

Model-Based Design for Altera FPGAs Using HDL Code Generation

7

Separate Views of DSP Implementation

System Designer

FPGA Designer

FPGA Hardware

Faraday Accelerates SIP Development and Shrinks NAND Flash Controller ECC Engine Gate Count by 57%

Faraday's silicon IP on an SoC.

Challenge

Accelerate the development of SoCs and ASICs

Solution

Use MathWorks tools for Model-Based Design to speed up system-level simulations, improve system performance, and shorten time-to-market

Results

- Simulations 200 times faster
- Throughput performance increased by 15%
- Gate count cut by 57%

"The Simulink environment is ideal for system-level architecture exploration. The simulations are 200 times faster than they were in our previous workflow — and Simulink models can be easily converted to C as well as to HDL code, which enables high scalability and reusability."

Ken Chen Faraday

From Algorithm to Synthesizable RTL

Digital Down Converter

- DDC accepts
 - A high sample-rate passband signal (may be 50 to 100 Msps)
- DDC produces
 - A low sample-rate baseband signal ready for demodulation

Fixed Point Analysis Digital Down Converter

- Convert floating point to fixed point models
 - Automatic tracking of signal range (also intermediate quantities)
 - Fraction lengths recommendation
- Bit-true models in the same environment
 - Quantify the impact of fixed point quantization

Find and fix issues with fixed point easily

Automatic HDL Code Generation

Digital Down Converter

Integrated HDL Verification

Verification Challenges:

HDL Verification

- Design the Test Bench twice
 - 10 to 1 ratio of Test bench LOC to Design LOC
- Many stimulus files from MATLAB
- These are ideal references which require pre- and post-processing
- How to analyze results?

Verification Challenges:

HDL Verification

Demo: Re-Use System Level Test Bench

Co-Simulation with HDL simulators

Digital Down Converter

From Algorithm to FPGA Prototyping and Verification

Next Steps ...

 Visit <u>www.mathworks.com/fpga</u> for more information

- 2. Watch our FPGA webinars:
 <u>mathworks.com/company/events/webinars</u>
- 3. Contact your local sales reps for a <u>trial</u> of MathWorks HDL code generation and verification products

