
SIS version 3.0.1 manual 1

1 SIS version 3.0.1 manual

NAME

sis - SPARC instruction set simulator version 3.0.1

SYNOPSYS

sis, sis64 [-c file] [-nfp] [- ift] [-wrp] [-rom8] [-sparclite] [-uart1 device] [-uart2 device]
[-fast_uart] [-uben] [-ram ram_size] [-rom rom_size] [-freq system_clock]
[-wdfreq watchdog_clock] input_files

sparc-rtems-gdb input_files
sparc-rtems-gdb64 input_files

DESCRIPTION

The SIS is a SPARC V7 architecture simulator configured to emulates an ERC32 system with up to 32 Mbyte ram
and 4 Mbyte rom. Two versions of the simulator is provided; sis and sis64. The standard version (sis) uses 32-bit
time and has a simulation time limit of 232 clock ticks (= 5 minutes at 14 MHz).sis64 uses 64-bit time and has vir-
tually unlimited simulation time, it runs however about 20% slower thansis.

COMMAND LINE OPTIONS
-c file Reads commands fromfile instead of stdin. If the file .sisrc exists in the home directory, it will be

automatically be executed.
-nfp Disables the FPU to emulate system without FP hardware. Each FP instruction will generate an FP-

disabled trap.
-wrp Sets the prom to be writable (ROMWRT input on the MEC).

-rom8 By default, the prom area is considered to be 32-bit. Specifying -rom8 will simulate a 8-bit prom.
The only visible difference is in the instruction timing.

-sparclite

Enables two sparclite instructions, SMUL and DIVSCC.

-uart[1,2] device

By default, UARTA is connected to stdin/stdout and UARTB is disconnected. This switch can be
used to connect the uarts to other devices. E.g., ‘-uart1 /dev/ptypc’ will attach UART A to pseudo-
device ptypc. Use ‘tip /dev/ttypc’ to connect to it

-uben Reverses the default UART setting. i.e UARTB is connected to stdin/stdout while UARTA is dis-
connected. Often required when simulating programs compiled with Aonix (Alsys) Ada.

-fast_uart

Run UARTS at infinite speed, rather than with correct (slow) timing.

-freq system_clock

Sets the simulated system clock (MHz). Default is 14.

-wdfreq watchdog_clock

Sets the simulated watchdog clock (MHz). Default is the same value as the system clock.

2 ERC32 GNU Cross-Compiler system

-ram ram_size

Sets the amount of simulated RAM (Kbyte). Default is 4096, maximum is 32768.

-rom rom_size

Sets the amount of simulated ROM (Kbyte). Default is 2048, maximum is 16384.

input_files

Each input file is loaded into the emulated memory according to the entry point for each segment.
Recognized formats are aout, srecords and tektronix hex.

COMMANDS

Below is description of commands that are recognized by the simulator. The command-line is parsed using
GNU readline. A command history of 64 commands is maintained. Use the up/down arrows to recall previ-
ous commands. For more details, see the readline documentation.

batch file Execute a batch file of SIS commands.

+bp address Adds an breakpoint ataddress.

bp Prints all breakpoints

-bp num Deletes breakpointnum.

cont [count]

tcont [time] Continue execution at present position, optionally forcount instructions or fortime time.

dis [addr] [count]

Disassemble [count] instructions at address [addr]. Default values for count is 16 andaddr
is the program counter address.

echostring Print <string> to the simulator window.

float Prints the FPU registers

go [address] [count]

tgo [address] [time]

Thego command will set pc toaddress and npc toaddress + 4, and resume execution. No
other initialisation will be done. Ifcount is specified, execution will stop after the specified
number of instructions. If address is not given, the default load address will be assumed.
Thetgo command will optionally resume execution untiltime is reached. Seetlim on how
to specify the time.

help Print a small help menu for the SIS commands.

hist [length] Enable the instruction trace buffer. Thelength last executed instructions will be placed in
the trace buffer. Ahist command withoutlength will display the trace buffer. Specifying a
zero trace length will disable the trace buffer.

load files Loadfiles into simulator memory.

SIS version 3.0.1 manual 3

mec Display MEC registers. Some write-only registers are also displayed, these are marked with
an asterix (‘*’).

mem [addr] [count]

Display memory ataddr for count bytes. Same default values as fordis. Themem com-
mand can also be used to display MEC registers (address 0x1f80000). Unimplemented reg-
isters are displayed as zero.

quit Exits the simulator.

perf [reset] The perf command will display various execution statistics. A ‘perf reset’ command will
reset the statistics. This can be used if statistics shall be calculated only over a part of the
program. Therun andreset command also resets the statistic information.

reg [reg_name value]

Prints and sets the IU registers in the current register window.reg without parameters prints
the IU registers.reg reg_name value sets the corresponding register tovalue. Valid register
names are psr, tbr, wim, y, g1-g7, o0-o7 and l0-l7. To view the other register windows, use
reg wn, where n is 0 - 7.

reset Performs a power-on reset. This command is equal torun 0.

run [count]

trun [time] Resets the simulator and starts execution from address 0. If an instructioncount is given,
the simulator will stop after the specified number of instructions. The event queue is emp-
tied but any set breakpoints remain.trun command will execute untiltime is reached. See
tlim on how to specify the time.

step Equal totrace 1.

tlim <time> Limit the simulated time. Will stop a running simulator aftertime. The time parameter is
relative to the current time. The time is given in micro-seconds, but can also be given in
milli-seconds, seconds or minutes by adding ‘ms’, ‘s’ or ‘min’ to the time expression. Ex-
ample: tlim 400 ms.

tra [count] Starts the simulator at the present position and prints each instruction it executes. If an
count is given, the simulator will stop after the specified number of instructions.

wmem <address> <value>

Write simulated memory. Only full 32-bit words can be written.

Typing a ‘Ctrl-C’ will interrupt a running simulator. Short forms of the commands are allowed, e.gc, co, or
con, are all interpreted ascont.

4 ERC32 GNU Cross-Compiler system

TIMING

The SIS emulates the behaviour of the TSC691E and TSC692E SPARC IU and FPU from Temic/MHS.
These are roughly equivalent to the Cypress 7C601 and 7C602. The simulator is cycle true, i.e a simulator
time is maintained and incremented according the IU and FPU instruction timing. The parallel execution
between the IU and FPU is modelled, as well as stalls due to operand dependencies (IU & FPU). Tracing
using thetrace command will display the current simulator time in the left column. This time indicates
when the instruction is fetched. If a dependency is detected, the following fetch will be delayed until the
conflict is resolved. Below is a table describing the instruction timing with no resource dependencies:

Instruction Cycles Instruction Cycles

jmpl, rett 2 sqrts 37
load 2 fsqrtd 65
store 3 fsubs 4
load double 3 fsubd 4
store double 4 fdtoi 7
other integer inst 1 fdots 3
fabs 2 fitos 6
fadds 4 fitod 6
faddd 4 fstod 2
fcmps 4
fcmpd 4
fdivs 20
fdivd 35
fmovs 2
fmuls 5
fmuld 9
fnegs 2

FPU

The simulator maps floating-point operations on the hosts floating point capabilities. This means that accu-
racy and generation of IEEE exceptions is host dependent. The FPU instruction timing above indicates av-
erage cycle counts, the simulator implements (to some extent) data-dependant execution timing as in the
real FPU.

MEC EMULATION

The following list outlines the implemented MEC registers:

Register Address Status

MEC control register 0x01f80000 implemented
Software reset register 0x01f80004 implemented
Power-down register 0x01f80008 implemented
Memory configuration register 0x01f80010 partly implemented
IO configuration register 0x01f80014 implemented
Waitstate configuration register 0x01f80018 implemented
Access protection base register 1 0x01f80020 implemented

SIS version 3.0.1 manual 5

Access protection end register 1 0x01f80024 implemented
Access protection base register 2 0x01f80028 implemented
Access protection end register 2 0x01f8002c implemented
Interrupt shape register 0x01f80044 implemented
Interrupt pending register 0x01f80048 implemented
Interrupt mask register 0x01f8004c implemented
Interrupt clear register 0x01f80050 implemented
Interrupt force register 0x01f80054 implemented
Watchdog acknowledge register 0x01f80060 implemented
Watchdog trap door register 0x01f80064 implemented
RTC counter register 0x01f80080 implemented
RTC counter program register 0x01f80080 implemented
RTC scaler register 0x01f80084 implemented
RTC scaler program register 0x01f80084 implemented
GPT counter register 0x01f80088 implemented
GPT counter program register 0x01f80088 implemented
GPT scaler register 0x01f8008c implemented
GPT scaler program register 0x01f8008c implemented
Timer control register 0x01f80098 implemented
System fault status register 0x01f800A0 implemented
First failing address register 0x01f800A4 implemented
Error and reset status register 0x01f800B0 implemented
Test control register 0x01f800D0 implemented
UART A RX/TX register 0x01f800E0 implemented
UART B RX/TX register 0x01f800E4 implemented
UART status register 0x01f800E8 implemented

The MEC registers can be displayed with themec command, or usingmem (‘mem 0x1f80000 256’). The
registers can also be written usingwmem (e.g. ‘wmem 0x1f80000 0x1234’). When written, care has to be
taken not to write an unimplemented register bit with ‘1’, or a MEC parity error will occur.

UARTS

The UARTS operate with correct timing as defined in the MEC control register when the baudrate is pro-
grammed in the MEC control register. If the baudrate is left at the default value, or if the -fast_uart switch
was used, the UARTS operate at infinite speed. This means that the transmitter holding register always is
empty and a transmitter empty interrupt is generated directly after each write to the transmitter data register.
The receivers can never overflow or generate errors.

Note that with correct UART timing, it is possible that the last character of a program is not displayed on
the console. This can happen if the program forces the IU in error mode, there by terminating the simulation,
before the last character has been shifted out from the transmitter shift register. To avoid this, an application
should poll the UART status register and not force the IU in error mode before the transmitter shift registers
are empty. The real hardware does not exhibit this problem since the UARTs continue to operate even when
the IU is halted.

INTERRUPT CONTROLLER

External interrupts are not implemented, so the interrupt shape register has no function. Internal interrupts
are generated as defined in the MEC specification. All 15 interrupts can be tested via the interrupt force reg-
ister.

SIS version 3.0.1 manual 6

WATCHDOG

The watchdog timer operate as defined in the MEC specification. The frequency of the watchdog clock can
be specified using the -wdfreq switch.

POWER-DOWN MODE

The power-down register (0x01f800008) is implemented as in the specification. A Ctrl-C in the simulator
window will exit the power-down mode. The simulator runs at least 10 times faster in power-down mode.

MEMORY EMULATION

The amount of simulated memory is configured through the -ram and -rom switches. The ram size can be
between 256K and 32 M, the rom size between 128K and 4M. Access to unimplemented MEC registers or
non-existing memory will result in a memory exception trap.

The memory configuration register is used to decode the simulated memory. The fields RSIZ and PSIZ are
used to set RAM and ROM size, the remaining fields are not used. NOTE: after reset, the MEC is set to
decode 128 Kbyte of ROM and 256 Kbyte of RAM. The memory configuration register has to be updated
to reflect the available memory.

The waitstate configuration register is used to generate waitstates. This register must also be updated with
the correct configuration after reset.

I/O AREAS

To allow testing of I/O drivers, eac of the four I/O areas have 1 Kbyte of RAM attached to them. To access
the I/O areas, the I/O configuration register must be setup accordingly. If an I/O area is set to be larger the
1 Kbyte, access above the 1 Kbyte limit will simply wrap-around.

GDB-INTEGRATED SIS

To use the GDB-integrated simulator (gdb orgdb64), use the ‘target sim’ command at the gdb prompt. The
only valid options for gdb are -rom8, -nfp, -freq, -v, -sparclite, -uben,-fast_uart, -ram, -rom and -nogdb.
GDB inserts breakpoints in the form of the ‘ta 1’ instruction. The GDB-integrated simulator will therefore
recognize the breakpoint instruction and return control to GDB. If the application uses ‘ta 1’, the breakpoint
detection can be disabled with the -nogdb switch. In this case however, GDB breakpoints will not work.

Before control is left to GDB, all register windows are flushed out to the stack. Starting after the invalid win-
dow, flushing all windows up to, and including the current window. This allows GDB to do backtraces and
look at local variables for frames that are still in the register windows. Note that strictly speaking, this be-
haviour iswrong for several reasons. First, it doesn’t use the window overflow handlers. It therefore as-
sumes standard frame layouts and window handling policies. Second, it changes system state behind the
back of the target program. Typically, this will only create problems when debugging trap handlers. The ‘-
nogdb’ switch disables the register flushing as well.

