picture mixing and image blending with per
pixel alpha support.

The location of each layer can be changed dynamically when the core is
running, and individual layers can be switched on and off. This run-time
control is provided by an Avalon-MM slave port with registers for the
location and on/off status of each layer. For details of the register map for
this control port, see Table 4–19 on page 4–38.

Control data is read once at the start of each frame and is buffered inside
the MegaCore function so that the control data can be updated during the
frame processing without unexpected side effects.

Table 4–5. 2D Median Filter Image Streaming Protocol Parameters

Parameter Value

Frame Width: As selected in the MegaWizard interface.

Frame Height: As selected in the MegaWizard interface.

Interlaced/Progressive: Progressive.

Bits per Color Sample: As selected in the MegaWizard interface.

Color Pattern: One, two or three channels in sequence. For
example if three channels in sequence is selected:

 where α, β and γ can be any color plane.γβα
4–12 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
f For general information about using Avalon-MM slave interfaces for
run-time control in the Video and Image Processing Suite, refer to
“Avalon-MM Slave Interfaces” on page 3–13.

The number of image layers mixed and the size of each layer cannot be
changed dynamically and must be set in the MegaWizard interface for the
Alpha Blending Mixer. The valid range of alpha coefficients is [0, 1],
where 1 represents full translucence, and 0 represents fully opaque. For n-
bit alpha values (RGBAn) there is a range of [0, 2n–1]. The model
interprets (2n–1) as 1, and all other values as (Alpha value) ÷ 2n. For

example, 8-bit alpha value 255 => 1, 254 => 254 ÷ 256, 253 => 253 ÷ 256
and so on.

1 All input data samples must be in unsigned format. If the
number of bits per pixel per color plane is N, this means that
each sample consists of N bits of data which are interpreted as
an unsigned binary number in the range [0, 2N – 1]. All output
data samples produced by the Alpha Blending Mixer MegaCore
function are also in the same unsigned format.

The Alpha Blending Mixer MegaCore function can process streams of
pixel data of the types shown in Table 4–6.

Scaler

The Scaler MegaCore function provides a means to resize and/or clip
video streams. It supports Nearest Neighbor, Bilinear, Bicubic and
Polyphase scaling algorithms.

Table 4–6. Alpha Blending Mixer Image Streaming Protocol Parameters

Parameter Value

Frame Width: As selected in the MegaWizard interface.

Frame Height: As selected in the MegaWizard interface.

Interlaced/Progressive: Progressive.

Bits per Color Sample: As selected in the MegaWizard interface (specified
separately for image data and alpha blending).

Color Pattern (din & dout): One, two or three channels in sequence. For
example if three channels in sequence is selected:

 where α, β and γ can be any color plane.

Color Pattern (alpha_in): A single color plane representing the alpha value for
each pixel:

γβα

A

Altera Corporation Suite Version 7.1 4–13
May 2007 Video and Image Processing Suite User Guide

Functional Description
The Scaler MegaCore function can be configured to change resolutions
and/or filter coefficients at runtime using an Avalon-MM Slave interface.

f For general information about using Avalon-MM slave interfaces for
run-time control in the Video and Image Processing Suite, refer to
“Avalon-MM Slave Interfaces” on page 3–13.

In the formal definitions of the scaling algorithms given here, the width
and height of the input image are denoted win and hin respectively. The
width and height of the output image are denoted wout and hout. F is the
function which returns an intensity value for a given point on the input
image and O is the function which returns an intensity value on the
output image.

Nearest Neighbor Algorithm

The nearest neighbor algorithm used by the scaler is the lowest quality
method, and uses the fewest resources. Jagged edges may be visible in the
output image as no blending takes place. However, it requires no DSP
blocks, and uses less logic area than the other methods.

Scaling down requires no on-chip memory; scaling up requires one line
buffer of the same size as one line from the clipped input image, taking
account of the number of color planes being processed. For example, up
scaling an image which is 100 pixels wide and uses 8-bit data with 3 colors
in sequence but is clipped at 80 pixels wide, needs 8 × 3 × 80 = 1920 bits
of memory. Similarly, if the 3 color planes are in parallel, the memory
requirement is still 1920 bits.

For each output pixel, the nearest neighbor method picks the value of the
nearest input pixel to the correct input position. Formally, to find a value
for an output pixel located at (i, j), the nearest neighbor method picks the
value of the nearest input pixel to ((i+0.5) win/wout, (j+0.5) hin/hout).

The 0.5 values in this equation come from considering the coordinates of
an image array to be on the lines of a 2D grid, but the pixels to be equally
spaced between the grid lines that is, at half values.

Because this equation gives an answer relative to the mid-point of the
input pixel, we should subtract 0.5 to translate from pixel positions to grid
positions. However, this 0.5 would then be added again so that later
truncation performs rounding to the nearest integer. Therefore no change
is needed. The calculation performed by the scaler core is equivalent to
the following integer calculation:

(4) O(i, j) = F((2 × win × i + win)/(2 × wout), (2 × hin × j + hin)/(2 × hout))
4–14 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Bilinear Algorithm

The bilinear algorithm used by the scaler is higher quality and more
expensive than the nearest neighbor algorithm. The jaggedness of the
nearest neighbor method is smoothed out, but at the expense of losing
some sharpness on edges.

Resource Usage
The bilinear algorithm uses four multipliers per channel in parallel. The
size of each of these is either the sum of the horizontal and vertical
fraction bits plus 2, or the input data bit width, whichever is greater. For
example, with 4 horizontal fraction bits, 3 vertical fraction bits, and 8 bit
input data, the multipliers are 9 bit. With the same configuration but 10
bit input data, the multipliers are 10 bit. Two line-buffers are used. As in
nearest neighbor mode, each of these is the size of a clipped line from the
input image. The logic area used is more than that used by the nearest
neighbor method.

Algorithmic Description
This section describes how the algorithmic operations of the bilinear
scaler can be modeled using a frame-based method. This does not reflect
the implementation, but allows the calculations to be presented concisely.
To find a value for an output pixel located at (i, j), we first calculate the
corresponding location on the input:

(5) ini = (i × win)/wout

(6) inj = (j × hin)/hout

The integer solutions,(⎣ini⎦, ⎣inj⎦) to these equations provide the location
of the top-left corner of the four input pixels to be summed. The
differences between ini, inj and (⎣ini⎦, ⎣inj⎦) are a measure of the error in
how far the top-left input pixel is from the real-valued position that we
want to read from. Call these errors erri and errj. The precision of each
error variable is determined by the number of fraction bits chosen by the
user, Bfh and Bfv, respectively. Their values can be calculated as:

(7)

(8)

erri
i win×()%wout() 2

Bfh×
max win wout,()

---=

errj
j hin×()%hout() 2

Bfv×
max hin hout,()

---=
Altera Corporation Suite Version 7.1 4–15
May 2007 Video and Image Processing Suite User Guide

Functional Description
where % is the modulus operator and max(a, b) is a function that
returns the maximum of two values.

The sum is then weighted proportionally to these errors. Note that since
they measure how far the real value is from the top-left pixel, the weights
for this pixel are one minus the error.

That is , in fixed-point precision: and

The sum is then:

(9)

Polyphase and Bicubic Algorithms

The polyphase and bicubic algorithms offer the best image quality, but
use more resources than the other modes of the scaler. They allow up
scaling to be performed in such a way as to preserve sharp edges, but
without losing the smooth interpolation effect on graduated areas.

For down scaling, a long polyphase filter can be used to reduce aliasing
effects.

The bicubic and polyphase algorithms use different mathematics to
derive their filter coefficients, but the implementation of the bicubic
algorithm is just the polyphase algorithm with 4 vertical and 4 horizontal
taps. In the following discussion, all comments relating to the polyphase
algorithm are applicable to the bicubic algorithm assuming 4×4 taps.

Figure 4–8 on page 4–17 shows the flow of data through an instance of the
scaler in polyphase mode.

Data from multiple lines of the input image are assembled into line-
buffers – one for each vertical tap. These data are then fed into parallel
multipliers, before summation and possible loss of precision.

The results are gathered into registers – one for each horizontal tap. These
are again multiplied and summed before precision loss down to the
output data bit width.

2
Bfh erri– 2

Bfv errj–

O i j,() 2
Bfv Bfh+

× F ini inj,() 2
Bfh erri–() 2

Bfv errj–()××=

+ F ini 1 inj,+() erri 2
Bfv errj–()××

+ F ini inj, 1+() 2
Bfh erri–() errj××

+ F ini 1 inj 1+,+() erri errj××
4–16 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
1 Note that the progress of data through the taps (line buffer and
register delays) and the values of the coefficients used in the
multiplication are controlled by logic that is not present in the
diagram. This logic is described in “Algorithmic Description”
on page 4–18.

Figure 4–8. Polyphase Mode Scaler Block Diagram

Resource Usage
Consider an instance of the polyphase scaler with Nv vertical taps and Nh

horizontal taps. Bdata is the bit width of the data samples.

Bv is the bit width of the vertical coefficients and is derived from the user
parameters for the vertical coefficients. It is equal to the sum of integer
bits and fraction bits for the vertical coefficients, plus one if coefficients
are signed.

cv0

Bit Narrowing

Register Delay

Bit Narrowing

Line Buffer
Delay

Line Buffer
Delay

Register Delay

ch0

cv1 cvNv

ch1 chNh
Altera Corporation Suite Version 7.1 4–17
May 2007 Video and Image Processing Suite User Guide

Functional Description
Bh is defined similarly for horizontal coefficients. Pv and Ph are the user-
defined number of vertical and horizontal phases for each coefficient set.

The total number of multipliers is Nv + Nh per channel in parallel. The
width of each vertical multiplier is max(Bdata,Bv). The width of each
horizontal multiplier is the maximum of the horizontal coefficient width,
Bh, and the bit width of the horizontal kernel, Bkh.

The bit width of the horizontal kernel determines the precision of the
results of vertical filtering and is user-configurable. See the “Number of
bits to preserve between vertical and horizontal filtering” parameter in
Table 4–21 on page 4–40.

The memory requirement is Nv line-buffers plus a vertical and a
horizontal coefficient bank. As in the nearest neighbor and bilinear
methods, each line buffer is the same size as one line from the clipped
input image.

The vertical coefficient bank is Nv × Bv bits wide and has Pv entries. This
bank is stored in memories that will each be no more than 64 bits wide
and the same depth as the bank. If the bank is more than 64 bits wide, it
is mapped to multiple memories. The Quartus II software will map each
memory to either the on-chip RAM of the FPGA or to logic elements in
the FPGA.

The horizontal coefficients are handled similarly, using the corresponding
horizontal parameters.

1 If the horizontal and vertical coefficients are identical, they are
stored in the same memory.

Algorithmic Description
This section describes how the algorithmic operations of the polyphase
scaler can be modelled using a frame-based method. This description
shows how the filter kernel is applied and how coefficients are loaded,
but is not intended to indicate how the hardware of the scaler is designed.

The filtering part of the polyphase scaler works by passing a windowed
sinc function over the input data. In the case of up scaling, this sinc
function performs interpolation. In the case of down scaling, it acts as a
low-pass filter in order to remove high-frequency data that would cause
aliasing in the smaller output image.

During the filtering process, the center of the sinc function should be at
the center of the pixel to output. This is achieved be applying a "phase
shift" to the filtering function.
4–18 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
If a polyphase filter has Nv vertical taps and Nh horizontal taps, these
correspond to an Nv × Nh square filter.

Counting the coordinate space of the filter from the top-left corner, (0, 0),
the mid-point of the filter lies at ((Nv –1)/2, (Nh -1)/2). As in the bilinear
case, to produce an output pixel at (i, j), the centre of the kernel is placed
at (⎣ini⎦, ⎣inj⎦) where ini and inj are calculated using equations 5 and 6 on
page 4–15.

The difference between the real and integer solutions to these equations
determines the position of the filter function used during scaling.

The filter function is positioned over the real solution by adjusting the
function’s phase:

(10)

(11)

The results of the vertical filtering are then found by taking the set of
coefficients from phasej and applying them to each column in the square
filter. Each of these Nh results is then divided down to fit into the number
of bits chosen for the horizontal kernel. The horizontal kernel is applied
to the coefficients from phasei, to produce a single value. This value is then
divided down to the output bit width before being written out as a result.

Choosing and Loading Coefficients
The filter coefficients used by the polyphase mode of the scaler may be
specified at compile time or at run time. At compile time the coefficients
can be either selected from a set of Lanczos-windowed sinc functions, or
loaded from a comma-separated variable (CSV) file. At run time they are
specified by writing to the Avalon-MM slave control port (see Table 4–23
on page 4–41). When the coefficients are read at runtime, they are checked
once per frame and double-buffered so that they can be updated as the
core processes active data without causing corruption.

Figure 4–9 on page 4–20 shows how a 2-lobe Lanczos-windowed sinc
function (usually referred to as Lanczos 2) would be sampled for a 4-tap
vertical filter.

1 The two lobes refer to the number of times the function changes
direction on each side of the central maxima, including the
maxima itself.

phasei
i win×()%wout() Ph×

max win wout,()
---=

phasej
j hin×()%hout() Pv×

max hin hout,()
--=
Altera Corporation Suite Version 7.1 4–19
May 2007 Video and Image Processing Suite User Guide

Functional Description
Figure 4–9. Lanczos 2 Function at Various Phases

The class of Lanczos N functions is defined as:

(12)

As can be seen in the figure, phase 0 centres the function over tap 1 on the
x-axis. By the equation above, this is the central tap of the filter. Further
phases move the centre of the function in 1/Pv increments towards tap 2.
The filtering coefficients applied in a 4-tap scaler for a particular phase are
samples of where the function with that phase crosses 0, 1, 2, 3 on the x-
axis.

The preset filtering functions are always spread over the number of taps
given. For example, Lanczos 2 is defined over the range –2 to +2, but with
8 taps the coefficients are shifted and spread to cover 0 to 7.

Compile-time custom coefficients are loaded from a CSV file. One CSV
file is specified for vertical coefficients and one for horizontal coefficients.
For N taps and P phases, the file should contain N × P values. The values
should be listed as N taps in order for phase 0, N taps for phase 1, up to
the Nth tap of the Pth phase. They need not be presented with each phase
on a separate line.

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

phase(0)
phase(P

v
/2)

phase(P
v
−1)

LanczosN x()

1

0

πx()sin
πx

------------------- πx N⁄()sin
πx N⁄

⎩
⎨
⎧

=

x 0=

x 0 x N<∧≠
x N≥
4–20 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
The values must be pre-quantized into the range implied by the number
of integer, fraction, and sign bits chosen in the MegaWizard interface and
have their fraction part multiplied out. The sum of any two coefficients in
the same phase must also be within the declared range. For example, if
there is 1 integer bit, 7 fraction bits, and a sign bit, each value and the sum
of any two values should be in the range [–256, 255] representing the
range [-2, 1.9921875].

In summary, a set of coefficients for an N-tap, P-phase instance of the
scaler can be generated as follows:

1. Define a function, f(x) over the domain [0, N – 1] under the
assumption that (N – 1)/2 is the mid-point of the filter.

2. For each tap t ∈ {0, 1, . . . ,N – 1} and for each phase p ∈ {0, 1/P, . . . ,
(P – 1/P)}, sample f(t – p).

3. Quantize each sample. Ideally, the sum of the quantized values for
all phases should be equal.

4. Either store these in a CSV file and load them in the MegaWizard
interface, or load them at run-time using the control interface.

Coefficients for the bicubic algorithm are calculated using Catmull-Rom
splines to interpolate between values in tap 1 and tap 2.

f For detailed information about the mathematics used for Catmull-Rom
splines refer to E Catmull and R Rom. A class of local interpolating splines.
Computer Aided Geometric Design, pages 317–326, 1974.

This method does not follow the steps above, but instead obtains weights
to use for each of the 4 taps in order to sample a cubic function that runs
between tap 1 and tap 2 at a position equal to the phase variable described
above. A consequence of this is that the bicubic coefficients are good for
up scaling, but not for down scaling.

1 If the coefficients are “symmetric” and provided at compile-
time, then only half the number of phases are stored. For N taps
and P phases, an array, C[P][N], of quantized coefficients is
symmetric if for all p ∈ [1, P – 1] and all t ∈ [0, N – 1],
C[p][t] = C[P – p][N – 1 – t], that is phase 1 is phase P – 1 with the
taps in reverse order, phase 2 is phase P – 2 reversed and so on.
The predefined Lanczos and bicubic coefficient sets satisfy this
property.
Altera Corporation Suite Version 7.1 4–21
May 2007 Video and Image Processing Suite User Guide

Functional Description
Recommended Parameters
In Polyphase mode, the parameters for the Scaler Megacore function
must be chosen carefully to get the best image quality. Incorrect
parameters can cause a decrease in image quality even as the resource
usage increases. The parameters which have the largest effect are the
number of taps and the filter function chosen to provide the coefficients.
The number of phases and number of bits of precision used are less
important to the image quality.

Table 4–7 summarizes some recommended values for parameters when
using the scaler in polyphase mode.

The Scaler MegaCore function can process streams of pixel data of the
types shown in Table 4–8.

Table 4–7. Recommended Parameters for the Scaler Megacore Function

Scaling Problem Taps Phases Precision Coefficients

Scaling up with any input/output resolution 4 16 Signed, 1 integer bit, 7 fraction bits Lanczos-2,
or Bicubic

Scaling down from M pixels to N pixels 16 Signed, 1 integer bit, 7 fraction bits Lanczos-2

Scaling down from M pixels to N pixels
(lower quality)

16 Signed, 1 integer bit, 7 fraction bits Lanczos-1

M 4×
N

M 2×
N

Table 4–8. Scaler Image Streaming Protocol Parameters

Parameter Value

Frame Width: As selected in the MegaWizard interface.

Frame Height: As selected in the MegaWizard interface.

Interlaced/Progressive: Progressive.

Bits per Color Sample: As selected in the MegaWizard interface.

Color Pattern: Any combination of one, two or three channels in each
of sequence or parallel.
For example, if three channels in sequence is selected:

 where α, β and γ can be any color plane.γβα
4–22 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Deinterlacer

The Deinterlacer MegaCore function provides a flexible and efficient
means to convert interlaced video to progressive video using bob and
weave algorithms.

1 All input data samples must be in unsigned format. If the
number of bits per pixel per color plane is N, this means that
each sample consists of N bits of data which are interpreted as
an unsigned binary number in the range [0, 2N – 1]. All output
data samples produced by the Deinterlacer MegaCore function
are also in the same unsigned format.

Deinterlacing Methods

Weave deinterlacing creates an output frame by filling all of the missing
lines in the current input field with lines from the previous input field.
This option gives good results for still parts of an image but unpleasant
artefacts in moving parts.

Bob deinterlacing scales input fields up by a factor of two vertically. This
function supports two types of scaling for bob deinterlacing: scanline
duplication and scanline interpolation.

Bob Scanline Duplication
Scanline duplication simply scales by repeating each scanline in input
field 0 twice to make the output frame. Input field 1 is discarded.

Bob Scanline Interpolation
Scanline interpolation recreates the lines missing from input field 0 by
performing an unweighted mean of the lines above and below them.
Input field 1 is discarded. At the bottom of field 0 there is only one line
available, so this line is just duplicated as per scanline duplication.

Output Frame Rate

The Deinterlacer MegaCore function produces a N/2 Hz output frame
rate for an NHz input field rate. For example, 1080i @ 60Hz to 1080p @
30Hz.

Triple Buffering

Weave deinterlacing requires a frame buffer stored in off-chip memory so
that lines from different fields can be woven together. For this reason, the
weave deinterlacer has a built in triple-buffering function.
Altera Corporation Suite Version 7.1 4–23
May 2007 Video and Image Processing Suite User Guide

Functional Description
When in weave mode, the deinterlacer has two 64-bit Avalon-MM master
ports. These must be connected to an external memory with enough space
to store three full frames of video data.

One way to do this is to connect the Deinterlacer MegaCore function to an
Altera (double data rate) DDR Controller MegaCore function using SOPC
Builder. The address in the Avalon-MM address space where the base of
the frame buffer memory is to be located can be set when parameterizing
the Deinterlacer MegaCore function.

The Deinterlacer MegaCore function can process streams of pixel data of
the types shown in Table 4–9.

Line Buffer Compiler

FPGA memory is a valuable resource for many video and imaging
applications particularly when developing systems that require high
definition resolutions and high order accuracy algorithms.

The Line Buffer Compiler provides an efficient means to map line buffers
on to Altera on-chip memories.

An example of the logic structure produced by the Line Buffer Compiler
is shown in Figure 4–10 on page 4–25.

In this example, there are three line buffers, each of which is eight bits
wide. It is possible to use the Line Buffer Compiler MegaCore function to
create similar structures with up to sixteen line buffers, each up to 64 bits
in width.

Table 4–9. Deinterlacer Image Streaming Protocol Parameters

Parameter Value

Frame Width: As selected in the MegaWizard interface.

Frame Height: As selected in the MegaWizard interface.

Interlaced/Progressive: Interlaced input, Progressive output.

Bits per Color Sample: As selected in the MegaWizard interface.

Color Pattern: one, two or three channels in sequence. For
example if three channels in sequence is selected:

 where α, β and γ can be any color plane.γβα
4–24 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Figure 4–10. Example of the Line Buffer Compiler Logic

When enable is asserted, data flows into the module through the din
port and passes through each of the line buffers in sequence. The output
of all of the line buffers is concatenated together into a bus of size
(number of line buffers) × (line buffer width) bits which can be read at any
time.

Unlike the other MegaCores in the Video and Image Processing Suite, the
Line Buffer Compiler does not provide an image streaming protocol
based data interface.

Figure 4–11 on page 4–25 shows a timing diagram illustrating how a Line
Buffer Compiler MegaCore function such as the one shown in Figure 4–10
would process data if the length of each line was set to 720 pixels.

Figure 4–11. Timing diagram Illustrating a Line Buffer Compiler in Use

The sequence of events shown in Figure 4–11 is as follows:

1. reset is deasserted synchronous to clock and the MegaCore
function becomes ready for use. The contents of all of the line
buffers is undefined, as is the state of the output, dout.

Line Buffer 0

Line Buffer 1

Line Buffer 2

din 7:0 dout 7:0

dout 15:8

dout 23:16

clock

enable

reset

clock

reset

enable

din

dout

23:16

15:8

7:0 9

37 389 7 25

7 37

9

80

9

37

25

9

37

25

1 2 3 722 723 1442 2162 2163
Altera Corporation Suite Version 7.1 4–25
May 2007 Video and Image Processing Suite User Guide

Stall Behavior
2. enable is driven high and the number 9 is driven onto the
input bus din. This value is captured and stored in the first
location of the first line buffer.

3. enable stays high and the number 7 is driven onto the input
bus. All of the data in all of the line buffers (currently just the 9)
moves along one place and 7 moves into the first location of the
first line buffer.

722. 720 enabled clock cycles after the number 9 was captured on
the input bus din, the value 9 is driven on to the output of the
first line buffer. This is connected to the bottom eight bits of
dout. The number 37 is driven on to the input.

723. The second input value, a 7, reaches the end of the first line
buffer and is visible in the bottom eight bits of dout. The value
9 is now in the first location in the second line buffer.

1442. 1440 enabled clock cycles after the number 9 was captured on
the input it reaches the end of the second line buffer and is
output on the middle eight bits of dout. 37 has reached the end
of the first line buffer and is driven on to the low eight bits. The
number 25 is driven on to the input.

2162. 2160 enabled clock cycles after the number 9 was captured it
reaches the end of the last line buffer and is driven on to the top
eight bits of dout. The middle and bottom sets of eight bits of
dout show the data words captured 720 and 1440 enabled
clock cycles after it, respectively.

2163. When enable is deasserted, any input value on din is not
captured and the contents of the line buffers remains
unchanged. It is still possible to read the same output values
from dout.

Stall Behavior During data processing, the Video and Image Processing Suite MegaCore
functions sometimes stall to allow extra time for internal processing.
Typically, this occurs between rows of image data and between frames.

When stalled, the MegaCore function signals that it is not ready to
consume or produce data. The time spent in the stalled state varies
between MegaCore functions and their parameterizations. In general it is
a few cycles between rows and a few more between frames. Details of
exceptions to this behavior and details of stalling due to internal buffering
are given for each MegaCore function in the following sections.

When they are not stalled, all the Video and Image Processing Suite
MegaCore functions process one sample on every clock cycle (rate-
changing functions process one sample on the higher-rate side on every
clock cycle).
4–26 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
If data is not available at the input when required, all of the MegaCore
functions will stall, and thus not output data. With the exception of the
Deinterlacer in Weave mode, which uses triple-buffering, none of the
MegaCore functions ever overlap the processing of consecutive frames.
The first sample of frame F + 1 is not input until after the last sample of
frame F has been output.

Color Space Converter

In all parameterizations, the Color Space Converter only stalls between
frames and not between rows. It has no internal buffering apart from the
registers of its processing pipeline so there are few clock cycles of latency.

Chroma Resampler

All modes of the Chroma Resampler stall for a few cycles between frames.
The MegaCore function will pause between rows when up sampling with
horizontal interpolation. In all other operation modes, there is no stall in
between image rows.

Latency from input to output varies depending on the operation mode of
the Chroma Resampler MegaCore function, because varying numbers of
internal line buffers are required:

■ When down sampling from 4:4:4 to 4:2:0 or up sampling from 4:2:0
to 4:4:4 without vertical interpolation, one line buffer is used so there
is a delay from input to output of a little more than one line of input
data.

■ When up sampling from 4:2:0 to 4:4:4 with vertical interpolation, two
line buffers are required and the latency is roughly doubled.

Because this is a rate changing function, the quantities of data input and
output are not equal. The Chroma Resampler MegaCore function always
outputs the same number of lines that it inputs. However the number of
samples in each line varies according to the subsampling pattern used.

When not stalled, the Chroma Resampler always processes one sample
from the fully sampled side on each clock cycle. The subsampled side will
pause for one third of the clock cycles in the 4:2:2 case or half of the clock
cycles in the 4:2:0 case.

Gamma Corrector

In all parameterizations, the Gamma Corrector only stalls between
frames and not between rows. It has no internal buffering aside from the
registers of its processing pipeline so there are few clock cycles of latency.
Altera Corporation Suite Version 7.1 4–27
May 2007 Video and Image Processing Suite User Guide

Stall Behavior
2D FIR Filter

There is a delay of a little more than lines between data input
and output in the case of a N×N 2D FIR Filter. This is due to line buffering
internal to the MegaCore function.

2D Median Filter

There is a delay of a little more than lines between data input
and output in the case of a N×N 2D Median Filter. This is due to line
buffering internal to the MegaCore function.

Alpha Blending Mixer

For each non-stalled cycle, the Alpha Blending Mixer reads from the
background input port, and also from the input port associated with each
layer which covers the background pixel just read.

When alpha blending is enabled, data is read from each alpha port once
each time that a whole pixel of data is read from the corresponding input
port. There is no internal line buffering in the Alpha Blending Mixer
MegaCore function, so the delay from input to output is just a few clock
cycles caused by pipelining.

Scaler

When clipping is enabled, the Scaler produces no output during the time
that it is throwing away pixels outside the clipping area. Clipped data is
discarded at a rate of one sample per clock regardless of the scaling ratio.

When the reads are inside the clipping area, the ratio of reads to writes is
proportional to the scaling ratio and occurs on both a per-pixel and a
per-line basis. The frequency of lines where reads and writes occur is
proportional to the vertical scaling ratio. For example, scaling up
vertically by a factor of 2 results in the input being stalled every other line
for the length of time it takes to write one line of output; scaling down
vertically by a factor of 2 results in the output being stalled every other
line for the length of time it takes to read one line of input.

Within a line that has both input and output active, the ratio of reads and
writes is proportional to the horizontal scaling ratio. For example, scaling
from 64×64 to 128×128 causes 128 lines of output, where only 64 of these
lines have any reads in them. For each of these 64 lines, there are two
writes to every read.

N 2⁄ 1–

N 2⁄ 1–
4–28 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
The internal latency of the Scaler depends on the scaling algorithm and
whether any run time control is enabled. The scaling algorithm impacts
stalling as follows:

■ In nearest neighbor mode, the delay from input to output is just a few
clock cycles.

■ In bilinear mode, a complete line of input is read into a buffer before
any output is produced. At the end of a frame there are no reads as
this buffer is drained. Exactly how many writes are possible during
this time depends on the scaling ratio.

■ In bicubic mode, three lines of input are read into line buffers before
any output is ready. As with linear interpolation, there is a scaling
ratio dependent time at the end of a frame where no reads are needed
as the buffers are drained.

■ In polyphase mode with Nv vertical taps, Nv – 1 lines of input are read
into line buffers before any output is ready. As with bilinear mode,
there is a scaling ratio dependent time at the end of a frame where no
reads are needed as the buffers are drained.

Enabling run-time control of coefficients and/or resolutions affects
stalling between frames:

■ With no run-time control, there is only a few cycles of delay before
the behavior listed above begins.

■ Enabling run-time control of resolutions in nearest neighbor mode
adds about 20 clock cycles of delay between frames. In other modes,
it adds a maximum of 60 cycles delay.

■ Enabling run-time control of coefficients adds a constant delay of
about 20 cycles plus the total number of coefficients to be read. For
example, 16 taps and 32 phases in each direction would add a delay
of 20 + 2(16 × 32) = 1024 cycles.

Deinterlacer

In Bob mode, the Deinterlacer processes each video frame in two stages:

■ In the first stage, field zero is received on the input port. The
Deinterlacer alternates between simultaneously receiving a row on
the input port and producing a row of data on the output port, and
just producing a row of data on the output port without reading any
data from the input port. The delay from input to output is just a few
clock cycles.

■ In the second stage, field one is received on the input port and
discarded, and no output is generated.

In Weave mode, data input and output are decoupled through the use of
a triple buffer mechanism in external memory.
Altera Corporation Suite Version 7.1 4–29
May 2007 Video and Image Processing Suite User Guide

OpenCore Plus Time-Out Behavior
OpenCore Plus
Time-Out
Behavior

OpenCore Plus hardware evaluation supports the following two modes
of operation:

■ Untethered—the design runs for a limited time
■ Tethered—requires a connection between your board and the host

computer. If tethered mode is supported by all megafunctions in a
design, the device can operate for a longer time or indefinitely

All megafunctions in a device time out simultaneously when the most
restrictive evaluation time is reached. If there is more than one
megafunction in a design, a specific megafunction’s time-out behavior
may be masked by the time-out behavior of the other megafunctions.

The untethered timeout for all Video and Image Processing Suite
MegaCore functions is 1 hour; the tethered timeout value is indefinite.
The reset signal is forced high when the hardware evaluation time
expires. This keeps the Video and Image Processing MegaCore function
permanently in its reset state.

f For more information on OpenCore Plus hardware evaluation, see
“OpenCore Plus Evaluation” on page 1–5 and AN 320: OpenCore Plus
Evaluation of Megafunctions.

Parameters Tables 4–10 to 4–25 show the Video and Image Processing Suite
MegaCore function parameters.

1 The default parameter values are shown using bold text in the
tables.

Color Space Converter

Table 4–10 and Table 4–11 show the Color Space Converter MegaCore
function parameters. These parameters can be set in the MegaWizard
interface (see page 2–6).

Table 4–10. Color Space Converter Parameter Settings: General (Part 1 of 2)

Parameter Value Description

Image width 32–1920
Default = 640

Choose the required image width in pixels.

Image height 32–1080
Default = 480

Choose the required image height in pixels.
4–30 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

www.altera.com/literature/an/an320.pdf
www.altera.com/literature/an/an320.pdf

Specifications
Color Plane
Configuration

Three color planes in sequence, or
Three color planes in parallel

There must always be three color planes for this
function but you can choose whether the three
color planes are transmitted in sequence or in
parallel.

Input Data Type: Bits
per pixel per color
plane

4–20
Default = 8

Choose the number of input bits per pixel (per
color plane).

Input Data Type:
Data type

Unsigned, Signed Specify whether the input is unsigned or signed
2’s complement.

Input Data Type:
Guard bands

On or Off Turn on to enable a defined input range.

Input Data Type: Max -524288–1048575
Default = 255

Specify the input range maximum value.

Input Data Type: Min -524288–1048575
Default = 0

Specify the input range minimum value.

Output Data Type:
Bits per pixel per
color plane

4–20, Default = 8 Choose the number of output bits per pixel (per
color plane).

Output Data Type:
Data type

Unsigned, Signed Specify whether the output is unsigned or
signed 2’s complement.

Output Data Type:
Guard bands

On or Off Turn on to enable a defined output range.

Output Data Type:
Max

-524288–1048575
Default = 255

Specify the output range maximum value.

Output Data Type:
Min

-524288–1048575
Default = 0

Specify the output range minimum value.

Multiply results by 1,2,4,8,16,32,64 Specify the scale factor for the results.

Remove fraction bits
by

Round values to nearest integer,
Truncate values to integer

Choose the method of discarding fraction bits
resulting from the calculation.

Convert from signed
to unsigned by

Replacing negative values with zero,
Replacing negative with absolute value,
Ignore negative value

Choose the method of signed to unsigned
conversion for the results.

Constrain to output
range by

Saturating to min and max values,
Ignore range overflow and underflow

Choose the method used to constrain the
output to a range.

Table 4–10. Color Space Converter Parameter Settings: General (Part 2 of 2)

Parameter Value Description
Altera Corporation Suite Version 7.1 4–31
May 2007 Video and Image Processing Suite User Guide

Parameters
Table 4–11. Color Space Converter Parameter Settings: Operands

Parameter Value Description

Color model
conversion

Computer R'G'B' to Y'CbCr: SDTV
Y'CbCr: SDTV to Computer R'G'B'
Computer R'G'B' to Y'CbCr: HDTV
Y'CbCr: HDTV to Computer R'G'B'
Studio R'G'B' to Y'CbCr: SDTV
Y'CbCr: SDTV to Studio R'G'B'
Studio R'G'B to Y'CbCr: HDTV
Y'CbCr: HDTV to Studio R'G'B'
Y'IQ to Computer R'G'B'
Computer R'G'B' to Y'IQ
Y'UV to Computer R'G'B'
Computer R'G'B' to Y'UV
Custom

You can choose a predefined set of coefficients and
summands which are used for color model conversion at
compile time. Alternatively, you can create your own
custom set by modifying the din_0, din_1, and din_2
coefficients for dout_0, dout_1, and dout_2
separately.
The values are assigned in the order indicated by the
conversion name. For example, if you choose Computer
R'G'B' to Y'CbCr: SDTV, then din_0 = R’, din_1 = B’,
din_2 = G’, dout_0 = Y’, dout_1 = Cb, and dout_2 = Cr.

Coefficients and
Summands
A0, B0, C0, S0
A1, B1, C1, S1
A2, B2, C2, S2

12 fixed-point values Each coefficient or summand is represented by a white
cell with a purple cell underneath. The value in the white
cell is the desired value, and is editable. The value in the
purple cell is the actual value, determined by the fixed-
point type specified. The purple cells are not editable.
You can create a custom coefficient and summand set by
specifying one fixed-point value for each entry.

Coefficients:
Signed

On or Off Turn on to set the fixed point type used to store the
constant coefficients as having a sign bit.

Coefficients:
Integer bits

8–31
Default = 0

Specifies the number of integer bits for the fixed point
type used to store the constant coefficients.

Summands:
Signed

On or Off Turn on to set the fixed point type used to store the
constant summands as having a sign bit.

Summands:
Integer bits

8–31
Default = 8

Specifies the number of integer bits for the fixed point
type used to store the constant summands.

Coefficient and
summand
fraction bits

8–31
Default = 8

Specifies the number of fraction bits for the fixed point
type used to store the coefficients and summands.
4–32 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Chroma Resampler

Table 4–12 shows the Chroma Resampler MegaCore function parameters.
These parameters can be set in the MegaWizard interface (see page 2–10).

Gamma Corrector

Table 4–13 shows the Gamma Corrector MegaCore function parameters.
These parameters can be set in the MegaWizard interface (see page 2–12).

Table 4–12. Chroma Resampler Parameter Settings

Parameter Value Description

Image width 32–1920
Default = 640

Choose the required image width in pixels.

Image height 32–1080
Default = 480

Choose the required image height in pixels.

Bits per pixel per
color plane

4–20
Default = 8

Choose the number of bits per pixel (per color plane).

Color Plane
Configuration

Three color planes in
sequence

There must always be three color planes in sequence for this
function.

Conversion Format: 4:4:4 to 4:2:2,
4:4:4 to 4:2:0,
4:2:2 to 4:4:4,
4:2:0 to 4:4:4

Choose the format/sampling rate format for the input and output
frames. Note that either the input or the output format must be
4:4:4.

Horizontal
Interpolation:

Linear,
Nearest Neighbor

Choose the interpolation method to use in the horizontal
direction when re-sampling 4:4:4 data to or from 4:2:2 or 4:2:0.

Vertical
Interpolation:

Linear, Nearest
Neighbor

Choose the interpolation method to use in the vertical direction
when re-sampling 4:4:4 data to or from 4:2:0.

Table 4–13. Gamma Corrector Parameter Settings

Parameter Value Description

Image width 32–1920
Default = 640

Choose the required image width in pixels.

Image height 32–1080
Default = 480

Choose the required image height in pixels.

Bits per pixel per
color plane

4–16
Default = 8

Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence

1– 3 The number of color planes that are sent in sequence over one
data connection.
For example, a value of 3 for R'G'B' R'G'B' R'G'B'.
Altera Corporation Suite Version 7.1 4–33
May 2007 Video and Image Processing Suite User Guide

Parameters
Table 4–14 on page 4–34 describes control register map for the Gamma
Corrector. These registers are accessed via an Avalon-MM Slave port as
described in “Avalon-MM Slave Interfaces” on page 3–13, and must be set
by external hardware.

The control registers are read continuously during the operation of the
MegaCore function, so making a change to part of the Gamma look-up
table during the processing of a frame always has immediate effect. To
synchronize changes to frame boundaries, follow the procedure which is
described in “Avalon-MM Slave Interfaces” on page 3–13.

The width of each register in the Gamma Corrector control register map
is always equal to the value of the Bits per pixel per color plane parameter
selected in the MegaWizard interface.

2D FIR Filter

Table 4–15 and Table 4–16 show the 2D FIR Filter MegaCore function
parameters. These parameters can be set in the MegaWizard interface (see
page 2–13).

Table 4–14. Gamma Corrector Control Register Map

Address Register Name Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused.
Setting this address to 0 will cause the Gamma Corrector MegaCore
function to stop the next time control information is read. Refer to “Avalon-
MM Slave Interfaces” on page 3–13 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused.
Refer to “Avalon-MM Slave Interfaces” on page 3–13 for full details.

2–2N+1 where N is
the number of bits
per color plane.

Gamma Look-
Up Table

These registers contain a look-up table that is used to apply gamma
correction to video data. An input intensity value of x is gamma corrected
by replacing it with the contents of the (x+1)th entry in the look-up table.
Changing the values of these registers has an immediate effect on the
behavior of the MegaCore function. To ensure that gamma look-up values
do not change during processing of a video frame, use the Go bit to stop
the MegaCore function while the table is changed.

Table 4–15. 2D FIR Filter Parameter Settings: General (Part 1 of 2)

Parameter Value Description

Image width 32–1920
Default = 640

Choose the required image width in pixels.

Image height 32–1080
Default = 480

Choose the required image height in pixels.
4–34 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Number of color
planes in sequence

1–3 The number of color planes that are sent in sequence
over one data connection.
For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Input: Bits per pixel
per color plane

4–20
Default = 8

Choose the number of bits per pixel (per color plane).

Input: Data type Unsigned, Signed Choose whether input is unsigned or signed 2's
complement.

Input: Guard bands On or Off Turn this option on to enable a defined input range.

Input: Max 1,048,575 to -524,288
Default = 1

Set input range maximum value. (1)

Input: Min 1,048,575 to -524,288
Default = 1

Set input range minimum value. (1)

Output: Data type Unsigned, Signed Choose whether output is unsigned or signed 2's
complement.

Output: Guard bands On or Off Turn this option on to enable a defined output range.

Output: Max 1,048,575 to -524,288
Default = 1

Set output range maximum value. (2)

Output: Min 1048575 to -524288
Default = 1

Set output range minimum value. (2)

Discard fraction bits
by:

Round values to nearest
integer, Truncate values to
integer

Choose the method for discarding fractional bits
resulting from the FIR calculation.

Convert from signed
to unsigned by:

Replacing negative values
with zero, Replacing negative
values with absolute value,
Ignore negative values

Choose the method for signed to unsigned conversion
of the FIR results.

Constrain to range
by:

Saturating to min and max
values, Ignore range overflow
and underflow,

Choose the method used to constrain the output to a
range.

Table 4–16. 2D FIR Filter Parameter Settings: Coefficients (Part 1 of 2)

Parameter Value Description

Filter size 3x3, 5x5, 7x7 Choose the size in pixels of the convolution kernel used in the
filtering.

Coefficient set: Simple Smoothing,
Simple Sharpening,
Custom

You can choose a predefined set of simple smoothing or simple
sharpening coefficients which are used for color model convolution
at compile time. Alternatively, you can create your own custom set
of coefficients by modifying the coefficients in the matrix.

Table 4–15. 2D FIR Filter Parameter Settings: General (Part 2 of 2)

Parameter Value Description
Altera Corporation Suite Version 7.1 4–35
May 2007 Video and Image Processing Suite User Guide

Parameters
2D Median Filter

Table 4–17 shows the 2D Median Filter MegaCore function parameters.
These parameters can be set in the MegaWizard interface (see page 2–18).

Enable symmetric
mode

On or Off When turned on, only symmetric coefficients are allowed. This
option enables an optimization in the hardware which reduces the
number of multiplications required. In this mode a limited number of
matrix cells are editable and many of the values are automatically
inferred. Symmetric mode is enabled for the predefined coefficient
sets but can be disabled when setting custom coefficients. If you
unset this option while one of the predefined coefficient sets is
selected, its values are used as the defaults for a new custom set.

Coefficients 9, 25, or 49 fixed-
point values

Each coefficient is represented by a white box with a purple box
underneath. The value in the white box is the desired coefficient
value, and is editable. The value in the purple box is the actual
coefficient value as determined by the coefficient fixed point type
specified. The purple boxes are not editable. You can create a
custom set of coefficients by specifying one fixed-point value for
each entry in the convolution kernel. The matrix size depends on
the selected filter size.

Coefficient
Precision: Signed

On or Off Turn this option on if you want the fixed-point type used to store the
coefficients to have a sign bit.

Coefficient
Precision: Integer
bits:

0–35,
Default = 0

Specifies the number of integer bits for the fixed-point type used to
store the coefficients.

Coefficient
Precision: Fraction
bits:

0–35,
Default = 9

Specifies the number of fractional bits for the fixed point type used
to store the coefficients.

Prior to multiply
results by:

1,2,4,8,16,32,64 Choose the scale factor for the FIR result. The scaling factor can be
useful if you require a wider range output on an existing coefficient
set.

Notes to Table 4–16
(1) The maximum and minimum guard bands values specify a range in which the input should always fall. The 2D

FIR filter behaves unexpectedly for values outside this range.
(2) The output is constrained to fall within the specified range of maximum and minimum guard bands values.

Table 4–16. 2D FIR Filter Parameter Settings: Coefficients (Part 2 of 2)

Parameter Value Description

Table 4–17. 2D Median Filter Parameter Settings (Part 1 of 2)

Parameter Value Description

Image width 32–1920
Default = 640

Choose the required image width in pixels.
4–36 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Alpha Blending Mixer

Table 4–18 shows the Alpha Blending Mixer MegaCore function
parameters. These parameters can be set in the MegaWizard interface (see
page 2–19).

Image height 32–1080
Default = 480

Choose the required image height in pixels.

Bits per pixel per
color plane

4–20
Default = 8

Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence

1–3 The number of color planes that are sent in sequence over one
data connection.
For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Filter size 3x3, 5x5, 7x7 Choose the size of kernel in pixels to take the median from.

Table 4–17. 2D Median Filter Parameter Settings (Part 2 of 2)

Parameter Value Description

Table 4–18. Alpha Blending Mixer Parameter Settings (Part 1 of 2)

Parameter Value Description

Bits per pixel per
color plane

4–20
Default = 8

Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence

1–3 The number of color planes that are sent in sequence over one
data connection.
For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Number of layers
being mixed

2–8 Choose the number of image layers to overlay. Higher number
layers are mixed on top of lower layer numbers. The background
layer is always layer 0.

Alpha blending On or Off When this option is turned on, alpha data sink ports are generated
for each layer (including the background layer). This requires a
stream of alpha values; one value for each pixel. When turned off,
no alpha data sink ports are generated, and the image layers are
fully opaque.

Alpha bits per pixel
per color plane

2, 4, 8 Choose the number of bits used to represent the alpha coefficient.

Width 32–1920
Default = 640 or 320

Choose the required image width in pixels for each image layer
(background, layer 2, layer 3, layer 4, layer 5, layer 6, layer 7,
foreground). No layer width can be greater than the background
layer width. The default background layer width is 640; all other
layer widths default to 320.
Altera Corporation Suite Version 7.1 4–37
May 2007 Video and Image Processing Suite User Guide

Parameters
Table 4–19 on page 4–38 describes the Alpha Blending Mixer control
register map. These registers are accessed via an Avalon-MM Slave port
as described in “Avalon-MM Slave Interfaces” on page 3–13 and must be
set by external hardware. The width of each register in the Alpha
Blending Mixer control register map is 16 bits. The control data is read
once at the start of each frame and is buffered inside the MegaCore
function, so the registers may be safely updated during the processing of
a frame.

Height 32–1080
Default = 480 or 240

Choose the required image height in pixels for each image layer
(background, layer 2, layer 3, layer 4, layer 5, layer 6, layer 7,
foreground). No layer height can be greater than the background
layer height. The default background layer height is 480; all other
layer heights default to 240.

Table 4–18. Alpha Blending Mixer Parameter Settings (Part 2 of 2)

Parameter Value Description

Table 4–19. Alpha Blending Mixer Control Register Map

Address Register(s) Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this
address to 0 will cause the Alpha Blending Mixer MegaCore function to stop
the next time control information is read. Refer to “Avalon-MM Slave Interfaces”
on page 3–13 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer
to “Avalon-MM Slave Interfaces” on page 3–13 for full details.

2–4 Unused

5 Layer 1 X Offset in pixels from the left edge of the background to the left edge of layer 1.
The value of this register is checked at the start of each frame. If the register
is changed during the processing of a video frame, the change does not take
effect until the start of the next frame.

6 Layer 1 Y Offset in pixels from the top edge of the background to the top edge of layer 1.
The value of this register is checked at the start of each frame. If the register
is changed during the processing of a video frame, the change does not take
effect until the start of the next frame.

7 Layer 1 Active Layer 1 is only displayed if the zeroth bit of this control register is set. The value
of this register is checked at the start of each frame. If the register is changed
during the processing of a video frame, the change does not take effect until
the start of the next frame.

8 Layer 2 X ….

…. …. ….

Note to Table 4–19:
(1) The rows in the table are repeated in ascending order for each layer from 1 to the foreground layer.
4–38 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Scaler

Table 4–20, Table 4–21, and Table 4–22 show the Scaler MegaCore
function parameters. These parameters can be set in the MegaWizard
interface (see page 2–20).

Table 4–20. Scaler Parameter Settings: Resolution

Parameter Value Description

Run-time control of
image size and
clipping

On or Off Turn on to enable run-time control of image size and clipping.
The input and output size parameters control the maximum
values when this option is selected.

Input image width 32–1920, Default = 1024 Choose the required input width in pixels.

Input image height 32–1080, Default = 768 Choose the required input height in pixels.

Output image width 32–1920, Default = 640 Choose the required output width in pixels.

Output image height 32–920, Default = 480 Choose the required output height in pixels.

Bits per pixel per
color plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color
planes

1–3, Default = 3 The number of color planes that are sent over one data
connection.
For example, a value of 3 for R'G'B' R'G'B' R'G'B' in serial.

Color planes
transmission format

Sequence, Parallel The transmission mode used for the specified number of color
planes.

Enable image
clipping

On or Off When this option is turned on, the input image is clipped. If run-
time control is also enabled, the clipping rectangle is specified
using the Avalon-MM interface. If run-time control is disabled,
the clipping rectangle is specified by the Width, X offset,
Height, and Y offset controls.

Width 32 to input image width,
Default = 1024

Specify the width of the clipping rectangle for the input image.

X offset positive integer,
Default = 0

Specify the x coordinate for the left edge of the clipping
rectangle. 0 is the left edge of the input image. Note (1)

Height 32 to input image height,
Default = 768

Specify the height of the clipping rectangle for the input image.

Y offset positive integer,
Default = 0

Specify the y coordinate for the top edge of the clipping
rectangle. 0 is the top edge of the input image. Note (2)

Notes to Table 4–20:
(1) The X offset value plus the clipping width must be less than or equal to the input image width.
(2) The Y offset value plus the clipping height must be less than or equal to the input image height.
Altera Corporation Suite Version 7.1 4–39
May 2007 Video and Image Processing Suite User Guide

Parameters
Table 4–21. Scaler Parameter Settings: Algorithm and Precision

Parameter Value Description

Scaling Algorithm Nearest Neighbor,
Bilinear, Bicubic,
Polyphase

Choose the scaling algorithm. See pages 4–14 to 4–16 for
more information about these options.

Number of vertical taps 3–16,
Default = 4

Specify the number of vertical taps.

Number of vertical phases 2, 4, 8, 16, 32, 64,
128, 256

Specify the number of vertical phases.

Number of horizontal taps 3–16,
Default = 4

Specify the number of horizontal taps.

Number of horizontal
phases

2, 4, 8, 16, 32, 64,
128, 256

Specify the number of horizontal phases.

Vertical Coefficient
Precision: Signed

On or Off Turn this option on if you want the fixed-point type used to store
the vertical coefficients to have a sign bit.

Vertical Coefficient
Precision: Integer bits:

0–15,
Default = 1

Specifies the number of integer bits for the fixed-point type
used to store the vertical coefficients.

Vertical Coefficient
Precision: Fraction bits:

3–15,
Default = 7

Specifies the number of fractional bits for the fixed point type
used to store the vertical coefficients.

Number of bits to preserve
between vertical and
horizontal filtering

3–32,
Default = 9

Specifies the number of bits to preserve between vertical and
horizontal filtering.

Horizontal Coefficient
Precision: Signed

On or Off Turn this option on if you want the fixed-point type used to store
the horizontal coefficients to have a sign bit.

Horizontal Coefficient
Precision: Integer bits:

0–15,
Default = 1

Specifies the number of integer bits for the fixed-point type
used to store the horizontal coefficients.

Horizontal Coefficient
Precision: Fraction bits:

0–15,
Default = 7

Specifies the number of fractional bits for the fixed point type
used to store the horizontal coefficients.

Table 4–22. Scaler Parameter Settings: Coefficients (Part 1 of 2)

Parameter Value Description

Vertical Coefficient Data:
Filter function

Lanczos 1–12, or
Custom
Default = Lanczos 2

You can choose from 12 pre-defined Lanczos functions or
use the coefficients saved in a custom coefficients file.

Vertical Coefficient Data:
Custom coefficient file

used specified When a Custom function is selected, you can browse for a
comma-separated value file containing custom coefficients.
Use the Preview coefficients button to view the current
coefficients in a preview window.
4–40 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Table 4–23 describes the Scaler control register map. These registers are
accessed via an Avalon-MM Slave port as described in “Avalon-MM
Slave Interfaces” on page 3–13 and must be set by external hardware. The
control data is read once at the start of each frame and is buffered inside
the MegaCore function, so the registers may be safely updated during the
processing of a frame

Horizontal Coefficient Data:
Filter function

Lanczos 1–12, or
Custom
Default = Lanczos 2

You can choose from 12 pre-defined Lanczos functions or
use the coefficients saved in a custom coefficients file.

Horizontal Coefficient Data:
Custom coefficient file

used specified When a Custom function is selected, you can browse for a
comma-separated value file containing custom coefficients.
Use the Preview coefficients button to view the current
coefficients in a preview window.

Table 4–22. Scaler Parameter Settings: Coefficients (Part 2 of 2)

Parameter Value Description

Table 4–23. Scaler Control Register Map (Part 1 of 2)

Address Register Description

0 Go The zeroth bit of this register is the Go bit, all other bits are unused. Setting
this address to 0 will cause the Scaler MegaCore function to stop the next
time control information is read. Refer to “Avalon-MM Slave Interfaces” on
page 3–13 for full details.

1 Status The Scaler MegaCore function sets this address to 0 between frames. It is
set to 1 while the core is processing data and cannot be stopped.

2 Input width The width of the input frames in pixels.

3 Input height The height of the input frames in pixels.

4 Output width The width of the output frames in pixels.

5 Output height The height of the output frames in pixels.

6 Clipping x
offset

The x coordinate for the left edge of the clipping rectangle. 0 is the left edge
of the input image. If clipping is disabled, this address is ignored

7 Clipping y
offset

The y coordinate for the top edge of the clipping rectangle. 0 is the top edge
of the input image. If clipping is disabled, this address is ignored.

8 Clipping width The height of the clipping rectangle for the input image.

9 Clipping height The width of the clipping rectangle for the input image.

10 to 9+Nv×Pv Vertical
coefficient data

If runtime loading of coefficients is enabled with Nv vertical taps and Pv
vertical phases, these addresses are for the vertical coefficients. They are
laid out with the taps in order for each phase beginning with tap 0, phase 0
at address 10; tap 1, phase 0 at address 11 and continuing up to tap Nv–1,
phase Pv–1 at address 9+Nv×Pv.
Altera Corporation Suite Version 7.1 4–41
May 2007 Video and Image Processing Suite User Guide

Parameters
Deinterlacer

Table 4–24 shows the Deinterlacer MegaCore function parameters. These
parameters can be set in the MegaWizard interface (see page 2–25).

Line Buffer Compiler

Table 4–25 shows the Line Buffer Compiler parameters. These parameters
can be set in the MegaWizard interface (see page 2–27).

10+Nv×Pv to
9+Nv×Pv.+Nh×Ph

Horizontal
coefficient data

The horizontal coefficients are arranged in the same way as the vertical
coefficients and lie immediately after them in the address space.

Table 4–23. Scaler Control Register Map (Part 2 of 2)

Address Register Description

Table 4–24. Deinterlacer Parameter Settings

Parameter Value Description

Image width 32–1920
Default = 640

Choose the required image width in pixels.

Image height 32–1080
Default = 480

Choose the required image height in pixels.

Bits per pixel per color
plane

4–20
Default = 8

Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence

1–3,
Default = 3

The number of color planes that are sent in sequence
over one data connection.
For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Deinterlacing Method Bob - Scanline Duplication,
Bob - Scanline Interpolation,
Weave

See “Deinterlacing Methods” on page 4–23.

Base address of frame
buffers

Any 32-bit value Address of the frame buffers in external memory when
the Weave deinterlacing method is used.

Table 4–25. Line Buffer Compiler Parameter Settings

Parameter Value Description

Line length 1–1920, Default = 64 The length of each line buffer in bits.

Line width 1–64, Default = 8 The width of each line buffer in bits.

Number of lines 1–16, Default = 3 The number of line buffers required.

Note to Table 4–25:
(1) The width of the output port is equal to the line width multiplied by the number of lines and must not exceed 64.
4–42 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Signals Tables 4–26 to 4–34 list the input and output signals for the Video and
Image Processing Suite MegaCore functions.

Color Space Converter

Table 4–26 shows the input and output signals for the Color Space
Converter MegaCore function.

Chroma Resampler

Table 4–27 shows the input and output signals for the Chroma Resampler
MegaCore function.

Table 4–26. Color Space Converter Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of the
clock signal.

din_data In Avalon-ST data bus of input port din. Pixel data is transferred into the MegaCore
function over this bus.

din_ready Out Avalon-ST ready signal of input port din. This signal indicates when the
MegaCore function is ready to receive data.

din_valid In Avalon-ST valid signal of input port din. This signal identifies the cycles when
the port should input data.

dout_data Out Avalon-ST data bus of output port dout. Pixel data is transferred out of the
MegaCore function over this bus.

dout_ready In Avalon-ST ready signal of output port dout. This signal indicates when the
MegaCore can legally output data.

dout_valid Out Avalon-ST valid signal of output port dout. This signal is asserted when the
MegaCore function is outputting data.

Table 4–27. Chroma Resampler Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of the
clock signal.
Altera Corporation Suite Version 7.1 4–43
May 2007 Video and Image Processing Suite User Guide

Signals
Gamma Corrector

Table 4–28 shows the input and output signals for the Gamma Corrector
MegaCore function.

din_data In Avalon-ST data bus of input port din. Pixel data is transferred into the MegaCore
function over this bus.

din_ready Out Avalon-ST ready signal of input port din. This signal indicates when the
MegaCore function is ready to receive data.

din_valid In Avalon-ST valid signal of input port din. This signal identifies the cycles when
the port should input data.

dout_data Out Avalon-ST data bus of output port dout. Pixel data is transferred out of the
MegaCore function over this bus.

dout_ready In Avalon-ST ready signal of output port dout. This signal indicates when the
MegaCore can legally output data.

dout_valid Out Avalon-ST valid signal of output port dout. This signal is asserted when the
MegaCore function is outputting data.

Table 4–27. Chroma Resampler Signals (Part 2 of 2)

Signal Direction Description

Table 4–28. Gamma Corrector Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the
rising edge of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is
asserted high. The reset must be de-asserted synchronously
with respect to the rising edge of the clock signal.

din_data In Avalon-ST data bus of input port din. Pixel data is transferred
into the MegaCore function over this bus.

din_ready Out Avalon-ST ready signal of input port din. This signal indicates
when the MegaCore function is ready to receive data.

din_valid In Avalon-ST valid signal of input port din. This signal identifies
the cycles when the port should input data.

dout_data Out Avalon-ST data bus of output port dout. Pixel data is
transferred out of the MegaCore function over this bus.

dout_ready In Avalon-ST ready signal of output port dout. This signal
indicates when the MegaCore can legally output data.

dout_valid Out Avalon-ST valid signal of output port dout. This signal is
asserted when the MegaCore function is outputting data.
4–44 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
2D FIR Filter

Table 4–29 shows the input and output signals for the 2D FIR Filter
MegaCore function.

gamma_lut_av_address In Avalon-MM address bus of slave port gamma_lut. Specifies
a word offset into the slave address space.

gamma_lut_av_chipselect In Avalon-MM chipselect signal of slave port gamma_lut.
The gamma_lut port ignores all other signals unless this signal
is asserted.

gamma_lut_av_readdata Out Avalon-MM readdata bus of slave port gamma_lut. These
output lines are used for read transfers.

gamma_lut_av_write In Avalon-MM write signal of slave port gamma_lut. When this
signal is asserted, the gamma_lut port accepts new data from
the writedata bus.

gamma_lut_av_writedata In Avalon-MM writedata bus of slave port gamma_lut. These
input lines are used for write transfers.

gamma_lut_test_writeack In Test port associated with Avalon-MM slave port gamma_lut.
This port exists for internal testing purposes only and should not
be connected in user designs.

gamma_lut_test_writetog Out Test port associated with Avalon-MM slave port gamma_lut.
This port exists for internal testing purposes only and should not
be connected in user designs.

Table 4–28. Gamma Corrector Signals (Part 2 of 2)

Signal Direction Description

Table 4–29. 2D FIR Filter Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high. The
reset must be de-asserted synchronously with respect to the rising edge of the
clock signal.

din_data In Avalon-ST data bus of input port din. Pixel data is transferred into the MegaCore
function over this bus.

din_ready Out Avalon-ST ready signal of input port din. This signal indicates when the
MegaCore function is ready to receive data.

din_valid In Avalon-ST valid signal of input port din. This signal identifies the cycles when
the port should input data.

dout_data Out Avalon-ST data bus of output port dout. Pixel data is transferred out of the
MegaCore function over this bus.
Altera Corporation Suite Version 7.1 4–45
May 2007 Video and Image Processing Suite User Guide

Signals
2D Median Filter

Table 4–30 shows the input and output signals for the 2D Median Filter
MegaCore function.

dout_ready In Avalon-ST ready signal of output port dout. This signal indicates when the
MegaCore can legally output data.

dout_valid Out Avalon-ST valid signal of output port dout. This signal is asserted when the
MegaCore function is outputting data.

Table 4–29. 2D FIR Filter Signals (Part 2 of 2)

Signal Direction Description

Table 4–30. 2D Median Filter Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of the
clock signal.

din_data In Avalon-ST data bus of input port din. Pixel data is transferred into the MegaCore
function over this bus.

din_ready Out Avalon-ST ready signal of input port din. This signal indicates when the
MegaCore function is ready to receive data.

din_valid In Avalon-ST valid signal of input port din. This signal identifies the cycles when
the port should input data.

dout_data Out Avalon-ST data bus of output port dout. Pixel data is transferred out of the
MegaCore function over this bus.

dout_ready In Avalon-ST ready signal of output port dout. This signal indicates when the
MegaCore can legally output data.

dout_valid Out Avalon-ST valid signal of output port dout. This signal is asserted when the
MegaCore function is outputting data.
4–46 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Alpha Blending Mixer

Table 4–31 shows the input and output signals for the Alpha Blending
Mixer MegaCore function.

Table 4–31. Alpha Blending Mixer Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the
rising edge of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is
asserted high. The reset must be de-asserted synchronously with
respect to the rising edge of the clock signal.

alpha_in_N_data (1) In Avalon-ST alpha data bus of input port din for layer N. Pixel
data is transferred into the MegaCore function over this bus.

alpha_in_N_ready (1) Out Avalon-ST alpha ready signal of input port din for layer N. This
signal indicates when the MegaCore function is ready to receive
data.

alpha_in_N_valid (1) In Avalon-ST alpha valid signal of input port din for layer N. This
signal identifies the cycles when the port should input data.

din_N_data In Avalon-ST data bus of input port din for layer N. Pixel data is
transferred into the MegaCore function over this bus.

din_N_ready Out Avalon-ST ready signal of input port din for layer N. This signal
indicates when the MegaCore function is ready to receive data.

din_N_valid In Avalon-ST valid signal of input port din for layer N. This signal
identifies the cycles when the port should input data.

dout_data Out Avalon-ST data bus of output port dout. Pixel data is transferred
out of the MegaCore function over this bus.

dout_ready In Avalon-ST ready signal of output port dout. This signal
indicates when the MegaCore can legally output data.

dout_valid Out Avalon-ST valid signal of output port dout. This signal is
asserted when the MegaCore function is outputting data.

control_av_address In Avalon-MM address bus of slave port mix_control.
Specifies a word offset into the slave address space.

control_av_chipselect In Avalon-MM chipselect signal of slave port mix_control.
The gamma_lut port ignores all other signals unless this signal
is asserted.

control_av_readdata Out Avalon-MM readdata bus of slave port mix_control. These
output lines are used for read transfers.

control_av_write In Avalon-MM write signal of slave port mix_control. When
this signal is asserted, the mix_control port accepts new data
from the writedata bus.
Altera Corporation Suite Version 7.1 4–47
May 2007 Video and Image Processing Suite User Guide

Signals
Scaler

Table 4–32 shows the input and output signals for the Scaler MegaCore
function.

control_av_writedata In Avalon-MM writedata bus of slave port mix_control.
These input lines are used for write transfers.

control_test_writeack In Test port associated with Avalon-MM slave port mix_control.
This port exists for internal testing purposes only and should not
be connected in user designs.

control_test_writetog Out Test port associated with Avalon-MM slave port mix_control.
This port exists for internal testing purposes only and should not
be connected in user designs.

Note to Table 4–31
(1) These ports are only present if alpha blending is enabled. Note that alpha channel ports are created for layer zero

even though no alpha mixing is possible for layer zero (the background layer). These ports are ignored and can
safely be left unconnected.

Table 4–31. Alpha Blending Mixer Signals (Part 2 of 2)

Signal Direction Description

Table 4–32. Scaler Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the
rising edge of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is
asserted high. The reset must be de-asserted synchronously with
respect to the rising edge of the clock signal.

din_data In Avalon-ST data bus of input port din. Pixel data is transferred
into the MegaCore function over this bus.

din_ready Out Avalon-ST ready signal of input port din. This signal indicates
when the MegaCore function is ready to receive data.

din_valid In Avalon-ST valid signal of input port din. This signal identifies
the cycles when the port should input data.

dout_data Out Avalon-ST data bus of output port dout. Pixel data is transferred
out of the MegaCore function over this bus.

dout_ready In Avalon-ST ready signal of output port dout. This signal
indicates when the MegaCore can legally output data.

dout_valid Out Avalon-ST valid signal of output port dout. This signal is
asserted when the MegaCore function is outputting data.

control_av_address (1) In Avalon-MM address bus of slave port mix_control.
Specifies a word offset into the slave address space.
4–48 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Deinterlacer

Table 4–33 shows the input and output signals for the Deinterlacer
MegaCore function.

control_av_chipselect
(1)

In Avalon-MM chipselect signal of slave port mix_control.
The gamma_lut port ignores all other signals unless this signal
is asserted.

control_av_readdata (1) Out Avalon-MM readdata bus of slave port mix_control. These
output lines are used for read transfers.

control_av_write (1) In Avalon-MM write signal of slave port mix_control. When
this signal is asserted, the mix_control port accepts new data
from the writedata bus.

control_av_writedata
(1)

In Avalon-MM writedata bus of slave port mix_control.
These input lines are used for write transfers.

control_test_writeack
(1)

In Test port associated with Avalon-MM slave port mix_control.
This port exists for internal testing purposes only and should not
be connected in user designs.

control_test_writetog
(1)

Out Test port associated with Avalon-MM slave port mix_control.
This port exists for internal testing purposes only and should not
be connected in user designs.

Note to Table 4–31
(1) These ports are only present if run-time coefficient control or run-time resolution control is enabled.

Table 4–32. Scaler Signals (Part 2 of 2)

Signal Direction Description

Table 4–33. Deinterlacer Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function
operates on the rising edge of the clock signal.

reset In The MegaCore function is asynchronously reset when
reset is asserted high. The reset must be de-asserted
synchronously with respect to the rising edge of the
clock signal.

din_data In Avalon-ST data bus of input port din. Pixel data is
transferred into the MegaCore function over this bus.

din_ready Out Avalon-ST ready signal of input port din. This signal
indicates when the MegaCore function is ready to
receive data.

din_valid In Avalon-ST valid signal of input port din. This signal
identifies the cycles when the port should input data.
Altera Corporation Suite Version 7.1 4–49
May 2007 Video and Image Processing Suite User Guide

Signals
dout_data Out Avalon-ST data bus of output port dout. Pixel data is
transferred out of the MegaCore function over this bus.

dout_ready In Avalon-ST ready signal of output port dout. This
signal indicates when the MegaCore can legally output
data.

dout_valid Out Avalon-ST valid signal of output port dout. This
signal is asserted when the MegaCore function is
outputting data.

read_master_av_address Out Avalon-MM address bus of read_master master
port. Specifies a byte address in the Avalon-MM
address space.

read_master_av_read Out Avalon-MM read signal of read_master master port.
Asserted to indicate read requests from the master to
the system interconnect fabric.

read_master_av_readdata In Avalon-MM readdata bus of read_master master
port. These input lines carry data for read transfers.

read_master_av_readdatavalid In Avalon-MM readdatavalid signal of
read_master master port. This signal is asserted by
the system interconnect fabric when requested read
data has arrived.

read_master_av_waitrequest In Avalon-MM waitrequest signal of read_master
master port. Asserted by the system interconnect fabric
to cause the master port to wait.

write_master_av_address Out Avalon-MM address bus of write_master master
port. Specifies a byte address in the Avalon-MM
address space.

write_master_av_write Out Avalon-MM write signal of write_master master
port. Asserted to indicate write requests from the master
to the system interconnect fabric.

write_master_av_writedata Out Avalon-MM writedata bus of write_master
master port. These output lines carry data for write
transfers.

write_master_av_waitrequest In Avalon-MM waitrequest signal of write_master
master port. Asserted by the system interconnect fabric
to cause the master port to wait.

Note to Table 4–33:
(1) The write_master_* and read_master_* signals are only present when you are using Weave deinterlacing.

Table 4–33. Deinterlacer Signals (Part 2 of 2)

Signal Direction Description
4–50 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

Specifications
Line Buffer Compiler

Table 4–34 shows the input and output signals for the Line Buffer
Compiler MegaCore function.

MegaCore
Verification

Before releasing a version of the MegaCore function, Altera runs
comprehensive regression tests to verify its quality and correctness.

Custom variations of the MegaCore functions are generated to exercise its
various parameter options, and the resulting simulation models are
thoroughly simulated and the results verified against bit-accurate master
simulation models.

References 1. E Catmull and R Rom. A class of local interpolating splines. Computer
Aided Geometric Design, pages 317–326, 1974.

In addition, Altera application notes, white papers, and user guides
providing more detailed explanations of how to effectively design with
MegaCore functions and the Quartus II software are available at the
Altera website: www.altera.com.

Table 4–34. Line Buffer Compiler Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high. The
reset must be de-asserted synchronously with respect to the rising edge of the clock
signal.

din In Data input bus. Pixel data is transferred into the MegaCore function over this bus.

dout Out Data output bus. Pixel data is transferred out of the MegaCore function over this bus.

enable In Data enable. Data is latched from the input bus din and shifted through the Line
Buffer Compiler when enable is high.
Altera Corporation Suite Version 7.1 4–51
May 2007 Video and Image Processing Suite User Guide

References
4–52 Suite Version 7.1 Altera Corporation
Video and Image Processing Suite User Guide May 2007

	Video and Image Processing Suite
	Contents
	About This User Guide
	Revision History
	How to Contact Altera
	Typographic Conventions

	1. About This MegaCore Function Suite
	Release Information
	Device Family Support
	Features
	General Description
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Deinterlacer
	Line Buffer Compiler
	Example Design
	DSP Builder Support
	OpenCore Plus Evaluation

	Performance
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Deinterlacer
	Line Buffer Compiler

	2. Getting Started
	Design Flow
	Video and Image Processing Suite Tutorial
	Create a New Quartus II Project
	Launch the MegaWizard Plug-In Manager
	Parameterize
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Deinterlacer
	Line Buffer Compiler

	Set Up Simulation
	Generate Files

	Simulate the Design
	Compile the Design
	Program a Device
	Set Up Licensing

	3. Interfaces
	Interface Types
	Avalon-ST Interfaces
	Examples
	Data Transfer in Parallel
	Data Transfer in Sequence

	Image Streaming Protocol Specification
	Parameters of the Image Streaming Protocol
	Specification of the Type of Avalon Streaming Interfaces Used
	Rules of the Image Streaming Protocol

	Avalon-MM Slave Interfaces
	Specification of the Type of Avalon-MM Slave Interfaces Used

	Avalon-MM Master Interfaces
	Specification of the Type of Avalon-MM Master Interfaces Used

	4. Specifications
	Functional Description
	Color Space Converter
	Input and Output Data Types
	Color Space Conversion
	Constant Precision
	Calculation Precision
	Result to Output Data Type Conversion

	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	Calculation Precision
	Coefficient Precision
	Scaling of the Result
	Data Type Conversion for Output

	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Nearest Neighbor Algorithm
	Bilinear Algorithm
	Resource Usage
	Algorithmic Description

	Polyphase and Bicubic Algorithms
	Resource Usage
	Algorithmic Description
	Choosing and Loading Coefficients
	Recommended Parameters

	Deinterlacer
	Deinterlacing Methods
	Bob Scanline Duplication
	Bob Scanline Interpolation

	Output Frame Rate
	Triple Buffering

	Line Buffer Compiler

	Stall Behavior
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Deinterlacer

	OpenCore Plus Time-Out Behavior
	Parameters
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Deinterlacer
	Line Buffer Compiler

	Signals
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Deinterlacer
	Line Buffer Compiler

	MegaCore Verification
	References

