RASSP VHDL Modeling Terminology and Taxonomy - Revision 1.0

Carl Hein
Lockheed Martin
Advanced Technology Laboratories
Camden, NJ 08102

Paul Kalutkiewicz
Lockheed Sanders
Advanced Engineering & Technology
Nashua, NH 03061-0868

Todd Carpenter
Honeywell Technology Center
MPLS, MN 55418-1006

Vijay Madisetti
School of Electrical & Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250

http:/ /rassp.scra.org

Abstract:

VHDL modeling taxonomy and terminology
conventions are emerging from the on-going efforts of
the Terminology Working Group (TWG). Based upon
examination and comparison of previously published
modeling taxonomies, the working group is evolving a
multi-axis taxonomy designed to describe the
information content of RASSP model types and
apstraction levels and to facilitate selection and
construction of interoperable models. The TWG used
the taxonomy to concisely refine modeling terms
applying to system, hardware, and software models;
abstraction levels; structural hierarchies; and modeling
paradigms. The refined definitions for several of the
modeling terms especially important in RASSP are
listed and discussed.

1. Introduction

There has been much confusion over
terminology among the RASSP organizations.
Some organizations use many common modeling
terms with divergent meanings, while others use
different words to describe the same type of
models. Clearly communicating ideas about
modeling techniques and model types among
organizations is essential to achieving the goals of
RASSP. Without a common language, the RASSP
community cannot effectively communicate, and
the simulation models will be incompatible.

The Terminology Working Group (TWG) was
formed at the January 10, 1995 Principal
Investigators meeting in Atlanta, GA., to address
the modeling and terminology challenge. The
core working group consists of five members
representing the two prime contractors, a
technology base developer, the educator
facilitator, and the government.

27

The TWG's mission is to develop a systematic
basis for defining VHDL model types and to use
this basis for concisely and unambiguously
defining a terminology that describes the models
that are used within a RASSP design process. One
crucial requirement for the basic taxonomy is that
it must be useful for selecting, using, and building
appropriate interoperable models for specific
roles in a RASSP design process. The terminology
is based on the commonly documented and
applied vocabulary in the digital electronic design
and modeling industry, and it draws heavily from
related previous and ongoing efforts by the EIA
[1], ESA [2], Army [3], Navy [4], and from the
annals of related literature from Design
Automation Conference (DACQ), VHDL
International User’s Forum [5], and text books[6].
Previous efforts focused on narrower domains
than RASSP. RASSP spans many domains,
including: parallel processing; multi-board and
multi-chassis systems; software; digital signal
processing; and application functions, with strong
interaction with other domains such as analog,
mechanical, physical, and RF [7].

The TWG modified and augmented the
previously defined terminology sets. The group
broadened parochial definitions, distinguished
overlapping definitions, equated close synonyms,
removed non-applicable terms, added needed or
missing terms, clarified poorly defined or
misunderstood terms, and suggested new terms
as replacements or synonyms to outdated terms.
When appropriate existing definitions were not
available for significant terms used within the
RASSP community, the TWG attempted to create
them.

The refined nomenclature will identify the
models developed within the RASSP process that

document design information and the practices for
developing interoperable versions of those models.
The RASSP program needs to develop broad
consensus for a modeling vocabulary that is readily
adopted by engineers and students. The vocabulary
should promote the requirements of the RASSP
process for interoperable VHDL models.

2 Modeling Taxonomies:
2.1 Existing Taxonomies

The working group initially compared three
existing model definition approaches (shown in
Table I). The group considered the features of the
existing approaches as a foundation for a VHDL
model taxonomyl[5,8]. The Ecker and Madisetti
spaces share two axes, while their remaining axes do
not directly correspond. Both have an axis for Time
resolution and a second axis representing the
resolution of data Values in a model. Ecker calls the
second axis Value, while Madisetti calls it Format.
The Y-chart has a similar axis called Functional-
Representation. The third axis of the Ecker cube is
similar to the Structural-Representation axis of the Y-
chart but has no corresponding axis in the Madisetti
case. (The later situation arises intentionally.)

None of the remaining axes of the taxonomies
directly correspond. The Y-chart seems limited to
only the logic level. None of the taxonomies appear
to directly address the hardware/software codesign
aspect.

2.2 New Taxonomy

The TWG proposes a new taxonomy that more
clearly represents the model attributes relevant to a
RASSP designer. The new taxonomy shares
characteristics of the earlier approaches, but seeks to
expand the representation, as well as wuse
terminology readily understood and used by

designers. The proposed taxonomy consists of a
common set of attributes to independently describe
a model's internal and external resolution.
Distinguishing between the internal and external
views is important in selecting, using, and building
models because it enables clarity and precision.
Existing terminology often mixes attributes, as
viewed from inside a model, from similar attributes,
as viewed from the model's interface boundary.

The proposed axes, like their predecessors,
explicitly characterize a model's relative "resolution
of details" for important model details. This
proposed taxonomy identifies four orthogonal
model characteristics:

1) Temporal detail
2) Data Value detail
3) Functional detail
4) Structural detail

Because each aspect is specified from both an
internal and external viewpoint, the proposed
taxonomy effectively contains eight attributes
describing a model's descriptive level: internal
temporal, value, structure, and function resolutions,
and external temporal, value, structure, and
function resolutions. This set of eight attributes
does not address the hardware/software codesign
aspect of a model, because it does not describe how
a hardware model appears to software. Therefore,
the set is augmented with a ninth axis (shown in
figure 1) to represent the level of software
programmability of a hardware model or,
conversely, the abstraction level of a software
component in terms of the complementary
hardware model that will interpret it.

Although section 3 defines the vocabulary terms
graphically to show their applicable coverage, a
convenient method for specifying a particular
model’s information content is to use the Internal/
External(temporal value function,structure) notation.
For example, the content of a particular algorithm
model can be specified as:

Table | - Comparison of prior and proposed taxonomy concepts

Source - Taxonomy Axes

Gajski and Kuhn: Y-chart Bon | Then | o

Ecker: Ecker cube Timing | Value | View

Madisetti Taxonomy Timing | Format Vaiue | State
Timing | Data | Struct. | Funct. Intern/

RASSP TWG Taxonomy Res. Value | Res. Res. Extern

274

Independently Describe: {Resolution of INTERNAL (kernel) Details
Resolution of EXTERNAL (Interface) Details

In Terms of:

Temporal Resolution
High Res

Low Res
L

Gate Propagation Clock Cycle

(p (10s of nS)

Data Value Resolution
HighRes

instr Cycle
(10s of uS)

Purely Functional
(no timing info)

System Event
(10s of mS)

Low Res
[]

Bit true
(0b01101)

Value irue
(13)

Functional Resolution
Higmﬂes -

Token
(Blue)

Composite
(13 req,(2.33,j89.2))

Low Res

Ali fu?\ctions modeled
(Full-functional)

Structural Resolution
High Res

Some functio-ns are not modeled
(Interface-functional)

No functions modeled

Low Res

Structural
Gate nellist
(Full implementation info)

Programming Level

High Res
< i 1

Block Diagram
Major Blocks
(Some implementation info)

Single Black dox

(No implementation info)

N " LowR»es

HLL (ADA,C)
Statements
(i:=i+1)

Assembly-
Code
(fmul r1,r2)

M'icro-
Code

(Idmar; opA r1; opB r2; add; dst muxA)

(Note: Low Resolution of Details =
High Resolution of Details =

Block-Oriented
(FFT(a,b,c)

Not
Programmable

(Pure HW)

Ma'jor
Modes
(Search, Track)

[
DSP Primitive

High Level of Abstraction,
Low Level of Abstraction)

Figure 1 - New Taxonomy Axes

Internal(none,composite full-functional,none),
External(none,composite,none,none), SW-Program(none)

2.2.1 Temporal Resolution Axis

The Temporal Resolution axis represents the
resolution of events that are modeled in terms of
their time scale. Resolution is analogous to
precision, as distinguished from accuracy. For
instance, a model's time resolution may be stated in
terms of the starting and ending times of major
system functions, where each function spans
thousands of clock-cycles. In such a case, the model
resolves events down to the major function level
and not down to the clock-cycle level, even though
the accuracy of the starting and stopping times may
be specified accurately to within a clock-cycle.

27K

2.2.2 Data Value Resolution Axis

The Data Value Resolution axis represents the
resolution with which values are specified in a
model. Again, note that resolution is analogous to
precision, as distinguished from accuracy. For
instance, a register containing the value negative-
one {(-1) may be modeled with high resolution in
terms of its actual two's-complement binary "0b111"
form, it may be modeled more abstractly as a signed
integer "-1", or an even more abstract enumerated
type such as "Blue". Each representation could be
considered equally accurate. However, the first case
resolves the value closer to the form actually
contained in the target device. The more abstract
the representation of a value is, the less
implementation details are resolved.

2.2.3 Functional Resolution Axis

The Functional Resolution axis refers to the
level of detail in which a model describes the
functionality of a component or system. For
instance, a highly abstract, low-resolution model
could specify the function of a digital filter in terms
of its mathematical transformation, while a high-
resolution model could resolve the function in
terms of the Boolean operations which implement
the target device. Both models can be functionally
accurate.

In the extreme, the most abstract (or low-
resolution) model could contain no functionality at
all. In contrast to internal functionality, the external
functionality specifies the interface behavior of a
device's (or system's) ports.

2.2.4 Structural Resolution Axis

The Structural Resolution refers to the level of
information detail a model provides about how the
modeled component is constructed out of
constituent parts. For example, one model of a
processor chip may have no information about its
internal structure. A second model of the same chip
may specify its structure in terms of five major
blocks. A most detailed model may specify the
internal structure in terms of the interconnection of
specific logic gates.

Although more abstract, the second model is
perfectly accurate as long as the five major blocks
can be identified as connected in the gate-level
model. This understanding of structural resolution
holds for both external structure and internal
structure, as described in the example above. An
example of external structure is a component model
in which the component's memory-bus port is
modeled as a single composite value containing
many fields, without describing the port's physical
structure. Alternately, a higher resolution model
would specify the ports's structure in terms of bit-
widths; address and data buses; and handshaking
lines.

2.2.5 Software Programming Resolution Axis

The Software Programming Resolution axis is
the granularity level of software instructions that
the model of a hardware component interprets in
executing target software. For instance, a network
performance model only interprets instructions on
the level of Data Flow Graph (DFG) primitives, such

274

as matrix invert, vector multiply, or Fourier
transform. Such primitives represent hundreds of
lines of source code, but are interpreted as a single
instruction in terms of a time-delay by a network
performance model. An Instruction-Set-Architecture
(ISA) model interprets individual assembly
instructions. In this sense, the ISA model is
programmable at a much finer granularity, or higher
resolution, than the network performance model.

At the lower extreme, a model of a microcode
programmable processor is programmable at an
even lower level of granularity than the ISA model
because it allows control of individual-register and
multiplexor structures within the device during
execution of an assembly-level instruction. Software
design components or non-programmable models
are at the opposite extreme because neither
interprets programmable instructions.

2.3 Tentative Additional Attributes

In addition to resolution (precision), the TWG is
considering the inclusion of additional attributes.
For instance, the Temporal and Data Value axes
could specify an accuracy aspect as a percent
tolerance and whether a model describes actual,
minimum, typical, or maximum values. A
"completeness” aspect is also being considered that
would specify, for example, the portion of
functionality or particular functions that the model
describes or excludes from the model. The
resolution, accuracy, and completeness aspects
would accompany the axes in the same way the
internal/external aspect does.

3 Vocabulary

In Table 2, the working group's initial modeling
terms are categorized according to major area, such
as: abstraction levels, system levels, hardware levels,
software levels, structural hierarchy levels, and
general modeling-type terms.

Following are selected terms as currently
defined by the TWG for general modeling terms,
system, architectural, software, and hardware
models respectively. To avoid vague or circular
definitions, the group placed emphasis on providing
examples to accompany the definitions. These
examples should provide a level of understanding
and concreteness to any discussions regarding the
terms. The examples also tend to tie the terms to
their intended uses and domains. To reduce the
tendency of examples to limit the definitions, the

group gives a range of typical and extreme cases
and identifies them wherever possible.

The group attempted to graphically depict the
definition of each term relative to the taxonomy axes
described in Section 2. The key in figure 2 should
be used to interpret the graphic. Although some
terms may span a range of abstraction levels, a
given model instance describes information at one
specific level within the span.

Figure 2 - Symbol Key:

® Model resolves information at specific
level relative to Table 1.

G Model resolves information at any of

the levels spanned, case dependent.
Model optionally resolves information|
at levels spanned.

Model resolves partial information at
levels spanned, such as control but
not data values or functionality.

—D

b 4 Model does not contain information
on attribute.
3.1 Behavioral Model -
Intemal External
Temporal e +~ G >
Data Value O > <G
Functional e~ e <~ I >
Structural D e —
SW Programming Level D 3 SSoT———

A behavioral model describes the function and
timing of a component without describing a specific

implementation. A behavioral model can exist at
any level of abstraction. Abstraction depends on the
resolution of implementation details. .For example, a
behavior model can be a model that describes the
bulk time and functionality of a processor that
executes an abstract algorithm, or it can be a model
of the processor at the less abstract instruction-set
level. The resolution of internal and external data
values depends on the model's abstraction level.

3.2 Functional Model -

Intemal Extemal
Temporal “ > < »—
Data Value <—A <+ G
fncional - +— oEE———— <+ G
Structural D e —
SW Programming Level —CcC———

A functional model describes the function of a
component without describing a specific
implementation. A functional model can exist at any
level of abstraction. Abstraction depends on the
resolution of implementation details. For example, a
functional model can be a model that abstractly
describes the function of a DSP algorithm, or it can
be a less abstract model that describes the function of
an ALU for accomplishing the algorithm. The
resolution of internal and external data values
depends on the model's abstraction level.

Table 2 - Commonly Used Modeling Terms

Algorithm Level

System Level Modeling Terms

Mathematical Equation Level

Performance Level or Network Architecture Level

277

Hardware Specific Terms: | unctional
ISA Behavioral Software Specific Terms:
Full-Functional or Full-Behavioral) Bgtg I';Irci)r\rqlit?\;/reaph
gl'ﬁ. Functional or Interface-Behavioral) ‘ Subroutne Calls
Logic Level Structural Hierarchy: HLL Source Code Lines
Switch Level Other Terminology: DSP System Level | Assembly Code
Circuit Level Behavioral Model Chassis Level Micro Code
Functional Model Board Level
Structural Model Module Level
Chip Level
Cell Level

3.3 Structural Model - 3.5 Interface Model -
Intemal Extemal Intemnal External
Temporal DY commm— DY en— Temporal «-n——» <+ SR>
Data Value PY csnm——m" * 3 DY —— ‘| Data Value e
Functionat —— | S—— Functional <—+
Structural <UD > ey~ Structurat ===
SW Programming Level | 5 ——— 2 SW Programming Leve! DY conmmm— S

A structural model represents a component or
system in terms of the interconnections of a set of
components. A structural model follows the
physical hierarchy of the system. The hierarchy
reflects the physical organization of a specific
implementation. A structural model describes the
physical structure of a specific implementation by
specifying the components and their topological
interconnections. These components can be
described structurally, functionally, or behaviorally.
Simulation of a structural model requires all the
models in the lowest (leaf) branches of the hierarchy
to be behavioral or functional models. Therefore,
the effective temporal, data value, and functional
resolutions depend on the leaf models. A structural
model can exist at any level of abstraction.
Structural resolution depends on the granularity of
the structural blocks.

3.4 Performance Model -

Internal Extemal
Temporal D o
Data Vaiue +—Pg- > - >Eg—
Functional —y—
S e e
SW Programming Level D S —

Performance is a collection of the measures of
quality of a design that relate to the timeliness of the
system in reacting to stimuli. Measures associated
with performance include response time,
throughput, and utilization. A performance model
may be written at any level of abstraction. A highly
abstract performance model can be a model that only
resolves the time for a multiprocessor cluster
required to perform major system functions, or it can
be a less abstract model that describes the time
required to perform simple tasks such as memory
access of a single CPU. In the context of RASSP,
however, the typical abstraction level of a
performance model is often at the multiprocessor
network level, also called a network architecture
performance model. Internal and external data
values are not modeled, except for control
information.

278

An interface model is a component model that
describes the operation of a component with respect
to its surrounding environment. The external port-
structure, functional, and timing details of the
interface are provided to show how the component
exchanges information with its environment. An
interface model contains no details about the internal
structure, function, data values, or timing other than
that necessary to accurately model the external
interface behavior. External data values are usually
not modeled unless they represent control
information. An interface model may describe a
component’s interface details at any level of
abstraction. The terms bus functional, and interface
behavioral have also been used to refer to an interface
model and are considered synonyms. The more
general interface model name is preferred to the
anachronistic bus functional term.

3.6 Uninterpreted Model -
Intemal Extemnal
Temporal +~CR—> <+~ G
Data Value —— ———
Functional ——
Structural PY, > < —»
SW Programming Level | e —

An uninterpreted model is one that does not model
actual data values or data-related functionality either
internally or externally. Only control information
and control functionality are modeled.

3.7 Interpreted Model -
Intemal Extemal
Temporal L esnm— | | SEE—
Data Value <+ CEE> e
Funcional + US> <« CEER->
Structural D —— D e —
SW Programming Level S 3 Cm——

An interpreted model is one that models actual
data values and data-related functionality and
control-related functionality both internally and
externally.

3.8 Virtual Prototype -

Infemal External
Temporal <+~ O +~CRERED
Data Value <+~ R <+~ >
Functional <+ G <+
Structural >y o4 4
SW Programming Level «C—— >

A virtual prototype is a comprehensive model of
a system or component which models the external
and internal temporal, data-value, functional, and
structural combination of aspects for the system or
component. A virtual prototype may be written at
any level of abstraction. The virtual prototype is
distinguished from the other types of simulation
models, which describe only singular or a few
aspects such as timing, function, or structure, in that
it combines multiple aspects into a single simulation
model. In terms of the other model types, the virtual
prototype may be defined as an interpreted
behavioral structural model of a system. The most
significant usage of the term virtual prototype occurs
at and below the network architecture level.

3.9 Mixed-Paradigm Model -

Internal Extemal
Temporal «——————— > «———— O
Data Value o CEE——— “~C_—
Functional D Se— D C—
Structural | | Se— L enuts—
SW Programming Level LY cassssss—

A mixed-paradigm model is a combination of
models of differing paradigms. Such a model has
formerly been called a hybrid model. However, the
term mixed-paradigm is more precise. The term hybrid
has also been used to describe a mixed-level model
containing constituent component models of
differing abstraction levels. Because the term mixed-
level model is a less ambiguous direct synonym for
such a model and has been in use for many years, it
is preferred over hybrid in describing such models to
minimize the proliferation of identical terms.

3.10 Full-Behavioral Model -

Intemal Extemnal
Temporal <+~ OS> <~
Data Value <+ CERRNRED > <G
Functional <~ > <~ >
Structural D — pr————19
SW Programming Level “——

The full-behavioral model is a component model
that exhibits all the documented timing and
functionality of the modeled component, without

279

specifying internal implementation details. This
type of model has traditionally been called a full-
functional model and is therefore a synonym.
However, the newer term is preferred for its greater
accuracy and consistency to the definitions of its
constituent terms.

3.11 Mathematical-Equation Model -

Intemal External
Temporal < ¢ > - ¢ >
Data Value ———— > ——eeeeeell—
Functional —— -
Structural : = :
SW Programming Level —g—

The mathematical-equation level of abstraction
describes the functional relationship of data values.
A mathematical-equation level description is a
purely algebraic expression of the function the target
system is to solve. The mathematical model is
differentiated from an algorithm description in that a
mathematical model does not imply a specific
sequence of operations to implement the function.
Examples of mathematical descriptions for system
functions are:

y=sqri(x) or y=sin(x)

These functions represent well-defined
mathematical relationships but do not indicate
methods for their computation, for which their are
many, such as lookup table, Newton's method, or
Taylor-series expansion.

3.12 Algorithm Model -
Internal External
Temporal —9¢ -+ —% >
Data Value — - —_—
Functional -G
Structural « “ > < —
SW Programming Level PR —

The algorithm level of abstraction describes a
procedure for implementing a function as a specific
sequence of arithmetic operations, conditions, and
loops. An algorithmic description is less abstract
than a purely mathematical description because it
provides more detailed information for
implementing the function(s). An algorithm model
transforms actual data. Examples of algorithms are
bubble-sort, Givens triangularization, Cholesky
matrix decomposition, bisection method, Cooley-
Tukey FFT, and Winograd FFT [8].

3.13 Data Flow Graph (DFG) Model -

Internal Extemal
Temporal “ ¢ - < ¢ >
Data Value —aa— —
Functional PU—"-
Structural —Pg — « -
SW Programming Level -~ -_—>

A DFG model describes an application algorithm
in terms of the inherent data dependencies of its
mathematical operations. The DFG is a directed
graph containing nodes that represent mathematical
transformations and arcs that span between nodes
and represent their data dependencies and queues. It
conveys the potential concurrencies within an
algorithm, which facilitates parallelization and
mapping to arbitrary architectures. The DFG is an
architecture independent description of the
algorithm. It does not presume or preclude potential
concurrency or parallelization strategies. The DFG
can be a formal notation that supports analytical
methods for decomposition, aggregation, analysis,
and transformation. The DFG nodes usually
correspond to DSP primitives such as FFT, vector
multiply, convolve, or correlate. The DFG graph can
be executed by itself in a data-value-true mode
without being mapped to a specific architecture,
though it can not resolve temporal details without co-
simulation with an architecture model.

3.14 Instruction Set Architecture (ISA) Model -

Intemal External
Temporal — > ——
Data Value — D > < L3 >
Functional <« - - * >
Structural 4—=——>
SW Programming Level ——

An ISA model describes the function of the
complete instruction set recognized by a given
programmable processor, along with (and as
operating on) the processor's externally known
register set and memory/input-output (I/O) space.
An ISA model of a processor will execute any
machine program for that processor and give the
same results as the physical machine, as long as the
initial states (and simulated I/0O) are the same on the
ISA model simulation as they are on the real
processor. Such a processor model with no external
ports is classed as an ISA model. If the processor
model has external I/0 ports, then it would be
classified as a behavioral model. Data
transformations of ISA models are bit-true, in terms
of word length and bit values as observable in the
internal registers and memory states. Port buffer
registers, if modeled, are also bit-true. The temporal

280

resolution of an ISA model is at the instruction
cycle. Instruction cycles may span multiple clock
cycles. An ISA model contains no internal structural
implementation information.

3.15 Register Transfer Level (RTL) Model -

Intemal Extemal
Temporal e o —- >
Data Value —a_— —ea————
Functional —a-— G
Structural —CC——— oy —
SW Programming Level —

An RTL model describes a system in terms of
registers, combinational circuitry, low-level buses,
and control circuits, usually implemented as finite
state machines. Some internal structural
implementation information is implied by the
register transformations, but this information is not
explicitly described.

3.16 Logic-Level Model -

. Internal External
Temporal — —
Data Value > —-_—
Functional -y ———
Structural D «—-.
SW Programming Leve! —

A logic-level model describes a component in
terms of equivalent Boolean logic functions and
simple memory devices such as flip-flops. The logic-
level model does not describe the exact
implementation in logic gates. The logic expressions
can be transformed or reduced into functionally
equivalent forms prior to target implementation in
logic blocks.

3.17 Gate-Level Model -
Intemal External
Temporal +— +—a
Data Value + @ >
Functional - — o
Structural <+ —> ——r
SW Programming Level -~

A gate-level model describes the function,
timing, and structure of a component in terms of the
structural interconnection of Boolean logic blocks.
The Boolean logic behavior blocks implement simple
boolean functions such as NAND, NOR, NOT, AND,
OR, and XOR. A gate level model describes the
actual structure and versions of logic gates that are
assembled to implementing the target component.

4 Conclusion

The scope of this article did not permit the
complete listing of all the terms and definitions that
the TWG has defined so far. However, a more
complete listing of the current definitions is available
on the following World-Wide-Web page: http://
rassp.scra.org. Definitions for many supporting
terms that are also very important throughout
RASSP and yet are often problematic, can be found
on the web page as well. These terms include:

system, architecture, component, module,
data, control, hardware, software, firmware,
test bench, validation, verification,
electronic data package

interoperability, top-down design, codesign.

The TWG task will continue throughout the
duration of the RASSP project, so the definition
document is a living document. The terminology has
already gone through several revisions. However,
note that the definitions above are subject to change
as better definitions evolve.

During the next year, the TWG will continue to
refine the current terms and add new ones as
required by RASSP. The TWG will also consider
other additional model attributes to the model
taxonomy relating to a model's: maturity or
validation level, simulation efficiency portability,
complexity /size/lines-of-code, maintainability,
flexibility, = modifiability, = expandability, and
licensing cost.

Although these attributes appear to be useful in
selecting, building, or using models for appropriate
purposes within the design process, some are less
easily quantified than others. For instance,
simulation efficiency could be specified in events,
cycles, or instructions per simulation-host CPU cycle,
with memory requirements for the model's program
code and data. Comparably objective units for
portability or maintainability are less obvious.

In the near future, the TWG will use the refined
nomenclature to define how the various types of

281

models are implemented in VHDL and how
interoperability between models of the same and
differing types is obtained, as well as to identify
what design risks and benefits they address.

Continued feedback and comments from the
RASSP community are strongly encouraged to help
reach a solid consensus on a collective terminology.
Please direct your comments to the TWG in care of
Carl Hein, at chein@atl.ge.com.

Acknowledgments

The TWG gratefully acknowledges the
contributions of Randy Harr, Arne Bard, John Hines,
J.P. Letellier, Anthony Gadient, Maya Rubeiz, Gerry
Caracciolo, and the many others who have provided
valuable assistance in defining the taxonomy and
terms and supporting the effort.

References

{1] IEEE Std EIA 567 (August 1994) and IEEE 100

(2] Preliminary VHDL Modeling Guidelines, European
Space Agency / ESTEC

[3] Army Handbook - The Documentation of Digital
Electronic Systems With VHDL

(4] TIREP (Technology Independent Representation of
Electronics Products) NSWC

[5] Madisetti, V., " System-Level Synthesis and
Simulation VHDL: A Taxonomy and Proposal
Towards Standardization”, VIUF Spring, 1995
Proceedings.

[6] "Modeling and Simulation”, Texas Instruments
Semiconductor Group, 1990.

[7] Armstrong, J., "High Level Generation of VHDL
Testbenches", Spring 1995 VIUF Proceedings.

[8] Ecker, W., Hofmeister, M., "The Design Cube - A Model
for VHDL Designflow Representation”, Proceedings
of the EURO-VHDL, 1992, pp. 752-757.

{9] Famorzadeh, S., et.al., "Rapid Prototyping of Digital
Systems with COTS/ ASIC Components”, Proceedings
of RASSP Annual Conference, August, 1994.

[10] Blahut, R., Fast Algorithms for Digital Signal
Processing, Addison Wesley, New York, 1985.

