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1 INTRODUCTION

1.1 Purpose and scope

This document provides recommendations for development and usage of VHDL models
intended for board-level simulation. This document is intended to be read together with
the VHDL Modelling Guidelines, RD1. It could be used in ESA developments of models
for board-level simulation and for simulation of board designs comprising such models.

The information herein is not to be considered as requirements, although sometimes
expressed as such, but merely as useful hints and recommendations.

The purpose of these recommendations is to define modelling criteria that will produce
models for board-level simulation that are highly accurate in both functionality and
timing, and that will provide sufficient simulation performance to facilitate long
simulation runs. The document also provides sufficient information to allow someone
with little VHDL knowledge to perform a simulation of a board design using models for
board-level simulation.

Parts of the document, such as the discussion on model verification, can also be used for
ASIC developments. Requirements on models for board-level simulation and VHDL
models used for synthesis are dissimilar and therefore are no synthesis aspects discussed
in this document. The document does not address distribution of models for board-level
simulation nor the protection of design information, issues which are discussed in “The
Usage of VHDL in the European Space Agency”, RD6.

This document is not intended to be a guide to the VHDL language itself. On the contrary
is the reader expected to have previous VHDL knowledge before developing a model
intended for board-level simulation.

1.2 Document organisation

This document is divided in five major parts, the first one covering the definition and
benefits of board-level simulation, followed by guidelines for developing models for
board-level simulation. The third part covers the verification of these model, and is
followed by a description on how to model and verify a board design. The final part
specifies requirements on model documentation.

For each requirement or suggestion stated in the document there is normally an
accompanying explanation and often a code example or a figure. All code examples in the
document have been taken from a complete model for board-level simulation, although
the VHDL code may sometimes have been reduced to highlight the essential parts. The
code examples are therefore not always possible to be analysed by a VHDL simulator as
presented. A complete model is not included in the document due to the prohibitive size
of the source code, but is made available viaftp as described in section 1.3.
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1.3 References

This document is available from ESA in the PostScript format viaftp at URL
ftp://ftp.estec.esa.nl/pub/vhdl/doc/BoardLevel.ps.

Additional information on board-level simulation, including a complete example, is
available at URLhttp://www.estec.esa.nl/wsmwww/vhdl/boardlevel.html.

The following documents are being referenced:

RD1 VHDL Modelling Guidelines,
P. Sinander, ESA ASIC/001, European Space Agency, The Netherlands, 1994,
URL ftp://ftp.estec.esa.nl/pub/vhdl/doc/ModelGuide.ps

RD2 IEEE Standard VHDL Language Reference Manual,
IEEE Std 1076-1993, IEEE, New York, USA, 1994

RD3 IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(Std_logic_1164), IEEE Std 1164-1993, IEEE, New York, USA, 1993

RD4 IEEE Standard VITAL ASIC Modelling Specification , Version 3.0,
IEEE, New York, USA, URLhttp://vhdl.org/vi/vital

RD5 Built-In Test for VLSI: Pseudorandom Techniques,
P. H. Bardell et al., John Wiley & Sons, New York, USA, 1987

RD6 The Usage of VHDL in the European Space Agency,
P. Sinander, European Space Agency, The Netherlands, 1995,
URL ftp://ftp.estec.esa.nl/pub/vhdl/doc/UseOfVHDL.ps

RD7 VHDL Coding Styles and Methodologies: an In-Depth Tutorial,
B. Cohen, Kluwer Academic Publishers, USA, 1995

1.4 Conventions

A component modelin this document is a gate level netlist or a synthesisable Register
Transfer level, RTL, description, in VHDL or any other notation, representing the logic
design from which the component has been manufactured and being suitable for
simulation.

The types and subprograms declared in the packages ESA.Simulation defined in RD1,
Std.Standard andStd.TextIO defined in RD2,IEEE.Std_Logic_1164 defined in RD3, and
IEEE.Vital_Timing andIEEE.Vital_Primitives defined in RD4, will be addressed in this
document without necessarily further stating their origin or in which package they belong.
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2 BOARD-LEVEL SIMULATION

This section defines board-level simulation and describes its benefits and limitations. By
knowing the purpose and characteristics of models intended for board-level simulation it
is more likely that such a simulation will be successful. Knowing what can and cannot be
achieved using board-level simulation can reduce unprofitable efforts in advance.

2.1 Definition of board-level simulation

Board-level simulation can be defined as simulating the functionality of one or several
printed circuit boards built with standard components, possibly incorporating Application
Specific Integrated Circuits, ASIC, and Application Specific Standard Products, ASSP.
Board-level simulation is also known under the names rapid or virtual prototyping and
sometimes system simulation. The purpose of board-level simulation is to verify the
behaviour of the board design, e.g. that the components operate correctly in the selected
operating modes.

When board designs contain processors it is also possible to perform verification of the
hardware-software interaction, such as verifying that ASIC registers can be programmed
and software drivers work properly etc. In addition, the performance of the processor
board could be evaluated. Board-level simulation will also give some information about
timing correctness, though it can probably not replace worst-case timing analysis.

Board-level simulation does not comprise verification of individual ASICs during their
development. It does not comprise system performance simulation including aspects such
as throughput, latency, buffer allocation and utilisation, where neither accurate data nor
clock behaviour is considered being essential.

Figure 1: The designers view of a board design when using board-level simulation.

Entering state S1
Entering state S3
Entering state S5
Entering state S0

SW C2H=11000010B
R0 34H=00110100B
R1 F3H=11110011B
R2 ECH=11101100B

Interrupt 2
Interrupt 5
Interrupt 1
Interrupt 2

LD R0,R3,0EFFH
LD R1,R2
OR R0,R1,01BCH
ST R0,R3,0EFFH
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2.2 Benefits of board-level simulation

The feasibility and benefits of board-level simulation have already been proven in several
projects. It supports a top-down methodology, allowing simulation of boards not fully
implemented, enabling the designer to work with incomplete specifications of the own
system or component and facilitates early verification of the design requirements. It also
allows the designer to explore different design solutions and to prototype manageable
parts of larger systems.

Product specifications can be verified before any manufacturing or breadboarding is
started. This is useful when defining a system or component in a proposal or to ensure that
when a breadboard is built it does not contain functional errors.

When designing an ASIC, its operation in a board design can be verified before
manufacture. If models intended for board-level simulation are provided before the first
silicon, significant savings in schedule can be obtained.

Integration can be performed earlier and the first design and verification loop can be done
without any hardware manufacturing. The manufacturing can be postponed until all
specifications have settled and all interfaces have been verified. It permits full laboratory
integration without any available hardware, allowing the first integration to be done
earlier in the design. The designer can deliver a board design comprising models for
board-level simulation to the user for early system verification.

Special-built equipment for check-out and unit or system testing, which is nowadays as
complex as the actual design, can be modelled as well. Allowing the prototype and the test
equipment to be simulated together before any of them are built, which can reduce
interfacing problems, or even reduce the need for the test equipment being built.

Models for board-level simulation allow the test engineer to simulate situations that are
difficult to capture in real hardware due to timing synchronisation etc., resulting in a more
thorough verification of the board design. Board-level simulation provides the designer
with unlimited probing and acquisition points, not always possible to realise for the
hardware.

Models for board-level simulation provide limited simulation support during parallel
development of hardware and software, since this type of simulations usually take long
time to perform, but delivers high functional and timing accuracy. However, it has been
shown that by carefully selecting which software parts to simulate the time spent
simulating can be reduced to manageable lengths. It is perhaps not always feasible to boot
a complete operating system and launch applications, but all the firmware and hardware
drivers could be verified using board-level simulation.

Board-level simulation enables hardware and software designers to work together in an
early stage and to solve interfacing problems before committing the hardware for
manufacturing. This area of simulation will become more interesting with the
continuously increasing speed of simulators.
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Board-level simulation should be carefully planned. Time spent modelling and simulating
has to be weighted against what can be gained or lost compared to the replaced or reduced
non-simulation activities. Efficient use of board-level simulation can lead to the reduction
of other design activities.

It is important to establish by whom the board design model development and simulation
should be performed while planning the activity to prevent unnecessary educational costs
induced by assigning engineers to the task with no VHDL experience, even though only
little experience is actually needed.

2.3 Board-level simulation using VHDL

A major issue for board-level simulation is the availability of simulation models of the
components used in the board design. Despite commercial models being available for
many standard components, increasingly often ASSPs, ASICs and other unusual
components are used. Hardware modellers can solve this problem, though they are
expensive, complicated to use and have limitations in the number of components that can
be used simultaneously.

Using VHDL models is therefore an interesting alternative when no other models are
available, which is the typical case for almost all components used on board spacecraft.
By using VHDL the effort to support several platforms and simulators is greatly reduced,
since VHDL models require no or only minor modifications for each new simulator.

It has been demonstrated that VHDL models of components can be integrated together to
design and debug embedded systems in their entirety using hardware-less design
methodology. Due to VHDL simulator performance reasons board-level simulation is
normally limited to the digital domain.

Using VHDL for board-level simulation enables the user to also perform true mixed-level
simulation, since detailed models are mostly written in VHDL and the number of ASIC
libraries written in VHDL is rapidly increasing. Still, all different models have to follow
some guidelines to ensure interoperability. This document and RD1 form such guidelines.
The board design simulation can also contain non-VHDL representations such as netlists
or schematics, being useful when verifying a board design containing an ASIC for which
no VHDL library exists.

It is important to establish by whom the simulation models should be provided, which can
become a critical issue if there is no model for board-level simulation available. A survey
of existing models has therefore to be performed well before the simulation begins,
allowing for the development of missing models.



european space agency 10 WSM/SH/010 Issue 1

3 MODELS FOR BOARD-LEVEL SIMULATION

A model for board-level simulation is characterised by its accurate modelling of the
component behaviour, simulation performance, and ease of use for board designers. All
such models delivered to ESA should be developed in accordance with RD1, and their
implementation could benefit from following the suggestions made in this document.

The behaviour of the model as seen from the outside should be the same as for the
modelled component and should include the full functionality, though specific test modes
only used for manufacturing test need not be implemented. The interface signals of the
model should have the exact waveform behaviour as observed for the component. Since
the internal structure and state of the model do not need to reflect the modelled
component, internal signals should not be used during the analysis of acquired simulation
results since they could provide information not being fully correct.

A model for board-level simulation should be verified against acomponent model when
possible, which could be in VHDL or any other representation suitable for simulation. The
purpose of the verification should be to ensure the correctness of the model w.r.t. the
component behaviour. When no other representation of the component is available for
simulation, the model verification should be based on the information found in a Data
Sheet or similar. Each model intended for board-level simulation should be provided with
a test bench verifying its behaviour, which is described further in section 4.

Bus functional models, sometimes called bus interface models, are considered being
reduced models for board-level simulation, modelling only the timing and behaviour of
the interfaces. The timing and format of output drivers for data/control/addresses etc. are
modelled as accurately as possible, while the internal functionality of the component is
not necessarily modelled at all. Using bus functional models does not provide the full
potential of board-level simulation since they simulate only a portion of the component.
Nevertheless, the development of such models should follow the suggestions made herein
since they should be possible to use together with models for board-level simulation.

The simulation performance should be assessed when transforming a model written on the
Register Transfer level, RTL, to a model intended for board-level simulation. The
assessment can be supported by comparing the source code with the requirements in this
document. RTL models do normally not have sufficient simulation performance and will
need to be modified since they are normally written for synthesis which imposes
conflicting requirements on the VHDL code w.r.t. models for board-level simulation. The
main development effort would then be to optimise the code accordingly, and to
implement the model interfaces and develop the verification test bench.

Experience has shown that a proper review of the requirements in RD1 should be
performed before a development begins and each model should be reviewed thoroughly
before being released.

The source code header of the model entity should contain all information necessary for
the user to simulate the model in a board design, and is also allowing distribution of
analysed models containing no source code. A User’s Manual should be delivered with
every model intended for board-level simulation, as specified in section 6.1.
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3.1 Hierarchy

Hierarchy for models is introduced to obtain good source code readability and to separate
different modelling aspects. The outlined hierarchy scheme below is based on two of these
aspects, namely timing and functionality. Since these usually stem from two different
lines of documentation and representation, the Data Sheet and thecomponent model, the
model intended for board-level simulation should be partitioned taking this into account.
A partitioning also enables separate verification of the two domains of the model.

The model should be divided in two hierarchical levels; the top-level architecture and its
functional core, to clearly separate the timing and checking for unknown input values
from the functionality aspect of the model, as shown in figure 2. It is recommended that
there are no other than these two hierarchical levels in the model, since multiple levels
could reduce the code readability if not carefully used. The top-level architecture should
be independent of the functional core where possible to reduce the need for changing it if
only the functionality needs to be modified.

The two-level hierarchy could be flattened for improving simulation performance by
reducing the number of signals interconnecting the hierarchy, although it is not
recommended. This approach should only be used in extreme cases or for small models,
and is shown in figure 3.

Figure 2: Preferred two-level hierarchies (squares with rounded corners are
processes or concurrent procedures, regular squares are subcomponents).

The functionality of the component should be modelled in the functional core, excluding
any timing aspects and without internal delays. A functional core could comprise more
than one entity for larger designs, each functional block would then be a component
instantiated in the top-level architecture. There should not be more components for the
functional core than there are blocks in the architectural block diagram. In the functional
core comprises many modules, which could be the case when a model is based on an RTL
model, an additional hierarchy level could be considered, as shown in figure 3. These
modelling aspects will be further referenced asfunctional modelling.

entity of model for board-level simulation

Single entity comprising a functional core Multiple entities comprising a functional core

Timing checkers

X-checkers

Output delays

functional core

architecture BoardLevel

entity of model for board-level simulation

Timing checkers

X-checkers

Output delays

functional core

architecture BoardLevel

functional core
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Figure 3: Optional one- and three-level hierarchies.

The external timing of the model should be contained in the top-level architecture,
including setup and hold time checking, clock-to-output and propagation delay
scheduling. It could be modelled in the functional core when simulation performance is
critical and when source code readability is not reduced. Management of unknown input
values can be divided between the two hierarchical levels as described section 3.3.2.
These modelling aspects will be further referenced asinterface modelling.

When a model has more than one hierarchical level the subcomponents should be
explicitly bound using a configuration declaration, never relying on default binding. The
generics of the subcomponents should be associated to the corresponding generics of the
preceding entity as shown forInstancePath in example 1. Each component declaration
should have the same name, generic and port declarations as the corresponding entity.
Configuration specifications in the architecture should be avoided, permitting the usage
of the more flexible configuration declarations outside the model.

library BitMod_Lib;

configuration BitMod_Configuration of BitMod is
for BoardLevel

for FunctionalCore: BitMod_Core
use entity BitMod_Lib.BitMod_Core(Behavioural)

generic map (InstancePath => InstancePath);
end for ;

end for ;
end BitMod_Configuration;

Example 1: Configuration declaration for a model for board-level simulation.

entity of model for board-level simulation

Process comprising a functional core in Sub-entities comprising a functional core

Timing checkers

X-checkers

Output delays

functional core

architecture BoardLevel

entity of model for board-level simulation

Timing checkers

X-checkers

Output delays

functional core

architecture BoardLevel

a one-level hierarchy in a three-level hierarchy
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3.2 Functional modelling

Functional modelling comprises in this context the part of the model representing the
logical functions of the modelled component. The following sections will describe how
to develop a model with high functional accuracy and good simulation performance,
being two important characteristics of models for board-level simulation.

The functionality of the component should be contained in the functional core of the
model for board-level simulation. It should be independent of the top-level architecture,
although some functions normally implemented with tristate buffers in a component could
be modelled outside the functional core, as shown in figure 4. The functional core should
be modelled with zero delay on outputs and without internal signal delays if possible.

Figure 4: Implementation of tristate buffer in the top-level architecture.

3.2.1 Modelling for functional accuracy

Models for board-level simulation have to reflect the functional behaviour of components
accurately enough to allow board designs to be verified for functionality and timing.
Simulating boards using models with high functional accuracy will reduce the number of
errors found on the manufactured board. Errors not found in the simulation, located in the
models or in the board design itself, will eventually be discovered in the real hardware.

There are two major approaches to modelling for board-level simulation; independently
develop the model from a Functional Specification or Data Sheet, or enhance the RTL
model. The first approach is necessary when no RTL model is available to the developers.
It can also be the case when the model for board-level simulation is developed in parallel
with the component. The component development could then benefit from the
independent interpretation of the specification. The two models should be compared to
each other, first visually and later automatically when both mature. In the second
approach, when a RTL model is to be revised to fulfil the requirements posed on models
for board-level simulation, the protection of the design should be addressed since the
resulting model could possibly be synthesised. Many of the suggestions in section 3.2.2
describing how to model for simulation performance will often reduce the probability that
a component could be reverse engineered.

entity of model for board-level simulation

Timing checkers X-checkers

functional core

architecture BoardLevel

Output delays

DEnable

D_NoTime D
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Care should be taken when a model is developed using only a Data Sheet as input, since
the component is not always described in a Data Sheet as actually being implemented. The
information in the Data Sheet could have been simplified, e.g. the description of an
interface protocol may be more constrained than the actual design requirements. The
source describing the functionality from which the modelling is performed should be
identified. Any unresolved issues should be submitted to the foundry or company
supporting the component and be documented.

It is not always obvious whether to model the behaviour that is described by the
component model or the Data Sheet when there are inconsistencies between them. It may
be that some functionality of thecomponent model has been simplified or omitted in the
Data Sheet, e.g. proprietary design features. In such a case it is recommended to model
the full functionality and issue a warning when used, instead of excluding the function and
consequently have an incorrect simulation.

The inclusion of unsupported or undocumented functionality of the component in the
model for board-level simulation could simplify its comparison versus thecomponent
model, using the same set of stimuli. The model should therefore always reflect the
component behaviour when there are inconsistencies or differences between the Data
Sheet and thecomponent model, otherwise the deviations will possibly turn up as failures
when breadboarding.

Independently of how the model is developed, the full functionality should be modelled
and verified versus thecomponent model when available, as per section 4.

3.2.2 Modelling for simulation performance

The performance of present workstations and VHDL simulators provides a means for
simulating board designs comprising several complex components such as
microprocessors and ASICs. However, to be able to tap this simulation performance the
simulation models have to be efficiently coded for simulation. An absolute requirement
on simulation performance for models intended for board-level simulation cannot easily
be defined, although unnecessarily slow or cumbersome implementations should be
avoided.

The guidelines presented below are based on experiences with modelling and using
models for board-level simulation. This is not an exhaustive list of issues to be addressed
when a model is tuned for simulation performance. It should also be remembered that
each suggestion might not be true for all situations and simulators. The best advice on
simulation performance modelling is to use common sense in case of uncertainty. A good
way to choose between two approaches is to simulate both and to select the one being
most efficient. The stimuli used for such comparative simulations should be based on
possible and probable input to the model. Different simulators have different performance
characteristics, for obtaining the complete picture simulations should be performed on all
foreseen simulators to be used.
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Many rules and techniques that apply to writing optimised software, such as loop
unrolling, code in-lining etc., also apply to models with good simulation performance
since VHDL has many characteristics of a programming language. Some VHDL
simulators have less built-in optimisation capabilities than state of the art optimising
compilers for software, it is therefore often beneficial to manually perform optimisation
at the source code level.

Standard packages, such as theIEEE.Std_Logic_1164 and IEEE.Vital_Timing
IEEE.Vital_Primitives, are sometimes accelerated for simulation performance. But since
this is not always the case, it could be necessary to assess whether to use other types or
subprograms when simulation performance is an issue.

3.2.2.1 Processes

Each process invocation has a cost in terms of simulation performance and in principle
the number of processes should therefore be kept small. Each concurrent assignment is
treated as a process, and should be avoided where possible. Note that block and generate-
statements can incur the same cost as processes.

Processes should use sensitivity lists that can be statically allocated and have therefore
potentially better simulation performance than when using wait-statements that are
allocated dynamically. Process invocation should be minimised, only essential signals
should be included in the sensitivity list. Functions sensitive to the same signals should be
grouped in the same process, reducing the number of processes to invoke for each signal
event. Following the approach above, all functions related to the same clock should be
grouped together. One process per clock region could be used when multiple clocks exist
for the component. Functions related to different clock regions should be placed in
different processes, not to invoke the process for each event on the irrelevant clocks. This
approach has been found efficient when clocks have dissimilar switching frequencies.

It should be decided whether to use single or multiple processes and which signals to
include in the sensitivity lists when modelling combinational and asynchronous logic,
based on comparative simulations. Combinational logic only related to a single clock
signal should be included in the process modelling that clock region.

Code blocks, such as checkers and autonomous functions that can be disabled by means
of generics or mode pins, could benefit from being placed in separate processes using
generate-statements to prevent them from executing in modes when not needed. It is not
sufficient to place such functions in a process and protect them with a conditional
statement, since the process will still be invoked each time there is an event on signals in
the sensitivity list. The generate-statement around the process will exclude the process
from the simulation when disabled, eliminating all invocation costs when not used.

The outline of the functional core architecture shown in example 8 represents such
structuring. The architecture in the example is divided in two processes, representing the
synchronous and the asynchronous regions of the component. The sensitivity lists of the
processes have been kept short to avoid unnecessary invocations.
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The synchronous region in the example is clocked by theClk input and is reset by the
Reset_N input. TheClkRegion process implementing this region is made sensitive only to
these two signals. The first part of the process handles the asynchronous reset of the
region. The succeeding two parts model the functionality related to the rising and falling
Clk edges. An edge on theClk input is detected using the functionsRising_Edge and
Falling_Edge, which also handle unknown input values.

The last part of theClkRegion process is only invoked when no reset has been issued and
neither of the clock edges have been detected. It is used for detecting and reporting
unknown values on theClk input as described in section 3.3.2. This method for checking
for unknown input values will only negligibly contribute to the performance penalty,
compared to checking the clock input at each signal event which occurs frequently.

The processAsynchronousRegion implementing the asynchronous region is made
sensitive only to those inputs directly affecting its behaviour. The inputsCS_N andRW_N
control the asynchronous write accesses to internal registers and are therefore included in
the sensitivity list. The data and address buses are latched on the risingCS_N edge as
shown in example 3, and do not affect the process when changing values. They need
therefore not be sensed by the process and are not included in the sensitivity list, allowing
for better simulation performance than if they were included. This modelling is inexact
since the accessing scheme has been somewhat simplified.

3.2.2.2 Signals

Variables should be used instead of signals wherever possible, since each signal requires
one or several drivers, specific handling (event scheduling,) and memory storage, which
takes more instructions to execute (and likely decreases the cache hit ratio). Signals
should preferably be used only for communication between processes. VHDL ’93 shared
variables could potentially be used instead of signals, but should be used with precaution
since potentially introducing indeterministic behaviour in the simulation. Another reason
for merging processes is that the number of signals used for the communication between
them is consequently reduced.

Resolved types should be avoided internally in the model where possible, since the
calculation of the resulting value will need to call a resolution function for each event on
the driving signals. Using unresolved types instead could potentially increase the
simulation performance. Resolved types should therefore only be used when the
resolution function is needed. This does not apply to variables, since no resolution
function is needed and there should be no difference in simulation performance.

It has however been observed that there is no significant difference between using
Std_ULogic instead ofStd_Logic, since the latter is accelerated in some simulators. Some
simulators also ensure that the resolution function is not invoked for signals with only one
driver. This can be seen as analogous to replacing such signals with their unresolved base
type, e.g.Std_Logic signals with one driver becomesStd_ULogic signals. An additional
benefit of using unresolved types is that unwanted short-circuit connection between
signals is automatically detected at analysis time since a signal of an unresolved type can
only have one driver.
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When moving a concurrent signal assignment into a process, it should be ensured that it
is not updated more often than it would had been as a concurrent assignment. Reassigning
a signal its current value should be avoided, since each such assignment requires that a
transaction is scheduled for that signal. One should also be careful not to recalculate a
signal value expression too often when moving the signal assignment into a process, e.g.
for each clock cycle instead of each time one of the relevant input signals changes. In such
case the simulation performance will decrease due to the increase of unnecessary
calculation, even if the same calculated value is not reassigned to the signal. Similarly,
removing static signals that seldom change will not improve the simulation performance
significantly or will even decrease it.

Signal generating attributes such as‘Stable should be avoided since they result in the
creation of implicit signals which have to be handled in the scheduler. Instead should the
attribute‘Event be used where possible.

3.2.2.3 Types

Numerical data types such asInteger normally result in better simulation performance
than arrays such asStd_Logic_Vector andBit_Vector, and could be used for extensive
calculations directly using the arithmetics of the processor on the host machine. However,
one should be careful when the bit field information is required in the simulation, e.g.
during instruction decoding in microprocessor models, since retrieving such information
from anInteger could potentially be more costly than using an array in the first place. A
trade-off should be performed between the cost for: performing type conversions between
Std_Logic_Vector and Integer, and subsequent calculations usingInteger; or directly
performing calculations onStd_Logic_Vector. Findings indicate that the time required for
converting aStd_Logic_Vector signal to anInteger variable, adding twoInteger variables,
and to convert the result back to aStd_Logic_Vector variable is faster than to make an
addition between twoStd_Logic_Vector signals.

The computations on data and address in example 3 are made using the typeInteger
instead of Std_Logic_Vector(not shown). The conversion is made directly from
Std_Logic_Vector to Integer with the custom made functionTo_Integer, which is only
called when the value is needed. This function also checks for unknown values and issues
assertion reports when detected, its declaration is shown in example 2.

-- ------------------------------------------------------------------
-- Converts unsigned Std_Logic_Vector to Integer, leftmost bit MSB
-- Error message for unknowns (U, X, W, Z, -) being converted to 0
--- -----------------------------------------------------------------
function To_Integer(

constant Vector: Std_Logic_Vector;
constant VectorName: String := "";
constant HeaderMsg: String := "To_Integer:";
constant MsgSeverity: Severity_Level := Warning)
return Integer;

Example 2: Declaration of a Std_Logic_Vector to Integer converter function taking
into account unknown values on the input.
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Type conversions on input signals should be performed in the functional core where the
actual value is needed and only when necessary, and is described further in section 3.3.2.
To illustrate this, the conversion betweenStd_Logic_Vector andInteger and the checking
for unknown values on the data and address buses in example 3 are only necessary when
the values are latched. No type conversion is therefore necessary in the top-level
architecture for the two buses. This scheme has better simulation performance than if each
signal would be type converted each time there is an event. Unnecessary assertion reports
are also avoided since checking for unknown values is only done when the value is used.

It has been seen that enumerated types have better simulation performance than array
type, especially for coding of finite state machines using case-statements, where
Bit_Vectors andStd_Logic_Vectors are slower than enumerated types.

--- -----------------------------------------------------------------
-- Implementation of all asynchronous functionality.
-- Latching of data to be written into the internal registers.
-- Generation of external data bus enable. Checks for unknown
-- values are done for the input signals.
-- The modelling is not fully correct w.r.t. a typical
-- RAM I/F, since some relaxations have been introduced.
--- -----------------------------------------------------------------
AsynchronousRegion: process (CS_N, RW_N, Reset_N)
begin

if Reset_N = '0' then
-- To_X01 on Reset_N is done in the top-level architecture
-- Asynchronous reset of model
DEnable <= False;

elsif Rising_Edge(CS_N) then
-- End of access
if To_X01(RW_N, "RW_N", InstancePath, Error)='0' then

-- Write access to internal registers
-- X on CS_N is treated as no event (no access)
-- X on RW_N is treated as 1 (no write access)
-- X on A and D_In are treated as 0
-- A and D_In are converted to Integer
AWrite <= To_Integer(A, "A", InstancePath, Error);
DWrite <= To_Integer(D_In, "D", InstancePath, Error);

end if ;
DEnable <= False;

elsif Now /= 0 ns then
-- Asynchronous behaviour
-- Enabled for read cycles after Reset
-- X on RW_N is treated as 0
-- X on CS_N is treated as 1
DEnable <= (To_X01(RW_N, "RW_N", InstancePath, Error)='1') and

(To_X01(CS_N, "CS_N", InstancePath, Error)='0') and
(Reset_N='1');

end if ;
end process AsynchronousRegion;

Example 3: Implementation of asynchronous write access to internal registers.
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When modelling large memory elements the memory actually used by the simulator on
the host machine should be taken into account, since the cache hit ratio will decrease with
larger memory usage, and as a consequence the simulation performance will be decreased
as well. Note that it is not the size of the memory being allocated by the simulator that is
critical, but the size and the distribution of the memory which is being frequently
accessed. Since the allocation of the modelled memory into the actual memory differs
between simulators, operating systems and hardware, it is difficult determine what impact
the method chosen will have on the simulation performance. But, as a general
recommendation the memory usage should be minimised as much as possible. Also from
a memory usage point of view signal declarations are more costly than variable
declarations.

For example, an eight bit wide register would at least require 48 bits of memory if
modelled as aStd_Logic_Vector since each bit would be represented as 4 bits in memory,
covering all nineStd_Logic strengths. The same register contents could be represented as
an Integer and would then require 4 bytes in most simulators, which is less than the
Std_Logic_Vector representation, but which cannot represent all the nineStd_Logic
strengths. The memory usage should be measured for the two approaches and be used,
together with the requirements on the level of detail for the data representation, for
deciding on how to model such registers.

3.2.2.4 Subprograms

Passing large data structures as parameters to subprograms decreases the simulation
performance when the data structure size increases, which should be considered when
deciding whether to represent data asStd_Logic_Vector or Integer. In addition, calls to
subprograms declared in packages are difficult to optimised by the analyser since the
package body can be reanalysed without necessitating that the code where the call is made
from is reanalysed as well. It is therefore necessary to manually replace subprogram calls
by in-line coding in the source code when optimising a model for simulation performance.

3.2.2.5 Expressions

Globally static constants, such as deferred constants, cannot be evaluated at analysis time
by the analyser. A way to work around this is to declare a local constant that is computed
once during the elaboration from the deferred constant or constants, e.g. “constant
LocalTpd: Time := GlobalTpd /2;” whereGlobalTpd is a deferred constant.

It is believed that some simulators do not optimise expressions for common terms and it
is therefore necessary to manually make the optimisation in the code, as in example 4.

-- Original code: -- Optimised code:
Result0 := A+B*C; Temp0 := B*C;
Result1 := D-B*C; Result0 := A+Temp0;

Result1 := D-Temp0;

Example 4: Common term in expressions being expressed as a temporary variable.



european space agency 20 WSM/SH/010 Issue 1

On the other hand, unnecessary usage of temporary expressions could potentially reduce
the simulation performance since each temporary variable assignment has a certain cost,
as shown in example 5. Needless to say is that when performing calculations with
temporary signals instead of variables, the penalty is worse.

-- Original code: -- Optimised code:
Temp1 := A+B; Result2 := (A*B)/(C*D)*(E mod F);
Temp2  := C-D;
Temp3  := E mod F;
Result2 := Temp1/Temp2*Temp3;

Example 5: Unnecessary temporary expressions merged into one.

Since VHDL specifies short-circuit boolean evaluation, terms that would short-circuit an
expression evaluation should be placed as early as possible in the expression. Short-circuit
evaluation is specified for the typesBoolean andBit. The logical operators (and, or, etc.)
do not evaluate short-circuit forStd_Logic, but can be exploited as in example 6. The two
signalsA andB are of typeStd_Logic, but each expression within the parenthesis will
result in aBoolean value, and the or-operator could thus benefit from short-circuit
evaluation in case the first parenthesis result isTrue.

signal  A, B: Std_Logic;
...
if  (A=’1’) or  (B=’0’) then

...
end if ;

Example 6: Expression with potential short-circuit evaluation.

3.2.2.6 Conditional statements

A fundamental rule when modelling for simulation performance using VHDL is to only
execute code when necessary. Therefore, conditional statements should be used to reduce
unnecessary execution of code. The outer conditional statement should reduce the
necessity to evaluate enclosed conditional statements, based on an assessment on how
often subsequent code needs to be executed. This is done by using nested if- and case-
statements, ordered so that the branches with the highest probability are executed first.
Conditional expressions in the statements should be ordered for maximum boolean short-
circuit evaluation and the complexity should be minimised. Efficiency of
conditional statement structures can be analysed using code coverage results. It has been
shown that an assignment of a signal is between one and two orders of magnitude more
costly in terms of simulation time compared to reading a signal or variable in an if-
statement. This suggests that one can use large structures of if-statements to prevent a
signal to be unnecessarily assigned, and still gain in simulation performance.

It can be seen in example 3 that the if statements have been nested. The conditional
expression in the outer if-statement is theRising_Edge function. The conditional
expression in the inner if statement is a custom madeTo_X01 function that will detect and
report unknown values on the input.
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TheRising_Edge function is believed to execute faster than the customTo_X01 function,
since it is accelerated in most VHDL simulators, and is consequently placed in the outer
if statement that will be executed more frequently. The two conditions are not combined
in one expression, not to evaluate any part of the expressions unnecessarily.

The DEnable signal in example 3 is used for enabling the tristate buffer isolating the
outgoingD_Out bus from the external portD in the top-level architecture. The type
Boolean was being simple to use in if statements and could potentially simulate faster
thanStd_ULogic. Its usage in the top-level architecture is described further in example 22
and figure 4.

3.2.3 Evaluation of simulation performance

The simulation performance of a model should be evaluated continuously during the
development to identify simulation bottlenecks and accordingly modify the code for
improvements. An analysis of the simulation speed should compare the model intended
for board-level simulation and the actual hardware performance, stating the relative
simulation performance measured in terms of instructions per second, etc.

The test suite used for this purpose should have a low influence on the performance
measurements, but should also reflect realistic simulation scenarios and execute large
portions of the model. The measurements should be compared for different simulators and
platforms when possible, avoiding simulation pitfalls.

A code coverage utility is a useful means for identifying simulation bottlenecks during
model development. The output from such tools usually states the number of times each
statement in the source code has been executed during a simulation, allowing an
identification of statements frequently executed.

Simulation performance can often be improved by reordering the code or modifying the
structure of the conditional statements. It is also possible to identified redundant and
unnecessary code that could complicate maintenance.

The Coverage utility in the Synopsys® VSS simulator records the number of times a
statement is executed when running a particular simulation. The Leapfrog® VHDL
simulator from Cadence has been announced to includes a code profiler, comparable with
the Coverage utility, but which also identifies where in the code most of the simulation
time is spent.

The VHDLCover™ tool is a simulator independent coverage utility, that adds VHDL
code to the model which can then be simulate on any VHDL simulator, and the results can
be further analysed the tool. This tool claims to analyse branches taken and other things
besides the executed statement count.
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3.2.4 Outline of entity and architecture declarations for functional cores

The entity of the functional core should have the same name as the model for board-level
simulation but with_Core suffixed when only one entity is needed. The architecture name
should reflect the nature of its contents:Behavioural orStructural. When multiple entities
are used for the functional core they should be named after their function. If a three-level
hierarchy is needed, the name of the second level should have_Core suffixed. The
InstancePath generic should be passed down the hierarchy where the checkers are
implemented. The default value should then be the same as the name of the corresponding
entity, which will not appear in an assertion report when theInstancePath is passed down
correctly. It should only be used for sub-module verification during the development.

The entity shown in example 7 has ports of typeStd_ULogic since no tristate drivers are
implemented in the functional core. No type conversion is needed in the top-level
architecture between theStd_Logic ports of the top-level entity and theStd_ULogic ports
of the functional core, since they are equivalent and compatible. Ports of
Std_Logic_Vector type have not been converted to the unresolvedStd_ULogic_Vector
type in the top-level architecture. It is done in the functional core where and when the
value is truly used and the ports are therefore of typeStd_Logic_Vector. The output port
D_Out of type Integer is converted toStd_ULogic_Vector in the top-level architecture
only when its value is used, and is therefore not converted in the functional core.

library IEEE;
use IEEE.Std_Logic_1164. all ;

entity BitMod_Core is
generic (

InstancePath: String := "BitMod_Core:"); -- For assertions
port (

-- System signals
Test0: in Std_ULogic; -- Test mode
Clk: in Std_ULogic; -- Master Clock
Reset_N: in Std_ULogic;  -- Master Reset
-- Interface to internal registers
A: in Std_Logic_Vector(0 to 1); -- Address bus
CS_N: in Std_ULogic; -- Chip select
RW_N: in Std_ULogic; -- Read/write
D_In: in Std_Logic_Vector(0 to 7); -- Data bus input
D_Out: out Integer range 0 to 255;  -- Data bus output
DEnable: out Boolean; -- Data bus enable
-- Serial Interface
SClk: in Std_ULogic; -- Serial clock
SData: in Std_ULogic; -- Serial input
MData: out Std_ULogic); -- Serial output

end BitMod_Core;

Example 7: Outline of a functional core entity for a model for board-level simulation.

All scheduling of output delays and timing checking are performed in the top-level
architecture. All type conversions and checking for unknown value on the input ports are
performed in the functional core, except the static signalsReset_N and Test that are
converted in the top-level architecture.
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The outline of the functional core architecture in example 8 covers some aspects of
modelling for functional accuracy and simulation performance described earlier. The
ClkRegion process covers all functionality related to theClk input and is only made
sensitive to theClk andReset_N inputs, being asynchronously reset byReset_N. An if-
statement divides the process in four regions: reset of the process, functionality related to
the rising Clk edge, functionality related to the fallingClk edge, and checking for
unknown values onClk when neither in reset nor an edge is detected.

TheAsynchronousRegion process includes all asynchronous functionality in the example
and is made sensitive toReset_N, CS_N andRW_N, which are the only inputs that can
induce any changes on the outputs due to an event. An if-statement divides the process in
three regions: reset of the process, functionality related to the risingCS_N edge and
functionality related toRW_N input when there is no risingCS_N edge.

architecture Behavioural of BitMod_Core is
-- Local signal declarations.

begin
-- Implementation of all functionality driven by Clk
ClkRegion: process (Reset_N, Clk)
begin

if Reset_N = '0' then
-- Asynchronous reset of model

elsif Rising_Edge(Clk) then
-- Rising Clk edge region

elsif Falling_Edge(Clk) then
-- Falling Clk edge region

else
-- Check for unknown Clk value, since the model is not
-- being reset and neither rising nor falling Clk edge
-- is detected.
-- No assertions at start up of simulation
assert not (Is_X(Clk) and (Now /= 0 ns))

report InstancePath & " 'X' on Clk input"
severity Error;

end if ;
end process ClkRegion;

-- Implementation of asynchronous functionality
AsynchronousRegion: process (Reset_N, CS_N, RW_N)
begin

if Reset_N = '0' then
-- Asynchronous reset of model

else Rising_Edge(CS_N) then
-- Asynchronous behaviour related to CS_N

else
-- Asynchronous behaviour related to RW_N

end if ;
end process AsynchronousRegion;

end Behavioural;

Example 8: Outline of a functional core architecture for a model for board-level
simulation.



european space agency 24 WSM/SH/010 Issue 1

3.3 Interface modelling

Models having similar user interfaces for simulation condition selection, the same type
and format of error messages etc., provide the user with a single interface to learn and
understand. The model interfaces in this document have been made as simple as possible,
without necessarily sacrificing the potential of the language, promoting their usage by
others than experienced VHDL users.

The following interface modelling aspects are covered in this section:
• Definition of timing parameters;
• Checking for timing constraint violations;
• Scheduling of output delays;
• Management of unknown input values;
• Reporting of model messages.

3.3.1 Timing modelling

In the VHDL Modelling Guidelines, RD1, the timing modelling concept is based on the
IEEE VHDL Initiative Toward ASIC Libraries activity, VITAL, as described in RD4. This
allows the VITAL subprograms to be reused, saving coding effort as well as potentially
offering high simulation performance since several simulators already provide
accelerated versions of VITAL subprograms.

Full VITAL compliance has not been achieved since a different technique for the selection
of the simulation conditions (e.g. minimum or maximum delay) has been specified.
VITAL is based on using an external delay calculator, where the actual timing values for
a specific simulation condition are back-annotated using the Standard Delay File format,
SDF, which is well adapted for simulation of ASICs.

The ESA timing modelling concept defines the notion of an operating point and provides
a single generic with which a user can change the simulation condition for all components.

For models intended for board-level simulation developed for ESA the selection of the
simulation condition should be controlled by the SimCondition generic of type
SimConditionType declared in the package ESA.Simulation, and should have the default
value WorstCase. The genericTimingChecksOnof type Booleanshould be used for
disabling the timing checkers and should have the default valueFalse.

It is recommended to only report timing violations and not to generate unknown values
on the outputs. In case it is implemented, theXGenerationOn generic of typeBoolean
with the default valueFalse should be declared in the top-level entity declaration,
disabling generation of unknowns when set toFalse, which should also be the default
value. Generation of unknown values on outputs is usually only implemented for
components with low complexity where the propagation of the unknown values could be
useful to follow and analyse. Note that the VITAL specification uses the nameXOn
instead ofXGenerationOn.
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Normally, the following generics should not be needed. The genericXChecksOn of type
Boolean should be used for disabling the checking for unknown input values, and should
have the default valueTrue. The genericMsgOn of type Boolean should be used for
disabling the generation of messages from timing checkers, which could be used in
conjunction withXGenerationOn when only unknown values on the outputs are wanted,
and should have the default valueTrue.

Since models developed following the proposed scheme are not VITAL compliant, the
VITAL compliance checkers possibly found in VHDL analysers should be switched off
not to generate unnecessary warning and error messages during the analysis. No back-
annotation should be performed using SDF and the negative constraint calculation phase,
as specified in RD4, should be disabled not to change the generics used for negative setup
and hold constraints as described further in section 3.3.1.2.1.

The two attributesVital_Level0 andVital_Level1 defined in RD4 should not be used since
models for board-level simulation usingESA.Simulation are not compliant with either.

3.3.1.1 Timing parameters

The timing parameters should preferably be of theTime Array types declared in the
packagesESA.Simulation andESA.Timing defined in appendix C, supporting most of the
types declared inVital_Timing used for timing information. TheTime Array types are all
indexed by the typeSimConditionType, as shown in example 9, making it possible to
select the value corresponding to the simulation condition, which is performed in the top-
level architecture. There is no need for having a Time Array with VitalDelayType elements
since they are equivalent to the typeTime for which aTime Array type is already declared
in the packageESA.Simulation.

The two packagesESA.Simulation andESA.Timing should never be redefined or moved
to a different library since the intention is to provide only one format for the selection of
simulation condition for all models, normally originating from different developers.

-- Definition of the SimConditionType type
type SimConditionType is (WorstCase, TypCase, BestCase);

-- Definition of Time Array type, used with Time.
type TimeArray is array (SimConditionType) of Time;

-- Definition of Time Array types, used with Vital Delay Types.
type TimeArray01 is array (SimConditionType) of VitalDelayType01;
type TimeArray01Z is array (SimConditionType) of VitalDelayType01Z;
type TimeArray01ZX is array (SimConditionType) of VitalDelayType01ZX;

Example 9: Contents of the Simulation and Timing packages.

The intended purpose of theVital Delay Array Types declared inVital_Timing is for
specifying the timing for each individual element of an array, such as for data or address
signals, and should never replace the usage of theTime Array types declared above, since
they are indexed with the subtypeNatural and not the requiredSimConditionType.
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No Time Array types have been declared in packageESA.Timing for any of theVital Delay
Array Types, since it is not possible to define a constrained array of unconstrained arrays.

The level of detailed timing information that is represented by theVital Delay Array Types
is not necessary for most models. Should such detailed timing information be necessary,
the required declarations should be done for those array widths needed and placed in the
timing package of the model. Example 10 shows a declaration of aTime Array type with
VitalDelayType01ZX elements that is used for holding timing information related to a
Std_Logic_Vector(0 to 7)port.

type TimeArray01ZX_0_7 is array (SimConditionType) of
VitalDelayArrayType01ZX(0 to 7);

constant tpd_Clk_Data: TimeArray01ZX_0_7;

Example 10: Declaration of Time Array type for a port with individual timing on each
of the eight elements, supporting the full Vital Transition Type range.

The timing parameters needed by the model should be declared in a separate timing
package as a deferred constant as it has been shown in example 11. The package body can
then be modified if necessary and analysed without the need to re-analyse the complete
design, which can be necessary when new data from foundries become available. This
also eases distribution of analysed models.

The timing parameters in the timing package can be used directly in the top-level
architecture or be passed via generics to the model. The latter option permits the user to
modify the timing parameters for each individual component instantiation by using
generic maps, useful e.g. when modelling large capacitive loads on boards.

library ESA;
use ESA.Simulation. all ;
use ESA.Timing. all ;

package BitMod_Timing is
-- Deferred constants for the timing parameters.

...
constant tpd_Clk_MData: TimeArray01;  -- T9

...
end BitMod_Timing;
package body BitMod_Timing is
...

constant tpd_Clk_MData: TimeArray01 := -- T9
((25 ns, 24 ns),  -- WC

(11 ns, 13 ns),  -- TC
( 7 ns, 8 ns));  -- BC

...
end BitMod_Timing;

Example 11: Package containing timing parameters declared as deferred constants.

The constants in the timing package and the generics in the entity declaration can have the
same names due to visibility rules in the language. It is therefore no need to have suffixes
such as_Default attached to the constant names.
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Timing parameters should have names compliant with RD4, or alternatively use names
from the Data Sheet. It is recommended that timing parameters containing signal names
with underscores should be written without them. For example, a timing parameter for the
signalCS_N could be written astperiod_CSN, which is compliant with RD4. The timing
parameter suffixes defined in RD4 should be used where applicable:posedge for rising
signal edges,negedge for falling signal edges etc.

The timing parameters should be given in an integer number of nanoseconds with values
rounded in a pessimistic way, to avoid simulation time limitations. Simulators supporting
64 bit implementation of the time counter support approximately 300 years of simulation
time with a resolution of 1 ns, and 32 bit implementations support only 2 seconds but
should be sufficient for limited hardware and software co-simulation.

3.3.1.2 Timing constraint checking

All timing constraint checkers should be contained in the processTimingCheck in the top-
level architecture, as outlined in example 12, but the process could be divided for
performance reasons when found beneficial. The processes should be sensitive to all
signals checked or referenced. All code in the process should be possible to disable with
the TimingChecksOn generic and a generate-statement, also shown in example 12, to
reduce the performance penalty when not used. This outline supports only positive
constraints, a version supporting negative constraints is shown in example 16. Timing
parameters to be checked should be assigned to the subprogram formals using named
association, indexed by theSimCondition generic to allow selection of timing parameter
values corresponding to the simulation condition as shown in example 15.

Timing constraint checkers should be enabled individually when relevant for the
simulation. This should be done by using the subprogram parameterCheckEnabled, as
shown in example 15 and example 18. Note that this parameter does not prevent the
checker from being executed, it only masks the assertion reports and the assertion of the
Violation parameter inVital_Timing subprograms, and should not be used instead of the
TimingChecksOn generic used in the generate-statement.

Care should be taken when establishing the conditions for which each checker is enabled,
e.g. some checkers are not enabled during reset of the model, other checkers may only be
enabled after write operations. Enabling conditions of checkers related to clock period
timing constraints should be carefully modelled not to enable when not relevant to the
simulation, e.g. during reset. The frequent value changes on clock inputs could cause
many unnecessary subprogram invocations, decreasing the simulation performance, and
should be disabled for a clock not used in some mode or similar.

Enabling of the checkers for some timing constraints could be a rather complex task, as
for the setup and hold checker in example 15. The expression for the enabling variable
DataCheckEnabled is shown in example 13. The checker is enabled when there is a
falling edge on eitherCS_N or RW_N while the other input is asserted, which is when the
registers are written. It is kept enabled until there is a fallingCS_N edge whileRW_N is
de-asserted, which is when the registers are read. The checker will therefore be enabled at
the beginning of a write access and be kept enabled until the next read access begins.
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TimingGenerate: if TimingChecksOn generate
TimingCheck: process (Clk, SClk, D, CS_N, RW_N, Reset_N_X01)

-- Variables containing information for period checkers
-- Variables containing information for setup & hold checkers
-- Variables for enabling timing checkers

begin
-- Enabling of various checkers
-- Reset_N low time w.r.t. Clk checking
-- Register interfaces checked for illegal events etc.

-- Checkers using custom made subprograms.
PeriodCheck(...); -- SClk period
CheckWidth(...); -- CS_N de-assertion width

-- Timing checkers using Vital_Timing subprograms.
VitalPeriodPulseCheck(...); -- Clk period, high and low times
VitalPeriodPulseCheck(...); -- CS_N width for write access=
VitalSetupHoldCheck(...); -- D setup & hold w.r.t. CS_N

end process TimingCheck;
end generate TimingGenerate;

Example 12: The process TimingCheck resides in the top-level architecture.

If the checker in example 13 was disabled on the risingCS_N orRW_N edge at the end of
the write access, the hold constraint would not be checked since it is normally longer than
0 ns relative to that event. The same enabling scheme could be implemented by delaying
the control signals but would have lesser performance. Note the usage of the accelerated
functionsFalling_Edge andTo_X01 in the example.

The type conversion is made locally in theTimingCheck process, since the signals are not
converted in the top-level architecture but only in the functional core, and will not
contribute any simulation performance penalty when timing checking is disabled. It is
preferable to formulate a smart enabling condition for an acceleratedVital_Timing
subprogram than to develop a completely new timing checker.

-- Enables the setup and hold checker for D during write operations.
-- The checker is enabled when both CS_N and RW_N are asserted,
-- until the next read access begins, since the data hold constraint
-- is longer than either CS_N or RW_N is de-asserted  after write.
if ((Falling_Edge(CS_N) and To_X01(RW_N)='0') or

(Falling_Edge(RW_N) and To_X01(CS_N)='0')) then
DataCheckEnabled := True; -- Enable checker

elsif (Falling_Edge(CS_N) and To_X01(RW_N)='1') then
DataCheckEnabled := False; -- Disable checker

end if ;

Example 13: A complex enable expression for a setup and hold checker.
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3.3.1.2.1 Timing constraint checking using Vital_Timing subprograms

It is recommended that the timing checkers declared in theVital_Timing package are used.
The Vital_Timing proceduresVitalSetupHoldCheck, VitalRecoveryRemovalCheck and
VitalPeriodPulseCheck are declared for the typesStd_ULogic and Std_Logic_Vector.
Note thatStd_ULogic_Vector andStd_Logic_Vector are not compatible, butStd_ULogic
andStd_Logic are, which excludes the possibility to checkStd_ULogic_Vector inputs.

TheVitalSetupHoldCheck procedure detects a setup or a hold violation on the test signal
with respect to the corresponding reference signal. The timing constraints are specified
through parameters representing the setup and hold times for low and high test values.
This procedure assumes non-negative values for the timing constraints. The setup and
hold checker shown in example 15 supports only positive timing constraint values, thus
neither of the timing parameters can have a negative value.

TheVitalRecoveryRemovalCheck detects the presence of a recovery or removal violation
on the test signal with respect to the corresponding reference signal. The timing
constraints are specified through parameters representing the recovery and removal times
associated with a reference edge of the reference signal. This procedure also assumes non-
negative values for the timing constraints.

TheVitalPeriodPulseCheck checks for minimum periodicity and pulse width for low and
high values of the test signal. The timing constraint is specified through parameters
representing the minimal period between successive rising and falling edges of the test
signal and the minimum pulse widths associated with high and low values. Note that the
procedure cannot be used for checking maximum period widths, when such checkers are
needed they have to be developed separately. Note also that the timing parameter names
defined in RD1 containing the suffixes_min and_max are no longer VITAL compliant,
but could still be used for models intended for board-level simulation developed for ESA.

-- Variables containing information for checkers
variable Period_Clk: VitalPeriodDataType := VitalPeriodDataInit;
variable Period_CSN: VitalPeriodDataType := VitalPeriodDataInit;
variable Timing_D: VitalTimingDataType := VitalTimingDataInit;

Example 14: Initialisation of variables used by Vital_Timing subprograms.

Variables used by theVital_Timing subprograms for storing intermediate results should be
initialised as shown in example 14 for correct operation. MostVital_Timing subprograms
apply implicitly To_X01 conversion on their inputs. It is therefore not necessary to
perform any type conversions on the signals external to the subprograms, as shown in
example 15. These implicit internal type conversions should be implemented in any
custom developed timing checkers when possible, to have similar interfaces as
Vital_Timing subprograms. The severity level of mostVital_Timing subprogram assertion
reports can be controlled via theMsgSeverity parameter as shown in example 15, which
makes it possible to implement timing checkers that are compliant to the scheme
suggested in RD1. TheRefTransition parameter used by mostVital_Timing subprograms
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is of type VitalEdgeSymbolType which allows the user to specify complex signal
transitions for the reference signals. The value ‘R’ used in example 15 denotes any
possible rising edge.

When it is chosen no to generate any unknown values on outputs at timing violations, it
is sufficient to declare only one variable for all theViolation parameters of the timing
checkers, since the value of the variable will not be used. The parameterXOn is used in
conjunction withXGenerationOn, preventing an ‘X’ from being assigned to theViolation
parameter when a timing violation is detected. It should have no impact when unknown
value generation is not implemented.

VitalSetupHoldCheck( -- D setup & hold w.r.t. CS_N
 Violation => Violation,

TimingData => Timing_D,
 TestSignal => D,

TestSignalName => "D",
RefSignal => CS_N,
RefSignalName => "CS_N",
SetupHigh => tsetup_D_CSN(SimCondition),
SetupLow => tsetup_D_CSN(SimCondition),
HoldHigh => thold_D_CSN(SimCondition),
HoldLow => thold_D_CSN(SimCondition),
CheckEnabled => DataCheckEnabled,
RefTransition => 'R',
HeaderMsg => InstancePath,
XOn => False,
MsgOn => True,
MsgSeverity => Warning);

Example 15: Implementation of positive timing constraints using Vital_Timing
subprograms.

Since theVitalSetupHoldCheck andVitalRecoveryRemovalCheck procedures accept only
positive setup and hold values, the relation between the test and reference signals has to
be adjusted. Negative setup and recovery times correspond to an internal delay on the
reference signal. Negative hold or removal times correspond to an internal delay on the
test signal.

Negative timing constraints are handled internally in the model by delaying the test or
reference signals using the functionVitalSignalDelay as shown in example 16. The
VitalSignalDelay procedure is called in the top-level architecture to delay the appropriate
test or reference signal in order to accommodate negative constraint checks. When the
delays are associated with other signals they may need to be appropriately adjusted so that
all constraint intervals overlap the delayed reference signals.

When negative timing constraints are to be used in a model, two extra timing parameters
need to be declared for each setup and hold or recovery and removal pair. Timing
parameters on the formatticd_<ClkPort> should be used for declaring the time with
which a reference signal should be delay, andtisd_<InPort>_<ClkPort> should be used
for declaring the time with which a test signal should be delayed.
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The additional local signals needed and the concurrent procedure calls to
VitalSignalDelay should all be placed in a block statement within the generate-statement
containing the procedureTimingCheck, as shown in example 16. It is suggested that the
label of the block is namedTimingBlock. By including the signal declarations in the block
instead of in the declarative part of the architecture, the signals will not be allocated if
timing checking is disabled, potentially reducing the memory usage. The block statement,
the signal declarations and the delaying of the signals should only be used when negative
timing values are checked, since it would else unnecessarily reduce the simulation
performance.

-- In the timing package (and in generic declaration):
constant tsetup_IO_Clk: TimeArray := (10 ns, 10 ns, 10 ns);
constant thold_IO_Clk: TimeArray := (10 ns, 10 ns, 10 ns);
constant ticd_Clk: TimeArray := (15 ns, 0 ns, 0 ns);
constant tisd_IO_Clk: TimeArray := ( 0 ns, 0 ns, 15 ns);

-- In the architecture BoardLevel:
TimingGenerate: if TimingChecksOn generate

TimingBlock: block
signal IO_Delay: Std_ULogic; -- Delayed test
signal Clk_Delay: Std_ULogic; -- Delayed reference

begin
VitalSignalDelay(Clk_Delay, Clk, ticd_Clk(SimCondition));
VitalSignalDelay(IO_Delay, IO, tisd_IO_Clk(SimCondition));
TimingCheck: process (Clk_Delay, IO_Delay)

variable IO_TD: VitalTimingDataType := VitalTimingDataInit;
variable Violation: X01 := '0';

begin
VitalSetupHoldCheck(

Violation => Violation,
TimingData => IO_TD,
TestSignal => IO_Delay,
TestSignalName => "IO",
TestDelay => tisd_IO_Clk(SimCondition),
RefSignal => Clk_Delay,
RefSignalName => "Clk",
RefDelay => ticd_Clk(SimCondition),
SetupHigh => tsetup_IO_Clk(SimCondition),
SetupLow => tsetup_IO_Clk(SimCondition),
HoldHigh => thold_IO_Clk(SimCondition),
HoldLow => thold_IO_Clk(SimCondition),
CheckEnabled => True,
RefTransition => 'R',
HeaderMsg => InstancePath,
XOn => False,
MsgOn => True,
MsgSeverity => Warning);

end process TimingCheck;
end block TimingBlock;

end generate TimingGenerate;

Example 16: Implementation of negative timing constraints using Vital_Timing
subprograms.
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The calculation of the effective timing constraint values for the setup and hold checker in
example 16 is explained in example 17.

--------------------------------------------------------------------
-- The effective setup and hold times can be calculated from the
-- tsetup, thold, ticd and tisd timing parameters as follows:
--
-- formulas: tsetup = tsetup_IO_Clk - ticd_Clk + tisd_IO_Clk
-- thold = thold_IO_Clk + ticd_Clk - tisd_IO_Clk
-- twindow = tsetup + thold
--
-- The formulas will give the following effective parameter values:
--
-- WorstCase: tsetup = 10 ns - 15 ns + 0 ns = -5 ns
-- thold = 10 ns + 15 ns - 0 ns = 25 ns
-- twindow = -5 ns + 25 ns = 20 ns
-- TypCase: tsetup = 10 ns - 0 ns + 0 ns = 10 ns
-- thold = 10 ns + 0 ns - 0 ns = 10 ns
-- twindow = 10 ns + 10 ns = 20 ns
-- BestCase: tsetup = 10 ns - 0 ns + 15 ns = 25 ns
-- thold = 10 ns + 0 ns - 15 ns = -5 ns
-- twindow = 25 ns + -5 ns = 20 ns
--
-- The timing parameters define a negative setup time of -5 ns for
-- WorstCase, 10 ns setup and 10 ns hold for TypCase, and negative
-- hold time of -5 ns for BestCase. For all cases is the window
-- 20 ns wide in which the IO input must be stable.
--
-- WorstCase, setup -5 ns, hold 15 ns, window 20 ns:
-- --> | stable region | <--
-- Test XXXXXXXXXXX____________________________XXXXXXXXXXX
-- ______________________________________________
-- Reference ___/
-- | --> | | <-- hold
-- --> | | <-- negative setup
--
-- TypCase, setup 10 ns, hold 10 ns, window 20 ns:
-- --> | stable region | <--
-- Test XXXXXXXXXXX____________________________XXXXXXXXXXX
-- _________________________
-- Reference ________________________/
-- | --> | | <-- hold
-- --> | setup | <--
--
-- BestCase, setup 15 ns, hold -5 ns, window 20 ns:
-- --> | stable region | <--
-- Test XXXXXXXXXXX____________________________XXXXXXXXXXX
-- ___
-- Reference ______________________________________________/
-- | negative hold --> | | <--
-- --> | setup | <--
-- ------------------------------------------------------------------

Example 17: Calculation of negative timing constraints
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3.3.1.2.2 Timing constraint checking using non-Vital_Timing subprograms

There may be some timing constraint types that are unique for a design and cannot easily
be checked using subprograms from theVital_Timing package. In such cases it is
preferable to develop new timing checkers for the model instead of inefficiently using
Vital_Timing subprograms. Format and parameter names could resemble those of the
Vital_Timing subprograms, to make it easier for the user to recognise each parameters
purpose and usage. Each parameter should have a default value when possible, allowing
the user to assign only those parameters needed for the application.

For example, a timing checker could have a parameter specified in number of clock
periods. Since the clock period can vary, no fixed time value can be provided to a
Vital_Timing subprogram. It is usually possible to examine the actual design and
transform the timing constraint stating number of periods to state number of relevant
clock edges, which are easier to detect and count than clock periods.

A subprogram with the declaration shown in example 18 could cover several such timing
constraint types. An inappropriate solution would be to sample the clock period and to use
the measured value as a parameter to aVital_Timing subprogram. That approach would
not be able to handle clocks with irregular although correct behaviour, e.g. a clock with
changing period length.

--- -----------------------------------------------------------------
-- Checks the relation between two clocks
-- If FasterThanRef = True,
-- then the TestSignal may not have more than Period rising edges
-- between two RefSignal rising edges.
-- If FasterThanRef = False, then vice versa.
--- -----------------------------------------------------------------
procedure PeriodCheck(

variable Violation: out X01;
variable PeriodData: inout Integer;
signal TestSignal: in Std_ULogic;
constant TestSignalName: in String := "";
signal RefSignal: in Std_ULogic;
constant RefSignalName: in String := "";
constant Period: in Integer := 0;
constant FasterThanRef: in Boolean := True;
constant CheckEnabled: in Boolean := True;
constant HeaderMsg: in String := "PeriodCheck:";
constant XOn: in Boolean := True;
constant MsgOn: in Boolean := True;
constant MsgSeverity: in Severity_Level := Warning);

Example 18: Custom made period checker that checks the relation between two clocks.

There are types of checkers that could be directly incorporated in theTimingCheck
process since their small code sizes do not motivate development of subprograms. An
example could be a checker verifying that an input signal does not change while the
reference signal is asserted. Some memories require that the read/write selector may not
change while the component is selected. This is checked for in example 19, and could be
further optimised not to report unnecessary events, such as transitions between equivalent
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Std_Logic strengths, by first converting the inputRW_N to the subtypeX01. Note that
CS_N requiresTo_X01 conversion in this example, since not previously done in the top-
level architecture and both the strengths ‘0’ and ‘L’ should be interpreted as asserted.

-- RW_N may not change when CS_N is asserted.
assert not (RW_N'Event and To_X01(CS_N)='0' and Reset_N_X01='1')

report InstancePath & " RW_N event while CS_N asserted"
severity Warning;

Example 19: Simple checker that could be included in the timing checker process.

Two types of timing constraints can be identified; timing parameters that change with the
simulation condition and timing parameters that are fixed by the architectural design. An
example of the former is an absolute setup time related to a clock edge. An example of the
latter is a setup time that is related to the number of periods of a reference clock.

The first type could vary for different simulation conditions and should therefore be
included as a deferred constant in the timing package, allowing to be changed by the user.
These timing constraints can normally be checked usingVital_Timing subprograms as
described in section 3.3.1.2.1.

-- Asserts that there are at least tpw_ResetN_negedge number of
-- falling Clk edges during the assertion of Reset_N.
-- This timing checker is approximated w.r.t. the data sheet.
-- Only the number of Clk edges are counted for tpw_ResetN_negedge.
if (Falling_Edge(Clk) and Reset_N_X01='0' and (Period_Reset>0)) then

Period_Reset := Period_Reset - 1;
end if ;

if Falling_Edge(Reset_N_X01) then -- Reset begins
Period_Reset := tpw_ResetN_negedge;

elsif Rising_Edge(Reset_N_X01) then -- Reset ends
assert (Period_Reset = 0)

report InstancePath & " Signal width too short on Reset_N"
severity Error;

end if ;

Example 20: Check of timing constraint on the Reset_N input.

The second type of parameter will normally not change, since established by the design
of the component, and could be declared in the declarative part of the top-level
architecture or in theTimingCheck process. The checker in example 20 verifies that
Reset_N is asserted during a minimum number ofClk periods. Its implementation is
somewhat approximated, only checking number of fallingClk edges. It could be included
in theTimingCheck process due to its small size.
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3.3.1.3 Scheduling of output delays

Scheduling of output values with appropriate timing delays should be performed in the
top-level architecture, not to introduce timing related information in the functional core.
This could simplify the design and verification of the functional core since the behaviour
of synchronous designs will mostly be related to the clock cycle.

When adequate timing information is not available in the Data Sheet, the design house or
foundry responsible for the design should be consulted. Each output delay should be
related to the relevant driving clock or signal edge, and should be modelled to reflect the
actual component. The output values on signals being driven should be restricted to the
Std_Logic strengths ‘U’, ‘ 0’, ‘ 1’, ‘ X’ and ‘Z’. Signals with internal pull up or pull down
could be assigned the strengths ‘L’, ‘ H’ and ‘W’ as well. Thedon’t care strength ‘-’ should
not appear at any output, not representing a logic level that should be expected in a board
design. Local signals in the top-level architecture not being delayed, i.e. outputs from the
functional core, should have_NoTime suffixed to their names.

Scheduling of output delays should be done by using concurrent signal assignments.
VitalPathDelay is a function used to select the propagation delay path and schedule a new
output value, but should be avoided since most output delays could be implemented by
the simpler and fasterafter construct. It is normally sufficient to have a single timing
parameter for both the rising and falling signal transitions. TheVitalCalcDelay function
could be used when more elaborated timing modelling is required, as shown in
example 21. The function accepts theVital Delay Types and selects the correct delay time
based on the previous and new signal values.

MData <= MData_NoTime after VitalCalcDelay(
NewVal => MData_NoTime,
OldVal => MData_NoTime'Last_Value,
Delay => tpd_Clk_MData(SimCondition));

Example 21: VitalCalcDelay usage.

Complex timing relations can be modelled with small code size overhead. Example 22
shows a memory interface where the timing of output data is related to both the chip select
signal and to the arrival of the address. It illustrates that complex timing relations need not
be modelled in the functional core, but can readily be done in the top-level architecture.

-- Generation of tristate or drive for the external data bus.
-- D_NoTime is delayed w.r.t. the address. DEn_NoTime is delayed,
-- with different timing for tristate. The D assignment includes an
-- Integer to Std_Logic_Vector conversion.
DEn_Delayed <= transport DEn_NoTime after

tpd_CSN_D_negedge(SimCondition)
when DEn_NoTime else

DEn_NoTime after tpd_CSN_D_posedge(SimCondition);
D_Delayed <= transport D_NoTime after tpd_A_D(SimCondition);
D <= To_StdLogicVector(D_Delayed, 8)

when DEn_Delayed else  ( others => 'Z');

Example 22: Timing and tristate modelling of the data output of a memory interface.
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3.3.2 Management of unknown input values

Inputs should be checked for unknown values which should be reported to the model user.
This information is very useful since the behaviour of the real component is normally not
specified for unknown input values and could result in failure. The nineStd_Logic
strengths are reduced to the three strengths ‘0’, ‘ 1’ and ‘X’, where ‘0’ corresponds to the
equivalent strengths ‘0’ and ‘L’, where ‘1’ corresponds to the equivalent strengths ‘1’ and
‘H’, and ‘X’ corresponds to the rest of the strengths consider being incorrect input values.
The detection, propagation and handling of unknown input values should be implemented
in accordance with RD1, and be documented in the source code header.

Type conversion and checking for unknown values on inputs should be performed only
where and when the data are used. This can be performed per statement or per process if
the value is evaluated and used in more than one place at the same time. The reason for
this is to avoid unnecessary type conversion when events occur on inputs but the value is
not used by the model. It will also reduce the number of unnecessary assertion reports.
This can be done in the top-level architecture as well as in the functional core, depending
on the usage of the input value.

For example, if an input is only used in one process in the functional core the type
conversion should be then done only there, on the other hand if an input is used in several
processes in which it is evaluated simultaneously then the type conversion could be
performed in the top-level architecture to reduce the number of conversions and reports.
A trade off based on measured simulation performance should be performed before
deciding which approach is the most efficient. Detection of unknown input values should
be inhibited when not relevant to the simulation, not to induce unnecessary assertion
reporting, e.g. during reset of the model.

The severity level of assertion reports when unknown values are detected should be
related to their impact on the simulation as specified in RD1. An unknown value changing
the state of the model should have the severity levelError, but when only changing the
data being consumed or produced and not affecting the state of the model it should have
the severity levelWarning.

Inputs should be converted to theX01 subtype of Std_ULogic, reducing the number of
signal strengths to be handled in the functional core. Signals being converted should have
_X01 suffixed to their names. A To_X01 function could be implemented using the
functionsTo_X01 and Is_X together with an assertion statement to both make the type
conversion and check for unknown input values.

Conversion of inputs of the typeStd_Logic_Vector to the subtypeX01 should only be
done when necessary. In example 3 the data and address buses are converted directly to
the typeInteger when being used in the functional core. A custom subprogram could be
developed which converts anStd_Logic_Vector array to the typeInteger and also
performs checking, reporting and handling of unknown values. No type conversion would
therefore be needed for the two buses in the top-level architecture.
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Propagation of unknown values to outputs should be implemented in the functional core
and only be done when not changing the state of the model, i.e. unknown values should
only be propagated when used as data. The propagation of unknown values is useful for
tracing the migration of possible faults in a system. The propagation is normally closely
related to the functional behaviour of the model and could therefore benefit from being
implemented in the functional core, reducing any simulation performance penalties.

Handling of unknown input values on signals used for clocking and latching should be
done by using functions such asRising_Edge, Falling_Edge and Is_X when possible,
reducing the need ofTo_X01 conversions since the functions perform the conversion
implicitly an are accelerated for simulation performance. If-statements should be
structured to explicitly check whether an input has the desired value as shown in
example 23, never relaying on an else statement.

The inputCS_N in example 3 is checked for unknown values in the else statement when
the model is not being reset and no risingCS_N edge has been detected, and is done for
simulation performance reasons. Unknown values onCS_N are treated as ‘1’ during read
and write accesses, i.e. the access is being ignored.

Clock inputs could be checked in the functional core with an efficient checking scheme
using if statements as shown in example 8.

if  CS_N_X01=’0’ and  RW_N_X01=’0’ then
-- Write access, unknown value on CS_N_X01 or RW_N_X01 is

 -- handled as ‘1’ which will not activate the access.
elsif  CS_N_X01=’0’ and  RW_N_X01=’1’ then

-- Read access, unknown value on CS_N_X01 or RW_N_X01 is
 -- handled as ‘1’ which will not activate the access.

else
-- Neither write nor read access, check for unknown values.

end if ;

Example 23: Handling of unknown input values.

Inputs that are used in more than one process or that change state infrequently can be
checked for unknown values in the top-level architecture. To avoid unnecessary
invocation of processes, these checkers should be divided in two or more processes as
shown in example 8, grouping inputs together that change with comparable frequencies.

The To_X01 conversion could be performed in the top-level architecture when an input is
used in a static manner, e.g. mode pins that are normally held to defined levels when used,
or used in many concurrent statements in the functional core. In example 24, static inputs
or inputs with infrequent state changes are checked for unknown values in the
CheckStaticInputs process. The checking is only performed when reset is inactive or when
reset is deactivated, requiring theReset_N signal to be in the sensitivity list of the process.
Static inputs that are not allowed to change after reset are checked for such illegal events
as well. All checkers in the example are disabled during the initial simulation cycle to
prevent unnecessary assertion reporting.
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The production test is activated by theTest input but is not modelled in the example and
any attempt to use it will result in an assertion report with the severity levelNote. The
Reset_N input is also checked for unknown values in this process, using theIs_X function
only for the sake of conformance since already being converted to the subtypeX01. Clock
inputs and other inputs with frequent state changes are checked for unknown values in the
CheckDynamicInputs procedure in example 25, which is kept simple to reduce the
performance penalty for each invocation. TheIs_X function will make theTo_X01
conversion implicitly.

CheckStaticInputs: process (Reset_N_X01, Test_X01)
begin

if (Reset_N_X01='1') and (Now /= 0 ns)  then
-- No assertions at start-up or when Reset_N is asserted
-- The Test input is a vector, element 0 is used for
-- production test only.
assert (Test_X01(1)='0')

report InstancePath & " Prod. test not modelled"
severity Note;

assert not Is_X(Test_X01) -- Note: done on a vecto r
report InstancePath & " 'X' on Test input"
severity Error;

-- Check if the static pin changed after reset
assert not Test_X01'Event

report InstancePath & " Test changed after reset"
severity Error;

elsif Reset_N_X01'Event and (Now /= 0 ns) then
-- Check for X on Reset_N
assert not Is_X(Reset_N_X01)

report InstancePath & " 'X' on Reset_N input"
severity Error;

end if ;
end process CheckStaticInputs;

Example 24: Check for unknown values on static inputs.

Separation of dynamic and static input checking is important when the number of static
inputs is large and would slow down the simulation if each was checked for every event
that occurred on the dynamic inputs. It can be worthwhile to assess the performance
impact on whether to use more than one process when checking dynamic inputs.

--------------------------------------------------------------------
-- Check for unknown values on the SClk input.
-- The Clk input is checked in the functional core.
--------------------------------------------------------------------
CheckDynamicInputs: process (SClk)
begin

-- No assertions at start
assert not (Is_X(SClk) and (Now /= 0 ns))

report InstancePath & " 'X' on SClk input"
severity Error;

end process CheckDynamicInputs;

Example 25: Check of dynamic inputs which change states frequently.
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3.3.3 Reporting model messages

Each message should contain theInstancePath generic in the beginning of the report
string. In case of more than one hierarchical level, the sub-level path should be the same
as for the top-level entity, since the user would normally not need to know from which of
the subcomponents the report originates. The purpose of theInstancePath generic is to
provide the user with a mean for naming each instance with a unique name corresponding
to the component identifier on the simulated board. This scheme makes it easier for the
user to identify the source of a report than if all the instances of the same component type
would produce exactly the same name.

The InstancePath generic should have a default value corresponding to the model name
as shown in example 26. A colon is used as a delimiter in theString returned by the
attributesPath_Name and Instance_Path defined for VHDL ’93, and should therefore
also be used for theInstancePath generic in models for board-level simulation. The usage
of theInstancePath generics will be discussed further in section 5 where an example of a
board design is presented.

InstancePath: String := "BitMod:";

Example 26: Declaration of InstancePath generic with default value.

No features for masking assertions and their reports need to be included in the model,
since most VHDL simulators can stop the simulation at a preset severity level.

3.3.4 Outline of entity and architecture declarations for models

The generics and ports of the top-level entity provide the interface of the model. Generics
are used for passing timing parameters and to select simulation conditions etc. Ports
represent the pins of the component. The generic and port names should be selected in
accordance with RD1 and section 3.3.1. Any control parameters and files names used by
the model should be declared as generics, allowing them to be flexibly selected using
configuration declarations.

The only standard packages which should be made visible when using a model for board-
level simulation areStandard, TextIO, Std_Logic_1164, Vital_Timing, Vital_Primitives,
ESA.Simulationand ESA.Timing. The only model specific packages made visible are
those containing the timing parameters of the models. The packages made visible to the
entity declaration should only beStd_Logic_1164, ESA.Simulationand ESA.Timing.

The entity declaration in example 7 contains the simulation condition selector
SimCondition, InstancePath for messages, andTimingChecksOn for enabling the timing
checkers, all of them having default values. The timing parameters are passed to the model
via the timing generics declared as types declared inESA.Simulationand ESA.Timing,
each containing three values for the simulation conditions. Note the usage of the suffixes
posedge andnegedge. The default values are fetched from theBitMod_Timing package
already made visible to the entity. There is no need to have different names for the timing
constants in the timing package and the timing generics.
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The VITAL packages have not been made visible since the types declared there are not
used explicitly. If a timing generic would need to contain individual timing data for each
element of aStd_Logic_Vector, the neededTime Array Type would have been declared in
theBitMod_Timing package and would be visible to the entity. The ports are grouped after
functionality and the arrays have the most significant bit to the left. Each parameter has
been commented on the line where being declared.

library IEEE;
use IEEE.Std_Logic_1164. all ;

library ESA;
use ESA.Simulation. all ;
use ESA.Timing. all ;

library BitMod_Lib;
use BitMod_Lib.BitMod_Timing. all ; -- Default timing

entity BitMod is
generic (

SimCondition: SimConditionType := WorstCase;
InstancePath: String := "BitMod:";
TimingChecksOn: Boolean := False;

tperiod_Clk: TimeArray := tperiod_Clk; -- TClk
tpw_Clk_posedge: TimeArray := tpw_Clk_posedge;-- TCHi
tpw_Clk_negedge: TimeArray := tpw_Clk_negedge;-- TCLo
tpw_CSN_negedge: TimeArray := tpw_CSN_negedge; -- T1
tsetup_D_CSN: TimeArray := tsetup_D_CSN; -- T2
thold_D_CSN: TimeArray := thold_D_CSN; -- T3
tpd_CSN_D_negedge: TimeArray := tpd_CSN_D_negedge;-- T4
tpd_CSN_D_posedge: TimeArray := tpd_CSN_D_posedge;-- T5
tpd_A_D: TimeArray := tpd_A_D; -- T6
tpd_Clk_MData: TimeArray01 := tpd_Clk_MData); -- T9

port (
-- System signals (4)
Test: in Std_Logic_Vector(0 to 1); -- Test mode
Clk: in Std_Logic; -- Master Clock
Reset_N: in Std_Logic; -- Master Reset

-- Interface to internal registers (12)
A: in Std_Logic_Vector(0 to 1); -- Address bus
CS_N: in Std_Logic; -- Chip select
RW_N: in Std_Logic; -- Read/write
D: inout Std_Logic_Vector(0 to 7); -- Bidirectional

-- Serial Interface (3)
SClk: in Std_Logic; -- Serial clock
SData: in Std_Logic; -- Serial input
MData: out Std_Logic); -- Serial output

end BitMod;

Example 27: Outline of entity declaration for a model for board-level simulation.
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The architecture declaration in example 28 contains: component declarations for the
functional core; local signal declarations; timing parameters which are fixed by the
architecture and do not change with simulation conditions;To_X01 conversion for static
inputs and inputs used in multiple processes; process for checking dynamic inputs for
unknown values; process for checking static inputs for unknown values; process for
timing checking contained in a generate-statement; assignment of output delays and
instantiation of subcomponents. Each components should be declared including at least
the InstancePath generic when any checking is performed in the functional core. The
component instantiation should associate theInstancePath generic of the entity to that of
the component. The packagesVital_Timing and BitMod_Definition which contains
custom made timing checkers are made visible only to the architecture, not to the entity.

library IEEE;
use IEEE.Vital_Timing. all ;

library BitMod_Lib;
use BitMod_Lib.BitMod_Definition. all ; -- For custom functions

architecture BoardLevel of BitMod is
-- Component declarations.
-- Local signal declarations.
-- Declaration of timing parameters not to be changed by user.

begin
-- Strength stripping to X01 for some signals using
-- Std_Logic_1164 subprogram To_X01.

-- Check for unknown values on dynamic input.
CheckDynamicInputs: process (...)
begin
end process CheckDynamicInputs;

-- Check for unknown values on the static inputs.
CheckStaticInputs: process (...)
begin
end process CheckStaticInputs;

-- Timing checks on inputs (setup, hold, period, pulse width).
TimingGenerate: if TimingChecksOn generate

TimingCheck: process (...)
-- Variables containing information for checkers
begin

-- Enabling of various checkers.
-- Checkers implemented in the process.
-- Checkers using custom made subprograms.
-- Timing checkers using Vital_Timing subprograms.

end process TimingCheck;
end generate TimingGenerate;

-- Assignment of output delays.
-- Instantiation of subcomponents.

end BoardLevel;

Example 28: Outline of a top-level architecture.
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4 VERIFICATION OF MODELS FOR BOARD-LEVEL SIMULATION

Model verification is performed to ensure that the model for board-level simulation fulfils
its requirements, both on functionality and timing. The method outlined in this section is
based on the existence of acomponent model for comparison. When such model is not
available, emphasis should be put on performing the verification independently from the
model development. Two categories of verification can be identified; to ensure that the
model has the same functionality as thecomponent model (performed during model
development), and to verify that the model works for a certain combination of simulator
and platform (performed by the user with test suites provided by the model developer).

The first category of verification should be performed at the end of the model development
to ensure that the model reflects the functionality of the component. Such verification
should include all functional test stimuli used during the component development. It is the
responsibility of the model developer to verify the functionality of the subcomponents of
the model. Normally this type of verification is best performed by the designer who knows
all the details of the model. Subcomponent verification should be an exhaustive test which
includes every input combination with both legal and illegal values, and be applied for
every state. Exhaustive testing at higher level is not always feasible because of complexity
reasons. It could be advantageous to begin the development of the test programme already
during the design of the component when a development of a model for board-level
simulation is foreseen. A verification of the model should be performed by placing it in a
typical board design to detect any system problems.

The second category of verification should be performed by the user when installing the
model in his particular simulation environment to ensure that it will operate correctly
when simulated. This should be done by using a test bench provided by the model
developer, developed in accordance with RD1, including one or more test benches,
reporting whether a test has passed or failed etc. The reason for performing a verification
when a model is installed is that there are still some differences between VHDL
simulators. Each model should preferably be verified by the model developer for more
than one combination of computer platform, operating system and simulator before being
released. The test should allow automatic verification and be suitable as a maintenance
vehicle for verifying the model after modifications. As for all verification activities, the
test suites should be developed by somebody not involved in the development of the
model itself to avoid masking of errors.

The structure of the test environment differs between the two categories. For the first
category several different structures can be used, depending on the simulator. For the
simulation of the model in its environment, the test structure will normally be developed
as a board design, which is described in section 5.1. Test structure for the second category
should provide full controllability and observability of the test object.

The following sections will present an approach to development of test benches for the
second category of verification. The first category of verification should also follow the
suggestions presented below as far as possible. Since being more related to the stimuli and
data from the component development, it could be performed in several ways and is
therefore not completely covered in this document.
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4.1 Test bench

The test bench contains the model to be verified, referred to as the test object, a test
generator, and occasionally objects external to the test object that are necessary for its
operation, such as memories or buffers, as outlined in figure 5. For complete verification,
all external objects should be modelled in the test generator, e.g. protocol machines, bus
interfaces etc. allowing for generation of non-nominal stimuli such as inducing incorrect
or corrupted accesses, error injection etc., which is normally only possible when having
full controllability and observability. The test generator can have several architectures
implementing different test suites.

The test bench should have no ports or generics in the entity declaration, since this is
potential not portable. Therefore should there be no needed to make any declarations in
the test bench entity and it should be independent of any packages or design units, i.e. the
entity declaration should be completely empty.

Each architecture of the test bench should have a purely structural composition reflecting
only possible interconnections of physical components and contain no functionality,
allowing the test bench to be replaced with a schematic containing the VHDL test
generator and thecomponent model when using mixed-level simulation. Signals not
present as physical pins on any external objects, e.g. debugging umbilical to
microprocessor model, should not be connected to the test object, since the test object is
used for Board-Level simulation where only physically possible connections are allowed.

Figure 5: Entity and architecture of the TestBench.

Each component declaration in the test bench architecture should have the same name,
generic and port declarations as for the corresponding entity. Since the test bench root
entity should not have any generics, the selection of the simulation condition and test suite
could either be made in the test bench architecture or by using configuration declarations.
The selection of the simulation condition is necessary for the verification of the timing
interfaces of the model.

The first approach is to have one test bench architecture for each simulation condition and
test suite pair. The component instantiation and interconnection of the test object and test
generator will be the same for all architectures, only differing in the values associated in
the generic maps and the selection of the test generator architecture in the configuration
specification.

entity TestBench

architecture Structural

component component
instantiation
Test_Object:

instantiation
Test_Generator:

BitMod TestGenerator
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The second approach is more advanced and utilises the full power of the language and
yields less code. The component declarations for the test object and the test generator
should only contain the ports declared for each entity, not any generic declarations, as
shown in example 29.

entity TestBench is
end TestBench;

library IEEE;
use IEEE.Std_Logic_1164. all ;

architecture Structural of TestBench is
component BitMod

port (...);
end component ;
component TestGenerator

port (...);
end component ;
-- Local signal declarations.
begin
Test_Object: BitMod

port map (...);
Test_Generator: TestGenerator

port map (...);
end Structural;

Example 29: Outline of entity and architecture of test bench.

Configuration declarations are used to bind the component instances in the test bench
architecture using configuration specifications; selecting corresponding entities and
architectures, binding port and generic formals with actuals. Each test suite is selected by
its architecture name in the configuration specification for the test generator instance, as
shown in figure 6.

Figure 6: Configuration declarations for the TestBench.

The configuration declaration of the test object should be selected in the configuration
specification, as shown forBitMod_Configuration in example 30, since the test object
normally has a hierarchy. The binding of the component and entity ports is done by default
named association when their declarations are identical. Values can be assigned to the

configuration FunctionalTest
configuration X_HandlingTest

configuration WorstCaseTest
configuration TypCaseTest

configuration BestCaseTest
for Test_Object: BitMod use configuration...

generic map (SimCondition => BestCase...
for Test_Generator: TestGenerator use entity...TestGenerator(Timing)

generic map (SimCondition => BestCase...
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entity generics using generic maps in the configuration specifications, e.g. timing
parameters, file names, simulation condition, since the generic declarations have been
omitted in the component declaration in the architecture. The declarations made in the
ESA.Simulation package should be made visible to the configuration declarations using
library and use statements as shown in example 30.

library BitMod_Lib;

library BitMod_TB_Lib;

library ESA;
use ESA.Simulation. all ;
use ESA.Timing. all ;

configuration FunctionalTest of TestBench is
for Structural

for Test_Object: BitMod
use configuration BitMod_Lib.BitMod_Configuration

generic map (
SimCondition => WorstCase,
InstancePath => ":TestBench:Test_Object:",

 TimingChecksOn => False);
end for ;
for Test_Generator: TestGenerator

use entity BitMod_TB_Lib.TestGenerator(Timing)
generic map (

SimCondition => WorstCase,
InstancePath => ":TestBench:Test_Generator:");

end for ;
end for ;

end FunctionalTest;

Example 30: Outline of configuration declaration of test bench.

By providing one configuration declaration for each simulation condition and test suite
pair, the amount of code duplication can be reduced compared to the first approach since
only one architecture is necessary for the test bench. It is generally a good practice to
select only configuration declarations, not entities, when binding components of a test
bench with configuration specifications. The test bench, test generator and its packages
should be analysed to a library separate from the test object. The name of the library
should be the same as for that of the test object, but with_TB_Libsuffixed instead of_Lib.

4.2 Test object

The test object is instantiated in the test bench architecture as explained above. The
component declaration should be identical to the entity declaration, but should not include
the generics when the second approach described above is used for the selection of
simulation conditions and test suites. The development of the test object has been
described in section 3.
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4.3 Test generator and result checker

The test generator should generate stimuli and acquire response data for comparison with
the expected results in order to verify the behaviour of the test object. The test generator
could have more than one architecture, implementing different test suites with different
functions as outlined in figure 7. An architecture of a test generator should include
processes that generate the test suite, evaluate test results, generate list files, perform
output data compression etc. Since several of these functions are normally used in more
than one architecture, subprograms could be declared in a separate package or in the
declarative part of the entity.

Figure 7: Entity and architectures of the TestGenerator.

The test generator entity should have the same port declaration as the test object, but with
the opposite directions for the signal flow, as shown in example 31. The entity declaration
should include theInstancePathgeneric and SimCondition generic for the selection of
simulation condition as described in section 3.3.1, to allow for efficient verification of
timing checkers. Enabling of optional functions, e.g. generation of log files or test
statistics, should be done using generics to allow the usage of configuration declarations.
File names should be passed to the test generator using generics of typeString, enabling
the users to provide a file path supported by their operating system.

When test suites consist of several sequential sub-tests, each such sub-test should run
independently from the preceding tests, i.e. the sub-test results should not affect the
adjacent sub-tests. This is useful during the development of the test suite to reduce the
simulation time by being able to exclude preceding sub-test in long simulation runs. Each
sub-test should always begin and end with the test object in a known state and each signal
being observed by the test bench should have the same value, which is normally the case
when the model is reset. When compressing the output data, the signature should be
checked and reset between sub-tests, allowing modifications of sub-tests without
changing the signatures for all other sub-tests, as described in section 4.3.3

Each test or sub-test should report whether it has passed or failed, using the severity levels
Note for passed andError for failed and the genericInstancePath, as shown in
example 32. When a sub-test has failed the assertion report should identify the error to
allow tracing of the fault, including the name of the test suite and state the simulation
condition. The criterion used for determining whether a test has passed or failed should
be documented, i.e. state what is automatically verified. One method to indicate that a test
suite is completed is to generate an assertion report with the severity levelFailure.

entity TestGenerator

architecture Functional
architecture X_Handling

architecture Timing
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Unnecessary assertion reports should be avoided, reducing the amount of output to be
reviewed by the user.

When input and output files are used they should be of the typeStd.TextIO.Text to ensure
portability. Binary files should not be used as input or output to the test generator. If the
natural representation of data is in binary format, e.g. in image processing applications, a
C program converting data between the binary and the hexadecimal representation, and
vice versa, should be provided with the binary files.

library IEEE;
use IEEE.Std_Logic_1164. all ;

library ESA;
use ESA.Simulation. all ;

entity TestGenerator is
generic (

SimCondition: SimConditionType := WorstCase;
InstancePath: String := "TestGenerator:");

port (
-- System signals (4)
Test: inout Std_Logic_Vector(0 to 1); -- Test mode
Clk: inout Std_Logic := '0'; -- Master Clock
Reset_N: inout Std_Logic; -- Master Reset
-- Interface to internal registers (12)
A: inout Std_Logic_Vector(0 to 1); -- Address bus
CS_N: inout Std_Logic; -- Chip select
RW_N: inout Std_Logic; -- Read/write
D: inout Std_Logic_Vector(0 to 7); -- Bidirectional
-- Serial Interface (3)
SClk: inout Std_ULogic := '0'; -- Serial clock
SData: inout Std_ULogic := '0'; -- Serial input
MData: in Std_Logic); -- Serial output

end TestGenerator;

Example 31: Outline of an entity declaration for a test generator.

The test generator need not be optimised for simulation performance. However,
simulation lengths should not discourage the user from performing the verification. The
usage of wait-statements has been shown efficient due to their flexibility when modelling
test suites, even though not having optimum simulation performance. The duration of the
simulated time of each test suite should be documented.

Test suites could be assembled using calls to procedures that encapsulate low level
interfacing to the test object. These procedures should be implemented with all timing
values passed as parameters, allowing easy modification of the interfaces.

There should be a separation between the verification of the functionality of the test object
and the verification of its interface modelling. The following sections will more in detail
describe the purpose and implementation of these two different verification procedures.
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4.3.1 Verification of functionality

The functional verification should cover the full functionality of the test object. The test
suites implementing this are subject to several diverse requirements. The test suite should
detect any differences between the board-level and detailed models, employing several
different testing methods as outlined below. It should be possible to run the test suite for
both the test object and thecomponent model during model development. It should be
possible to evaluate the efficiency of the test suite using fault simulation as described in
section 4.4. The results from a simulation performed by the user should either be
compared to a reference file or with reference signatures when data compression is used
to determine whether a test has passed or failed.

The development time of the functional test suite should not be underestimated. It has
been often shown that it takes at least the same amount of time as the development of the
test object itself.

To ensure that any differences between the two models are detected, all inputs should be
asserted a couple of clock cycles before and after their expected sampling points,
implementing a sliding window. It is sufficient to verify the clock cycle behaviour for
fully synchronous designs. The reset of the test object should be treated as any other
functionality and be adequately exercised. The behaviour of the test object before reset,
during reset and after reset should be verified. The timing checkers of the test object could
be disabled during this type of verification since the correct behaviour of the model after
a timing violation is often not required.

The test object should not be verified only for its nominal behaviour but also for
robustness. All input combinations should be generated including erroneous usage of the
test object interfaces, incorrect accessing schemes etc. The test object should be run in all
modes, entering all internal states.

Independent high-level checkers should be implemented for the test suite. These checkers
should evaluate the data sent and received by the test object, verifying that protocols are
correct, ensure that interface requirements are meet, etc. The incorporation of high-level
checkers in the verification is a complement to the comparison with thecomponent model,
and is essential when such a reference model does not exist.

It has been shown that random generation of input values, the order and type of accesses
etc., detects many differences between two model representations and should therefore be
included in the test suite when found beneficial. The implementation of the random
function should never use the typeReal, since its realisation is often simulator dependent
and could give inconsistent simulation results.

All inputs to the test object should be synchronously asserted at relevant clock edges and
with appropriate clock-to-output delays, not to violate any setup and hold constraints. The
logical values on the inputs of the test object should be compatible with the simulator used
for thecomponent model, which is normally ‘1’ and ‘0’. The use of unknown values on
the inputs will most likely not produce the same result for the two models and should be
avoided. When multiple input clocks are used, they should be phased locked to avoid
unnecessary timing violations during the simulation of thecomponent model.
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The test suite could generate formatted output files showing status, output data etc., which
could be useful to the model developer. For example, a serial output data stream could be
converted to a parallel format before being evaluated in the test bench or written to a file
for further reviewing of the simulation results. These files should not be generated when
the test suite is run by a user, neither should it be necessary for a user to review those files.

The outputs of the test object should be sampled with respect to a driving clock edge and
be written to a list file or be compressed using a Multiple Input Signature Register, MISR,
as described in section 4.3.3. Care should be taken when deciding the sampling point
within the clock cycle, allowing all outputs of the model to settle for all simulation
conditions. The test suite should allow the outputs of thecomponent model to obtain other
values than unknown after reset or start up of the simulation, before beginning the
comparison of the results. The format of the list file should allow straightforward
comparison with the output generated by thecomponent model simulator.

All inputs to the test object, including those from external components, could be sampled
at their assertion point and written to a force file. The format of the stimuli in force files
should be readable by the simulator used for thecomponent model. If that simulator can
use the VHDL test bench directly, the file would then not be necessary.

Force, list and output files can be used when verifying the functionality of the model
intended for board-level simulation against thecomponent model. When the verification
has been successful, the list file from thecomponent model simulation should be provided
to the user as a reference file for comparison with obtained simulation results. When the
test suite is run by the user, the outputs should be sampled and compared to a reference
file to establish whether each sub-test has passed. The comparison could be done within
the test generator to avoid generating an output file for comparison outside the simulator.
Since reference files tend to become large and cumbersome, compression of the output
data is recommended and is described in section 4.3.3.

When the test suite is to be evaluated using fault simulation as described in section 4.4,
the test stimuli could be transferred between the simulators using tool specific methods,
otherwise the previously mentioned force file could be used. In case bidirectional ports
are used, it could sometimes be necessary to generate force files to obtain the correct
waveforms even when tool specific methods are available. When Built In Self Test, BIST,
is not fully implemented in the model for board-level simulation, e.g. it is modelled only
as a delay before the nominal operation after reset, it should be verified in a separate test
suite.

The force, list and output file generation should be possible to disable by aBoolean
generic with the default valueFalse, and it should be disabled when not used for
debugging purposes. It is suggested that the implementation of such file generators should
not induce any simulation penalties when not used and be disabled using
generate statements as shown in example 12.

An architecture containing a functional test suite is shown in example 32. The test suite
in the example will test the full functionality of the model, except the BIST operation.
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The activation of the BIST would preclude the test suite to be evaluated using fault
simulation. The BIST is tested separately in the architectureX_Handling as outlined in
section 4.3.2. Only theStd_Logic strengths ’0’, ’ 1’, ’ Z’ are applied to the inputs, to be able
to apply the same stimuli to thecomponent model as well. The outputs are sampled and
the data is compressed in a concurrent procedure. The resulting signature is compared to
an expected signature at the end of each sub-test, which is done in the test suite. The test
object is reset and the MISR is cleared between each sub-test. The length of theMISR
adapts itself to the length of theInput parameter. The MISR will be sampled on each rising
Clk edge. The source code of theMISR procedure can be found in appendix B.

library BitMod_TB_Lib;
use BitMod_TB_Lib.MISR_Definition. all ;

architecture Functional of TestGenerator is
signal MISRegister: Std_Logic_Vector(0 to 15);
signal MISRInput: Std_Logic_Vector(0 to 15);
signal MISRReset: Boolean;

begin
TestSuite: process

variable TestFailed: Boolean := False;
begin

... Initialisation
ResetMISR(MISRReset);
... Test suite

 CheckMISR(MISRegister, "1234", TestFailed,
InstancePath&"Functional:TestSuite:Sub-test 41");

ResetMISR(MISRReset);
Reset(Test, Clk, Reset_N, A, CS_N, RW_N, Sclk, SData);
... Test suite
CheckMISR(MISRegister, "5678", TestFailed,

InstancePath&"Functional:TestSuite:Sub-test 42");
 assert not TestFailed

report InstancePath&"Functional:TestSuite: Test failed."
severity Error;

assert TestFailed
report InstancePath&"Functional:TestSuite: Test passed."
severity Note;

assert False
report InstancePath&"Functional:TestSuite: End of test."

 severity Failure;
wait ;

end process TestSuite;
MISRInput<= MData & SData & SClk & D & A & CS_N & RW_N & Reset_N;

MISR(Clk => Clk,
Reset => MISRReset,
Input => MISRInput,
MISR => MISRegister,
Rising => True,
Falling => False,
HeaderMsg => InstancePath&"Functional:MISR:",
Sense => 45 ns);

end Functional;

Example 32: Outline of architecture containing a functional test suite.
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4.3.2 Verification of interfaces

The interfaces of the test object should be verified to function correctly, and should be
performed separately from the functional verification. The test results must normally be
visually inspected by the user since automatic verification is not always possible.

Test suites resulting in assertion reports should be delivered together with a reference file
listing the expected assertion reports, including time of assertion and severity level, which
should be used for manual comparison with the results obtained by the user. All message
reports that can be generated by the test object should be verified.

Each input of the test object should be applied all nineStd_Logic strengths, which should
result in the detection of unknown values and assertion reports. Since inputs are checked
for unknown values only when needed in models for board-level simulation, the test suite
needs to execute the test object to the point when the input value is actually used and
affects the simulation. Models with internal memory elements which are observable at the
interface should be verified to return theStd_Logic strength ‘U’ at simulation start up if
not reset.

The handling and propagation of unknown values should be verified for each input. The
outputs should be sampled and the test suite could use a reference file or output
compression, with expected responses first being examined by the model developer.
Comparison with acomponent model will normally not be possible since its unknown
value propagation is implemented differently.

The architectureX_Handling shown in figure 7 contains a test suite that will test the
following: all inputs should be applied all nineStd_Logic strengths; all checkers for
unknown values on inputs; the handling of each unknown input value should be checked;
the propagation of each unknown input value should be checked. This test suite should
also test the BIST functionality of the model, and should not be evaluated using fault
simulation since it would activate portions of the component not modelled for board-level
simulation.

The verification of the timing of the test object should include all input-to-output delays,
clock-to-output delays, setup and hold times etc. The timing verification should be done
for all simulation conditions and be selected by theSimCondition generic. Outputs from
the test object do not need to be compared with thecomponent model during the
verification of the timing, since they would not necessarily give identical results. The
purpose is to verify the operation of the timing checkers, not the functionality of the model
after a timing violation. No reference file nor output compression is therefore needed for
this type of verification.

The test suite should not use the timing package provided with the test object to avoid
possible error masking. It is therefore not necessary that the test suite should be able to
verify the timing of a test object for which the timing package has been modified by the
user. This approach will also provide a means for detecting whether a timing package has
been modified since delivered.
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Each timing constraint checker in the model should be verified by asserting the tested
signal from two units before to two units after the critical point, implementing a sliding
window over the timing constraint value. The unit should be ns for absolute parameters
and periods for clock relative parameters. The implementation of the sliding window
should take into account that the timing parameters could change during the life time of
the test object. Each checker in the model should also be checked under conditions which
should not result in an assertion report.

The output delay timing for each signal, including bidirectional signals, should be
verified, observing all possible signal transitions and timing parameters.

The architectureTiming shown in figure 7 should contain a test suite that will test all
timing constraint checkers (both with and without timing violations). The architecture
with the timing test suite should be bound for the three simulation conditions by using the
three configuration declarationsWorstCaseTest, TypCaseTest andBestCaseTest. A listing
of simulator outputs (assertion reports) should be provided in the reference files named
worstcase.ref, typcase.ref andbestcase.ref.

4.3.3 Verification result compression

A method useful for verifying that the exact behaviour of a model has not changed is to
generate a signature, similar to implementing BIST for ASICs. One usage of this
technique is to prove the exact behaviour of a delivered VHDL model to the user.

Data from the sampled outputs of the test object could be compressed using a Multiple
Input-Signature Register, MISR, which is compared to a predetermined signature to
determine whether a test has passed or failed. The benefit of compressing output data is
the elimination of large reference files. This method is also useful when combined with
high level checkers, since it can provide accurate clock cycle observation of signals when
the stimuli and responses have been approved. A MISR can be used for regression tests
during model and ASIC developments, as well as for verification test benches. A MISR
implemented as a VHDL procedure is shown in appendix B.

Data compression is most feasible for data that have been synchronously sampled, and
should therefore mainly be done for the test suites verifying the functional behaviour on
a per clock cycle basis. A MISR can also be clocked by the changes on its input vector, it
should then be independent of any delta cycles since these can differ between VHDL
simulators. A way to implement this is to allow all events on the input vector to take place
in each simulation cycle before shifting the MISR. The input vector should therefore be
stored for each event, and the MISR should be shifted only when there has been an
increase of the simulation time since the last event.

All outputs from the test object should be input to the MISR, including those interfacing
external components such as memories. Inputs to the test object could also be input to the
MISR, especially when there is a need to assure that input stimuli have not changed. The
MISR should have sufficient number of register stages to allow for long test suites without
the risk of error detection masking due to register contents repeating themselves. It should
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therefore be structured as a primitive binary polynomial implementing a maximum length
Linear Feedback Shift Register, LFSR, as shown in figure 8. A list of binary polynomials
for different register lengths can be found in RD5.

The MISR should be able to detect any differences on its inputs, taking into account all
nineStd_Logic strengths. For an LFSR to function correctly, thexor operator is assumed
to operate on operands with only the logic strengths ‘0’ and ‘1’. LFSRs are therefore not
capable to work with the typeStd_Logic directly. The nineStd_Logic strengths should
therefore be transformed to a binary vector representation with the length 4, assigning a
unique binary combination for eachStd_Logic strength. The resulting vector could then
be input to the MISR which would be four times longer than the input vector. A way to
reduce the vector length is to divide the input vector in four and shift the MISR four times
for each sampling point. The MISR would then have the same length as the input vector.

All signals observed by the MISR should be input each clock cycle, be that by applying
the full input vector once or to split it and clock the MISR multiple times as explained
above. It is recommended that MISRs containing onlyxor operators are set to all ones
when reset, to reduce the risk of error detection masking for signatures with all bits zero.

As for the generation of list files, the sampling point within the clock cycle should allow
the outputs to settle for the test object under all simulation conditions. The MISR should
therefore be clocked with the same, or derived, clock as the test object, but after an
appropriate delay. The usage of multiple MISRs should be considered when the test object
has more than one input clock.

The MISR signature should be checked and the MISR reset between each sub-test. Both
the board-level and detailed models should be in a known state and each sampled input or
output should always have the same value between two tests. This will enable the sub-
tests to be modified, reordered, or removed without affecting adjacent sub-tests, since the
MISR signature of each sub-test would be independent of the preceding simulation
results.

Each test suite should be developed with data compression in mind, even when using
reference files since these often tend to grow during the development of the test suite and
will probably grow too large to be manageable and be eventually replaced by output
compression.

Figure 8: MISR implementing the polynomial x5 + x2 + 1

x0 x1 x2 x3 x4

Input 0 Input 1 Input 2 Input 3 Input 4
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4.4 Evaluation of verification coverage

The efficiency of the test suites can be assessed and evaluated using quantitative
measurement methods such as code and fault coverage. The purpose of the verification
should always be to verify the complete functionality of the model for board-level
simulation, not to solely satisfy the code and fault coverage goals since these are merely
measurements of the verification efficiently. The calculation of the code coverage should
be done in accordance with RD1. The code and fault coverage of each test suite should be
documented.

The functional coverage of the test suites verifying the functionality of the model can be
approximated as the fault coverage achieved when applying the same stimuli to a fault
simulation of thecomponent model. This type of coverage measurement is of course only
feasible when acomponent model exists. Only the fault coverage for the functional core
of thecomponent model need to be considered, excluding test structures and logic used
for production or self-test when not fully implemented in the test object.

Functions used for internal testability, e.g. BIST, should not be activated by the test suites
during the fault simulation when not fully implemented in the test object. The testability
logic could else cover faults in parts of thecomponent model which are not verified by the
stimuli when applied to the model for board-level simulation. This would result in a fault
coverage not being proportional to the functional coverage.

Normally only stimuli stemming from clock cycle oriented test suites can readily be used
as input to fault simulators.
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5 MODELLING AND SIMULATING BOARD DESIGNS

Board-level simulations are performed to verify board designs. The verification strategy
should be analysed before the simulation commences, assessing its fulfilment by the
intended simulation. To be able to make the assessment, an understanding of the
properties and capabilities of the simulation models is necessary. The simulation models
define the types of design characteristics that can be simulated. The level of correctness
in terms of functionality and timing should be assessed for each model, otherwise
potential errors will be found on the real breadboard after manufacturing. The quality of
simulation results is rarely higher than the quality of the models used in the simulation.
Models not meeting the requirements imposed by the purpose of the simulation have to
be modified or replaced else the desired result will not be achieved.

Board designs can be simulated in full or only partially. When a full board design is
simulated it is recommended that the interfaces of the board are modelled sufficiently
accurately to allow the board design to be used in further simulations without the
necessity for the user to have excessive knowledge about the board’s structure. Board
designs can be described in VHDL or in a description suiting mixed-level simulation
when required. Board designs described exclusively in VHDL have all the benefits as
earlier described for models for board-level simulation, allowing portability and usage
with different simulators. The rest of this section will outline two approaches to modelling
and verification of full board designs described in VHDL.

5.1 Board designs in VHDL

The interfaces of a board design should follow the same requirements as previously
suggested for models for board-level simulation. All timing parameters, such as clock-to-
output and propagation delays, which are affected by the interconnection between the
board design and other equipment, should have a corresponding timing generic with a
default value declared as a deferred constant in a separate timing package. All signals
interfacing the board design should be declared as ports.

The board design should have the same control generics as models for board-level
simulation, such asSimCondition andInstancePath, with appropriate default values, as
shown in example 33. Each component instantiated on the board should have a label
matching the component number on the board or other unique name. TheInstancePath
generics of the component instantiations should be associated with theInstancePath
generic of the board design entity and the instantiation label name. The generics
SimCondition, TimingChecksOn, etc. should be passed from the entity to the components.

There are two approaches to how components in a board design can be configured: in
separate configuration declarations or using configuration specifications in the
architecture. The first approach keeps the timing and interconnection separated, placing
the interconnection in the architecture and the timing in the configuration declaration,
allowing for greater flexibility if the user of the board wants to modify timing parameters
internal to the board. The second approach allows the user to contain all the information
about timing and interconnection in one place. Both approaches allow the user to modify
timing parameters that are declared as generics in the board design entity.
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library ESA;
use ESA.Simulation. all ;
use ESA.Timing. all ;

library IEEE;
use IEEE.Std_Logic_1164. all ;

library BoardDesign_Lib;
use BoardDesign_Lib.BoardDesign_Timing. all ;

entity BoardDesign is
generic (

SimCondition: SimConditionType := WorstCase;
InstancePath: String := "BoardDesign:";
TimingChecksOn: Boolean := False;
tpd_Clk_MData: TimeArray01 := tpd_Clk_MData);

port (
Test: in Std_Logic_Vector(0 to 1);-- Board Test mode
Clk: in Std_Logic; -- Board Master Clock
Reset_N: in Std_Logic; -- Board Master Reset
A: in Std_Logic_Vector(0 to 1);-- Board Address bus
D: inout Std_Logic_Vector(0 to 7);-- Board Bidirectional
RW_N: in Std_Logic; -- Board Read/write
CS0_N: in Std_Logic; -- Chip select, IC0
CS1_N: in Std_Logic; -- Chip select, IC1
CS2_N: in Std_Logic;  -- Chip select, IC2
SClk: in Std_ULogic;  -- Serial Clock
DataIn: in Std_ULogic;  -- Serial input data
DataOut: out Std_Logic); -- Serial output data

end BoardDesign;

Example 33: Outline of an entity declaration for a board design.

The architecture of the first approach contains component declarations without any
generics, since the generics of the board-level entities will be associated with values in the
configuration declaration. The architecture statement part contains only component
instantiations representing the connectivity of the board, as shown in example 34 and
figure 9. The port maps should be declared using named association. This approach does
not need to make any libraries or packages visible to the architecture. The components on
the board are defined by the component declarations and are bound to entities in the
separate configuration declaration, allowing the user of the board to select entities
independently of the board design model.

Figure 9: Board design architecture and configuration declaration.

entity BoardDesign

architecture Structural

IC0:
BitMod

IC1:
BitMod

IC2:
BitMod

configuration BoardDesign_Configuration

for IC0: BitMod use configuration...
for IC1: BitMod use configuration...
for IC2: BitMod use configuration...
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architecture Structural of BoardDesign is
component BitMod

port (...);
end component ;

begin
IC0: BitMod

port map (...);
IC1: BitMod

port map (...);
IC2: BitMod

port map (...);
end Structural;

Example 34: Outline of board design architecture without configuration specifications.

The configuration declaration of the board design above is shown in example 35. The
SimCondition andTimingChecksOn generics in the board design entity are propagated
down the hierarchy. Only the timing packages themselves are made visible to the models,
not their contents. In the general case it is not possible to make all the contents of the
timing package visible to the configuration declaration, since when there are more than
one component in the design, each having its own timing package, it could result in
naming conflicts for some of the timing parameters. Therefore is the default timing
parametertpd_Clk_MData referenced using complete named selection when used in the
generic map of instanceIC0. If timing parameter values are not needed, as for instance
IC2 which is using the default generic value of the entity, the timing package need not be
made visible. A new configuration declaration could be derived when other timing values
are needed, e.g. the output delays of the components can be annotated with signal path
delays or delays due to capacitive loads on the circuit board.

The architecture of the second approach is shown in example 36 and figure 10. The
generic declarations of the component need only to include those generics which will be
associated in the architecture. The rest will take default values declared for the
corresponding entity. Each timing generic declaration need to have the same default
values as have been declared for the entity, due to language rules. In this example the
instantiationIC2 will use the default value for the timing parametertpd_Clk_MData. The
default value is fetched from the timing package with named selection not to conflict with
the timing parameter names of other models used in the architecture (not shown here).

Figure 10: Board design architecture with configuration specifications.

entity BoardDesign

architecture Structural

IC0:
BitMod

IC1:
BitMod

IC2:
BitMod

for IC0: BitMod use configuration...
for IC1: BitMod use configuration...
for IC2: BitMod use configuration...
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All instances of componentBitMod are bound in the configuration specification to the
configuration declarationBitMod_Configuration in libraryBitMod_Lib.

library IEEE;
use IEEE.Vital_Timing. all ;

library BitMod_Lib;

configuration BoardDesign_Configuration of BoardDesign is
for Structural

for IC0: BitMod -- Annotated timing
use configuration BitMod_Lib.BitMod_Configuration

generic map (
SimCondition => SimCondition,
InstancePath => InstancePath&"IC0:",
TimingChecksOn => TimingChecksOn,
tpd_Clk_MData =>
((BitMod_Lib.BitMod_Timing.tpd_Clk_MData(WorstCase)

 (tr01)+ 5 ns,
BitMod_Lib.BitMod_Timing.tpd_Clk_MData(WorstCase)

(tr10)+ 5 ns),
(BitMod_Lib.BitMod_Timing.tpd_Clk_MData(TypCase)

(tr01)+ 5 ns,
BitMod_Lib.BitMod_Timing.tpd_Clk_MData(TypCase)

(tr10)+ 5 ns),
(BitMod_Lib.BitMod_Timing.tpd_Clk_MData(BestCase)

(tr01)+ 5 ns,
BitMod_Lib.BitMod_Timing.tpd_Clk_MData(BestCase)

(tr10)+ 5 ns)));
end for ;

for IC1: BitMod -- Absolute timing
use configuration BitMod_Lib.BitMod_Configuration

generic map (
SimCondition => SimCondition,
InstancePath => InstancePath&"IC1:",
TimingChecksOn => TimingChecksOn,
tpd_Clk_MData => ((5 ns,5 ns),

(5 ns,5 ns),(5 ns,5 ns)));
end for ;

for IC2: BitMod -- Unmodified timing
use configuration BitMod_Lib.BitMod_Configuration

generic map (
SimCondition => SimCondition,
InstancePath => InstancePath&"IC2:",
TimingChecksOn => TimingChecksOn);

end for ;
end for ;

end BoardDesign_Configuration;

Example 35: Outline of configuration declaration for a board design.
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library BitMod_Lib;

library IEEE;
use IEEE.Vital_Timing. all ;

architecture Structural of BoardDesign is
component BitMod

generic (
SimCondition: SimConditionType := WorstCase;
InstancePath: String := "BitMod:";
TimingChecksOn: Boolean := False;
tpd_Clk_MData:  TimeArray01 :=

BitMod_Lib.BitMod_Timing.tpd_Clk_MData);
port (...);

end component ;
...
for all : BitMod

use configuration BitMod_Lib.BitMod_Configuration;
begin

IC0: BitMod -- Annotated timing
generic map (

SimCondition => SimCondition,
InstancePath => InstancePath&"IC0:",
TimingChecksOn => TimingChecksOn,
tpd_Clk_MData =>

((BitMod_Lib.BitMod_Timing.tpd_Clk_MData(WorstCase)
(tr01) + 5 ns,

BitMod_Lib.BitMod_Timing.tpd_Clk_MData(WorstCase)
(tr10)+ 5 ns),

(BitMod_Lib.BitMod_Timing.tpd_Clk_MData(TypCase)
(tr01)+ 5 ns,

BitMod_Lib.BitMod_Timing.tpd_Clk_MData(TypCase)
(tr10)+ 5 ns),

(BitMod_Lib.BitMod_Timing.tpd_Clk_MData(BestCase)
(tr01)+ 5 ns,

BitMod_Lib.BitMod_Timing.tpd_Clk_MData(BestCase)
(tr10)+ 5 ns)))

port map (...);
IC1: BitMod -- Absolute timing

generic map (
SimCondition => SimCondition,
InstancePath => InstancePath&"IC1:",
TimingChecksOn => TimingChecksOn,
tpd_Clk_MData => ((5 ns,5 ns), (5 ns,5 ns), (5 ns,5 ns)))

port map (...);
IC2: BitMod -- Unmodified timing

generic map (
SimCondition => SimCondition,
InstancePath => InstancePath&"IC2:",
TimingChecksOn => TimingChecksOn)

port map (...);
end Structural;

Example 36: Outline of board design architecture with configuration specifications.
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5.2 Verification of board designs

A test bench should be developed for the board design analogous to the test bench for a
model for board-level simulation, as shown in figure 11. A test generator with one or
multiple architectures with test suites should be instantiated together with the board
design in the test bench architecture. Selection of simulation conditions and test suites
should be done by using configuration declarations with the same names as have been
defined for the verification of models for board-level simulation: WorstCaseTest,
TypCaseTest andBestCaseTest.

Figure 11: Test bench containing the BoardDesign and the TestGenerator.

An outline of the test bench is shown in example 37. Only the ports are declared in the
component declarations, since the generics will be associated with their values in each of
the configuration declarations used. The only package needed isStd_Logic_1164 since the
architecture is purely structural only containing the connections between the object being
tested and the test generator. The port maps should be declared using named association
as shown for the portTest and the local signalTest.

entity TestBench is
end TestBench;

library IEEE;
use IEEE.Std_Logic_1164. all ;

architecture Structural of TestBench is
component BoardDesign

port (...);
end component ;
component TestGenerator

port (...);
end component ;
-- Local signal declarations.

begin
Test_Object: BoardDesign

port map (Test => Test, ...);
Test_Generator: TestGenerator

port map (Test => Test, ...);
end Structural;

Example 37: Outline of entity and architecture of a test bench for a board design.

entity TestBench

architecture Structural

component component
instantiation
Test_Object:

instantiation
Test_Generator:

BoardDesign TestGenerator
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The packageESA.Simulation is made visible to the configuration declaration in
example 38 to allow the selection of the simulation condition. The libraries
BoardDesign_Lib andBoardDesign_TB_Lib are made visible to allow the selection of the
test object and the test generator.

The timing parameter values for the board design are selected by using the
BoardDesign_Configuration in the configuration specification for theTest_Object.

The InstancePath generics of theTest_Object and theTest_Generator have been chosen
to contain the sameString value as would have been returned by the VHDL ’93 attribute
Path_Name. Note that the root of the path begins with a colon.

library ESA;
use ESA.Simulation. all ;

library BoardDesign_Lib;

library BoardDesign_TB_Lib;

configuration WorstCaseTest of TestBench is
for Structural

for Test_Object: BoardDesign
use configuration BoardDesign_Lib.BoardDesign_Configuration

generic map (
SimCondition => WorstCase,
InstancePath => ":TestBench:Test_Object:",
TimingChecksOn => True);

end for ;
for Test_Generator: TestGenerator

use entity BoardDesign_TB_Lib.TestGenerator(Timing)
generic map (

SimCondition => WorstCase,
InstancePath => ":TestBench:Test_Generator:");

end for ;
end for ;

end WorstCaseTest;

Example 38: Outline of a configuration declaration of a test bench for a board design.

A more detailed approach to verification of board designs can be found in RD7.
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6 DESIGN DOCUMENTATION

All documentation should be in English. The documentation should be well structured and
easily readable. The documentation should be consistent, e.g. the same item should have
the same name in all documentation and code. Diagrams should be introduced where
beneficial for the understanding of the text.

Every time a document is updated it should include a detailed change list, and all
significant changes marked using a change bar in the margin.

6.1 User’s Manual

The purpose of the User’s Manual should be to allow any board-level designer, with little
or no VHDL experience, to efficiently use the developed models to perform board-level
simulation without needing the full source code. The manual shall be independent from
any VHDL simulator specific features.

The text should be oriented towards the user and be spell checked. Naming and numbering
conventions used for the model and documentation should be documented.

The component which is modelled should be unambiguously identified, including the
component name and number, and foundry. The sources describing the functionality and
timing from which the modelling is performed should be identified. To avoid potential
documentation errors, information from already established and publicly available
documents, such as Data Sheets, can be referenced using a complete reference (document
title, reference number, issue number and date, section).

Any limitation introduced during the model development should be documented,
including assumptions or restrictions regarding the usage of the model, unresolved coding
errors (and workarounds), and non-compliances w.r.t. the component functionality.

The model should be identified including library and configuration declaration names.

All interfaces of the model should be described, including but not restricted to:
• Ports (purpose and signal polarity);
• Generics (purpose and default values, limitations on negative values);
• Input and output files (data formats and default names);
• Timing package (maximum loading for each timing parameter, description of how the

values for all three simulation conditions have been obtained).

Management of unknown input values should be documented, including X-checking, X-
handling and X-propagation. The conditions under which the X-checkers are enabled or
disabled should be identified.

The timing constraints which are checked by the model should be identified, including
any limitations or assumptions. Any timing constraints not checked should be identified.
The output delays on the ports should be documented for each operating mode of the
model, including X-generation when applicable.
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The provided test bench should be identified, including library and configuration
declaration names. The level of verification achieved by the test bench should be
documented, including code coverage figures and the capabilities of the self-checking
mechanism.

The level of verification should be documented, including whether comparison has been
made versus thecomponent model, whether functional or production test vectors have
been reused, etc. The version number of the simulators, platforms and operating systems
on which the model has been verified should be documented.

The document should include all necessary steps for installing the model and its
test bench, performing a verification and analysing the obtained results to determine
whether the model simulates correctly in the installed environment. If any file conversion
tools are needed, their usage should be documented.

The organisation of the delivered files should be fully described, including source files,
script files, reference files, and input and output files. The version of each module to which
the User’s Manual corresponds to should be identified.

When a distribution channel for the model has been established, a point of reference for
model support and maintenance should be identified, including name, address, email
address, phone and fax numbers.

A suggested outline of the User’s Manual can be found in appendix A. However, it should
be noted that it is not necessarily complete. The User’s Manual should be delivered both
as an unbound paper copy and an electronic copy in ESA developments.

6.2 Supplement

A supplement, including all information necessary for the maintenance of the model and
its verification, should be attached as an appendix to the User’s Manual when requested.

The complete hierarchy and structure of the model, the test bench and test suites, should
be described, taking into account all dependencies, such as the usage of packages. An
accurate block diagram showing the relationship between different modules, their input
and output signals etc. should be created. Information readily found in the source code
should not be repeated.

The verification of the model should be documented in detail. When the functional and
production test vectors from theDetailed Design of the component have been used during
the verification, it should be documented. The comparison between the board-level and
the component model simulation results should be documented. A compliance matrix
should be included showing the correspondence between the model intended for board-
level simulation and the component, any discrepancies should be documented. Any
source code lines not possible to cover should be included together with an explanation.
When simulation performance measurements have been performed, they should be
documented.
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APPENDIX A: OUTLINE OF USER’S MANUAL

Table of Contents

Introduction
Reference data and documentation
Conventions and abbreviations

Limitations

Description of the model
Component and library names
Interfaces
Management of unknown input values
Timing constraints
Output delays

Description of the test bench
Test bench and library names
Self-checking capability
Calculated code coverage
Simulators, platforms and operating systems

Usage of the model and test bench
Installation procedure
Verification procedure

File organisation
Source files and analysis order
Reference/input/output files
Script/make files

Supplement {Upon request, as an appendix}
Detailed description of the model

Hierarchy/Structure {Including diagrams}
Detailed description of the test bench

Hierarchy/Structure {Including diagrams}
Verification

Comparison versus gate-level model
Compliance matrix
Not covered code lines

Simulation performance
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APPENDIX B: MULTIPLE-INPUT SIGNATURE REGISTER

-- ============================================================================--
-- Multiple-Input Signature Register (MISR)
-- This procedure implements a variable length MISR. The length is determined by
-- the length of Input, ranging from 4 to 100. The Input can be sampled on
-- either Clk edge or both, delayed by Sense, selected with the Rising and
-- Falling parameters. If neither option is selected, events on Input will
-- determine the sampling point. Events happening in the same simulation cycle,
-- differing only in delta cycles, will be sampled when the last event has
-- occurred, and the MISR will then be shifted.
--
-- The Reset input will reset the MISR to all-ones. When sampling is made with
-- Clk, it will re-start on the next relevant edge after the asserting edge of
-- Reset. If Reset is detected between an Clk edge and the sampling point, the
-- MISR will be reset and the sample will be ignored. When asynchronous sampling
-- is used, the next event on Input will be the first sample after reset. The
-- MISR signal can be read at any point and should be compared with a
-- predetermined signature.
--
-- The MISR is implemented as a primitive polynomial with up to five terms. The
-- terms are taken from the text book Built-In Test for VLSI: Pseudorandom
-- Techniques, by Bardell et al. The elements in the Input vector are expanded
-- to four bits, each Std_Logic value having a unique bit pattern,
-- the intermediate vector is then divided in four and each part is shifted into
-- the MISR separately. The procedure can be used as a concurrent subprogram,
-- not needing any surrounding process or block.
--
-- Inputs: Clk, sample clock used with Rising and Falling
-- Reset, reset of MISR when an event is detected and Reset is True
-- Input, input vector to the MISR, same length as MISR
-- Rising/Falling:
-- False False sample at each Input event
-- False True sample Input after Sense on falling Clk edge
-- True False sample Input after Sense on rising Clk edge
-- True True sample Input after Sense on rising or falling Clk edge
-- Sense, positive time after the Clk edge when Input is sampled
-- HeaderMsg, message header
-- In/Outs: MISR, Multiple-Input Signature Register
--
-- Author: Sandi Habinc, ESTEC Microelectronics and Technology Section (WSM)
-- P.O. Box 299, 2200 AG Noordwijk, The Netherlands
-- ------------------------------------------------------------------------------
library IEEE;
use IEEE.Std_Logic_1164. all ;

package MISR_Definition is
procedure MISR(

signal Clk: in Std_ULogic; -- Sample clock
signal Reset: in Boolean; -- Reset of MISR
signal Input: in Std_Logic_Vector; -- Input vector
signal MISR: inout Std_Logic_Vector; -- MISR
constant Rising: in Boolean := True; -- See above
constant Falling: in Boolean := False; -- See above
constant HeaderMsg: in String := "MISR:"; -- Message header
constant Sense: in Time := 0 ns); -- Sense time after clock

end MISR_Definition; -- =============== End of package header =================--
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package body MISR_Definition is

--- --------------------------------------------------------------------------
-- Local declarations of minimum and maximum MISR lengths.
--- --------------------------------------------------------------------------
constant MaxLen: Integer := 100;
constant MinLen: Integer := 4;

--- --------------------------------------------------------------------------
-- Local declarations defining subtypes and types needed for the definition
-- of the Std_Logic to 4bit vector transfer function. Each Std_Logic value
-- has a unique 4bit vector associated.
--- --------------------------------------------------------------------------
subtype Index is Integer range 0 to 3; -- Definition of table
subtype Vector is Std_Logic_Vector(Index); -- with a 4bit vector for
type VTable is array (Std_Logic) of Vector; -- each Std_Logic value
constant Std4: VTable := ('U' => "0001", 'X' => "0010", '0' => "0100",

'1' => "1000", 'Z' => "0011", 'W' => "0110",
'L' => "1100", 'H' => "0111", '-' => "1110");

--- --------------------------------------------------------------------------
-- Expands every Std_Logic_Vector element to four bits returning a
-- Std_Logic_Vector with four times the length of the input.
-- Input: V Std_Logic_Vector defined (0 to n)
-- Output: Std_Logic_Vector defined (0 to n) with same length as V
--- --------------------------------------------------------------------------
function To01(V: Std_Logic_Vector;

HeaderMsg: String := "MISR:") return Std_Logic_Vector is
variable R: Std_Logic_Vector(0 to (V'Length*4-1));

begin
assert (V'Length<=MaxLen) and (V'Length>=MinLen) -- Check length

report HeaderMsg&" Only vectors of Length 4 to 100 are supported."
severity Failure;

for i in V'Range loop
R(i*4+0 to i*4+3):= Std4(V(i)); -- Expand input

end loop ;
return R;

end To01;

--- --------------------------------------------------------------------------
-- Logical and operation between Std_ULogic scalar and Std_Logic_Vector.
-- Input: B Std_ULogic scalar, V Std_Logic_Vector vector
-- Output: Std_Logic_Vector with same array constraints as V
--- --------------------------------------------------------------------------
function "and" (B: Std_ULogic;

V: Std_Logic_Vector) return Std_Logic_Vector is
variable R: Std_Logic_Vector(V'Range);

begin
for i in V'Range loop

R(i):= B and V(i); -- logical and
end loop ;
return R; -- return vector

end "and";
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--- --------------------------------------------------------------------------
-- Expands the Input four times using To01, the resulting vector is then
-- shifted into the MISR in four parts. The resulting MISR value is returned.
--- --------------------------------------------------------------------------
function Shift(MISR: Std_Logic_Vector;

Input: Std_Logic_Vector;
Poly: Std_Logic_Vector) return Std_Logic_Vector is

variable M: Std_Logic_Vector(MISR'Range) := MISR;
variable T: Std_Logic_Vector(0 to 4*MISR'Length-1) := To01(Input);

begin
for i in 0 to 3 loop -- Four MISR shifts

M := ('0'&M(0 to MISR'Length-2)) xor
T(MISR'Length*i to MISR'Length*(i+1)-1) xor
(M(MISR'Length-1) and Poly); -- Scalar and vector

end loop ;
return M; -- Return resulting MISR

end Shift;

--- --------------------------------------------------------------------------
-- Returns a Std_Logic_Vector of length L (1 to 100) containing a primitive
-- polynomial with up to five terms (always including x+1).
-- Input: L, the length of the resulting polynomial Std_Logic_Vector
-- Output: polynomial Std_Logic_Vector defined (0 to n)
--- --------------------------------------------------------------------------
function Polynomial(L: Natural;

HeaderMsg: String:="MISR:") return Std_Logic_Vector is
variable P: Std_Logic_Vector(0 to L-1) := ( others => '0');
subtype Degree is Integer range 0 to MaxLen; -- Exponent range
type Terms is array (1 to 3) of Degree; -- Triplet
type TTable is array (1 to MaxLen) of Terms; -- Triplets
constant Table: TTable := ( -- Look-up table

(0,0,0), (1,0,0), (1,0,0), (1,0,0), (2,0,0), (1,0,0), -- 1
(1,0,0), (6,5,1), (4,0,0), (3,0,0), (2,0,0), (7,4,3), -- 7
(4,3,1), (12,11,1), (1,0,0), (5,3,2), (3,0,0), (7,0,0), -- 13
(6,5,1), (3,0,0), (2,0,0), (1,0,0), (5,0,0), (4,3,1), -- 19
(3,0,0), (8,7,1), (8,7,1), (3,0,0), (2,0,0), (16,15,1), -- 25
(3,0,0), (28,27,1), (13,0,0), (15,14,1), (2,0,0), (11,0,0), -- 31
(12,10,2), (6,5,1), (4,0,0), (21,19,2), (3,0,0), (23,22,1), -- 37
(6,5,1), (27,26,1), (4,3,1), (21,20,1), (5,0,0), (28,27,1), -- 43
(9,0,0), (27,26,1), (16,15,1), (3,0,0), (16,15,1), (37,36,1), -- 49
(24,0,0), (22,21,1), (7,0,0), (19,0,0), (22,21,1), (1,0,0), -- 55
(16,15,0), (57,56,1), (1,0,0), (4,3,1), (18,0,0), (10,9,1), -- 61
(10,9,1), (9,0,0), (29,27,2), (16,15,1), (6,0,0), (53,47,6), -- 67
(25,0,0), (16,15,1), (11,10,1), (36,35,1), (31,30,1), (20,19,1), -- 73
(9,0,0), (38,37,1), (4,0,0), (38,35,3), (46,45,1), (13,0,0), -- 79
(28,27,1), (13,12,1), (13,0,0), (72,71,1), (38,0,0), (19,18,1), -- 85
(84,83,1), (13,12,1), (2,0,0), (12,0,0), (11,0,0), (49,47,2), -- 91
(6,0,0), (11,0,0), (47,45,2), (37,0,0)); -- 97

begin
assert (L <= MaxLen) and (L > 0) -- Check length

report HeaderMsg&" Only polynomial degree of 1 to 100 is supported."
severity Failure;

for i in 1 to 3 loop
P(Table(L)(i)) := '1'; -- Insert terms

end loop ;
return '1'&P(1 to L-1); -- Return polynomial

end Polynomial;
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--- --------------------------------------------------------------------------
-- See definition in the package header.
--- --------------------------------------------------------------------------
procedure MISR(

signal Clk: in Std_ULogic; -- Sample clock
signal Reset: in Boolean; -- Reset of MISR
signal Input: in Std_Logic_Vector; -- Input vector
signal MISR: inout Std_Logic_Vector; -- MISR
constant Rising: in Boolean := True; -- See above
constant Falling: in Boolean := False; -- See above
constant HeaderMsg: in String := "MISR:"; -- Message header
constant Sense: in Time := 0 ns) is -- Sense time after clock

constant L: Integer := Input'Length;
constant Poly: Std_Logic_Vector := Polynomial(L);
constant Ones: Std_Logic_Vector(0 to L-1) := ( others => '1');
variable Temp: Std_Logic_Vector(0 to L-1) := Input; -- Last Input
variable Last: Time := 0 ns; -- Last sim cycle

begin
assert (L <= MaxLen) and (L >= MinLen) -- Check length

report HeaderMsg&" Only MISRs of length 4 to 100 are supported."
severity Failure;

assert L = MISR'Length -- MISR=Input length
report HeaderMsg&" The length of the Input and the MISR differs."
severity Failure;

while True loop -- Loop never exited
if not Rising and not Falling then

-- Clk input has no influence on the MISR in asynchronous mode.
-- Sampling only the final input vector in each simulation cycle.
wait on Input, Reset; -- Asynchronous sample
if not (Reset'Event and Reset) and -- Check not reset

Input'Event then -- Check for Input event
if Now = Last then -- New delta cycle

Temp := Input; -- Store until next event
else -- New sim cycle

MISR <= Shift(MISR, Temp, Poly); -- Shift MISR 4 times
Temp := Input; -- Store until next event
Last := Now; -- Store sim time

end if ;
end if ;

else
wait on Clk, Reset; -- Synchronous sample
if not (Reset'Event and Reset) and -- Check not reset

((Rising and Rising_Edge(Clk)) or -- Check rising edge
(Falling and Falling_Edge(Clk))) then -- Check falling edge

wait on Reset until Reset for Sense; -- Delay until sample
MISR <= Shift(MISR, Input, Poly); -- Shift MISR 4 times

end if ;
end if ;
if Reset'Event and Reset then

MISR <= Ones; -- Reset MISR
Temp := Ones; -- Reset Temp

end if ;
end loop ;

end MISR;
end MISR_Definition; -- ================ End of package body =================--
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APPENDIX C: TIMING PARAMETER TYPES

-- ============================================================================--
-- Design unit : Timing (Package declaration)
--
-- File name : timing.vhd
--
-- Purpose : This package defines three array types, indexed by the ESA
-- SimConditionType, needed for timing generics when using
-- Vital Delay Types. The types are intended to be used
-- in VHDL models for board-level simulation. This package
-- should not be modified or moved to a different library.
--
-- Note: The type TimeArray has been defined in ESA.Simulation.
--
-- This package does not define any types related to the
-- Vital Delay Array Types, since it is not possible to
-- define a constrained array of unconstrained arrays. Such
-- declarations should be done in the timing package of the
-- component.
--
-- Errors: : None known
--
-- Library : ESA
--
-- Dependencies : ESA.Simulation, IEEE.Vital_Timing.
--
-- Author : Sandi Habinc, Peter Sinander
-- ESTEC Microelectronics and Technology Section (WSM)
-- P.O. Box 299
-- 2200 AG Noordwijk
-- The Netherlands
--
-- Simulator : Synopsys v. 3.2c, on Sun Sparcstation 10, SunOS 4.1.3
-- ------------------------------------------------------------------------------
-- Revision list
-- Version Author Date Changes
--
-- 1.0 SH 1 July 95 New version
-- ------------------------------------------------------------------------------
library ESA;
use ESA.Simulation. all ;

library IEEE;
use IEEE.Vital_Timing. all ;

package Timing is

-- Definition of Time array types, which can be used for the timing
-- parameters with Vital Delay Types.
type TimeArray01 is array (SimConditionType) of VitalDelayType01;
type TimeArray01Z is array (SimConditionType) of VitalDelayType01Z;
type TimeArray01ZX is array (SimConditionType) of VitalDelayType01ZX;

end Timing; -- ==================== End of package body =======================--
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APPENDIX D: ABBREVIATIONS

ASIC Application Specific Integrated Circuit
ASSP Application Specific Standard Product
BIST Built In Self Test
ESA European Space Agency
ESTEC European Space Research and Technology Centre
FTP File Transfer Program
HTML HyperText Mark-up Language
I/F Interface
IEEE Institute of Electrical and Electronics Engineers
LFSR Linear Feedback Shift Register
MISR Multiple Input Signature Register
MSB Most Significant Bit
RTL Register Transfer Level
SDF Standard Delay File
URL Uniform Resource Locator
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VITAL VHDL Initiative Towards ASIC Libraries
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