
1

BR 8/99

Arithmetic Operations

• We will review the arithmetic building blocks we
have previously used, and look at some new ones.
– Addition

– incrementer

– Addition/subtraction

– decrementer

– Comparison

BR 8/99

Binary Adder
F (A,B,C) = A xor B xor C G = AB + AC + BC

These equations look familiar. These define a Binary Full
Adder :

A B

S

CiCo
Cin

A B

Cout

Sum

Sum = A xor B xor Cin

Cout = AB + Cin A + Cin B
 = AB + Cin (A + B)

Full Adder (FA)

BR 8/99

4 Bit Ripple Carry Adder

A B

S

CiCo

A B

S

CiCo

A B

S

CiCo

A B

S

CiCo Cin

A(0)

Cout

B(0)A(1) B(1)A(2) B(2)A(3) B(3)

C(0)C(1)C(2)C(3)C(4)

Sum(0)Sum(1)Sum(2)Sum(3)

A[3:0]

B[3:0]

SUM[3:0]
+

2

BR 8/99

Incrementer

A(0)A(1)A(2)A(3)

EN

Y(0)Y(1)Y(2)Y(3)

A[3:0]

EN

Y[3:0]inc
If EN = 1 then Y = A + 1
If EN = 0 then Y = A

xor xor xor xor

BR 8/99

How did we get the Incrementer equations?
Full Adder equations:

Sum = A xor B xor Cin

Cout = AB or Cin A or Cin B
 = AB or Cin (A or B)

Let B = 0, Cin = 1 so that Sum = A + 1. Then equations simplify to:
 SUM = A xor 1 xor 0 = A xor 1 = A’
 Cout = 0 or 1 (A or 0) = A.

If we want an “En” input, then we want SUM = A if En=0, else SUM =
A+1 if En = ‘1’. Filling in the above equations:

 SUM = A En’ or A’ En = A xor En
 Cout = A En (note that Cout = 0 if En = 0).

The “Cout” of one bit becomes the “En” signal for the next bit!!!!

BR 8/99

A Subtractor

What is subtraction?

 A - B = A + (-B)

How do you take the negative of a number? Depends on the
sign representation (signed magnitude, 1s complement, 2s
complement). Lets assume 2’s complement since it is most
common).

 (-B) = B’ + 1

So:

 A - B = A + (-B) = A + B’ + 1

3

BR 8/99

Subtractor using an Adder

A[3:0]

B[3:0]

SUM[3:0] = A - B
+B’[3:0]

Cin

1

What if we want a block that can do both addition
and subtraction?

BR 8/99

Adder/Subtractor

A[3:0]

B[3:0]

+
Cin

Sub

0

1

Y[3:0]

VHDL representation:

 Y <= (A-B) when (Sub = ‘1’) else A+B;

2/1 Mux

BR 8/99

Recall what a Comparator is...
Equality comparator.

A
 AeqB

B

N

N

A=B if A(0) = B(0) and A(1) = B(1) … and A(n-1)=B(n-1)

Recall that “xnor” function is ‘1’ if A=0, B=0 or A=1, B=1!
So AeqB is:

 AeqB = (A(0) xnor B(0)) and (A(1) xnor B(1)) and ….etc.

4

BR 8/99

What is logic structure for equality
comparator?

A(N-1)

xnor

B(N-1) A(N-2) B(N-2) A0

xnor

B0

AND Tree (will be
multiple AND gates in
tree arrangement)

xnor

AeqB

BR 8/99

Is there another Logic structure possible?

If (A(0) = B(0) then
 if (A(1) = B(1) then
 ….
 If (A(N-1) = B(N-1) then
 AeqB = ‘1’; !!!!!

Compare “iteratively” from LSB to MSB

A(0) B(0)A(1) B(1)A(N-1) B(N-1)

AeqB

Signal from one bit block to next is “enable” for that block.

BR 8/99

Iterative Comparator Structure

A(0) B(0)A(1) B(1)A(N-1) B(N-1)

AeqB

xnor

An advantage to this structure is that the design for each bit is
the same same, and we can extend it indefinitely. But it will
be slow.

5

BR 8/99

Two ways to do a Large AND function

A(0)
A(1)

A(2)

A(N-1)

Multi-level. # of
levels depends on
total number of
inputs, number of
inputs on each
gate. A tree
arrangment like
this will take
more gates, but
will be fast.Serial

arrangement.
Will take less
gates, but will
be slow.

BR 8/99

What about “<“ (less than), “>” (greater than?)

Full comparator.

A AltB
 AeqB

B AgtB

N

N

The logic for AltB, AgtB depends on whether we are comparing
signed numbers or not. We will assume unsigned numbers for
now.

BR 8/99

Logic for “AgtB” (unsigned)
Consider A > B, both N bit numbers, A[N-1:0], B[N-1:0]

 If (A(N-1) = ‘1’ and (B(N-1) = ‘0’) then
 AgtB = ‘1’;
 elsif ((A(N-1) = B(N-1)) and (A(N-2) = ‘1’ and (B(N-2)=‘0’)) then
 AgtB = ‘1’;

 etc...

A=1xxx… B=0xxxxx

A=01xx… B=00xxxx
A=11xx… B=10xxxx

Look at “bit(i)”. The enable signal from previous bit is
A= B up until now . If this is ‘1’, then we need to do a
comparison.

However, if “AgtB” is already true, then we don’t need to
do comparison and can skip this comparison!

6

BR 8/99

Iterative Implementation of AgtB

En_i

Skip_i

En_o

Skip_o

En_i

Skip_i Skip_o

En_o

A(i+1) B(i+1) A(i) B(i)

en_o = (A xnor B) and en_i ;

If (skip_i = ‘1’) then
 skip_o = ‘1’;
 else
 skip_o = en_i and (A and B’) ;
 end if;

En_i

Skip_i

En_o

Skip_o

A(i-1) B(i-1)

A=B signal

BR 8/99

Logic Implementation
en_o = (A xnor B) and en_i;

If (skip_i = ‘1’) then
 skip_o = ‘1’;
 else
 skip_o = en_i and (A and B’) ;
 end if;

xnor

A
B

en_o

skip_o

skip_i

Can use a K-map
to simplify this
logic.

The skip_o of the LAST
bit is the AgtB signal!

The en_o of the LAST
bit is the AeqB signal!

What about AltB???

AltB = AgtB’ and AeqB’

en_i

BR 8/99

Final Comparator

En_i

Skip_i

Skip_o

En_o

B(N-1)A(N-1)

1

0

En_i

Skip_i

Skip_o

En_o

B(i)A(i)

En_i

Skip_i

Skip_o

En_o

B(0)A(0)

AeqB

AgtB

AltB <= not (AeqB) and not (AgtB);

7

BR 8/99

En(8)

Skip(8)

skip(7)

En(7)

A(7)

1

B(7)

0

skip(6)

En(6)

A(6) B(6)

En(7)

Skip(7)

En(6)

Skip(6)

skip(5)

En(5)

A(5) B(5)

skip(4)

En(4)

A(4) B(4)

En(5)

Skip(5)

En(4)

Skip(4)

skip(3)

En(3)

A(3) B(3)

skip(2)

En(2)

A(2) B(2)

En(3)

Skip(3)

En(2)

Skip(2)

skip(1)

En(1)

A(1) B(1)

skip(0)

En(0)

A(0) B(0)

En(1)

Skip(1)

AeqB

AgtB

en(i) = (A(i) xnor B(i)) and en(i+1);

If (skip(i+1) = ‘1’) then
 skip(i)= ‘1’;
 else
 skip(i) = en(i) and (A(i) and B’(i)) ;
 end if;

For i’th bit: 8 Bit Comparator

BR 8/99

architecture a of comp is
signal en, skip: std_logic_vector(8 downto 0);

 begin
 aeqb <= en(0);
 agtb <= skip(0);
 altb <= (not en(0)) and (not skip(0));

 process (a,b)
 begin
 en(8) <= ’1’; skip(8) <= ’0’;
 for i in 7 downto 0 loop
 en(i) <= not (a(i) xor b(i)) and en(i+1);
 if (skip(i+1) = ’1’) then
 skip(i) <= ’1’;
 else
 skip(i) <= en(i+1) and (a(i) and not b(i));
 end if;
 end loop;
 end process;
 end a;

VHDL architecture that
implements comparator
logic as shown on
previous slides.

BR 8/99

Alternate VHDL specification

architecture a of compa is

 begin

 aeqb <= '1' when (a = b) else '0';
 agtb <= '1' when (a > b) else '0';
 altb <= '1' when (a < b) else '0';

 end a;

Synthesis tool will pick a
logic implementation for
implementation of ‘=‘,
‘>’, ‘<‘ based on user
constraints such as
propagation delay.

8

BR 8/99

A

B

AeqB

AltB

AgtB

Glitches in synthesized logic.
Ok as long as we are using FFs
to latch result.

