	uth Tables (again) equation can be represented by a Truth	
$\begin{array}{c ccc} A & B & C & F \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	A truth table for a boolean function of N variables has 2 ^N entries. The '1's represent F(A,B,C). The '0's represent F'(A,B,C)	
	BR 2/1/99	1

Minterms, Maxterms

We saw that:

F(A,B,C) = A'BC + AB'C' + AB'C + ABC' + ABC' + ABC

SOP form. If a product term has all variables present, it is a MINTERM.

F(A,B,C) = (A+B+C) (A+B+C')(A+B'+C)

POS form. If a sum term has all variables present, it is a MAXTERM.

All Boolean functions can be written in terms of either Minterms or Maxterms.

BR 2/1/99

4

6

	Mint	erm, Maxterm	Notation	
Each line Maxterm		able represents bot	h a Minterm and a	
Row No.	ABC	Minterms	Maxterms	
0	0 0 0	$A'B'C' = m_0$	$A+B+C = M_0$	-
1	0 0 1	A'B'C $= m_1$	$A+B+C' = M_1$	
2	0 1 0	A'B C' = m_2	$A+B'+C = M_2$	
3	0 1 1	A'B C = m_3	$A+B'+C' = M_3$	
4	1 0 0	A B'C' = m_4	$A'+B+C = M_4$	
5	101	$A B'C = m_5$	$A'+B+C'=M_5$	
6	1 1 0	$A B C' = m_6$	$A'+B'+C = M_6$	
7	111	$A B C = m_7$	$A'+B'+C' = M_7$	
		BR 2/1/99		5

Using Minterms, Maxterms

A boolean function can be written in terms of Minterm or Maxterm notation as a shorthand method of specifying the function.

$$\begin{split} F(A,B,C) &= A`BC + AB`C' + AB'C + ABC' + ABC' + ABC \\ &= m_3 + m_4 + m_5 + m_6 + m_7 \\ &= \Sigma \ m(3,4,5,6,7) \end{split}$$

$$F(A,B,C) = (A+B+C) (A+B+C')(A+B'+C) = M_0 M_1 M_2$$

$$= \prod M(0,1,2)$$

Minterms correspond to '1's of F, Maxterms correspond to '0's of F in truth table.

BR 2/1/99

Minterm Expansion

A *minterm* must have every variable present. If a boolean product term does not have every variable present, then it can be *expanded* to its minterm representation. F(A,B,C) = AB + C neither AB, or C are minterms

To expand AB to minterms, use the relation: AB = AB(C+C') = ABC + ABC'

$$\begin{split} \text{To expand } C \text{ to minterms, do:} \\ C &= C(A+A') = AC+A'C = AC(B+B') + A'C(B+B') \\ &= ABC + AB'C + A'BC + A'B'C \\ F &= AB + C = A'B'C + A'BC + AB'C + ABC' + ABC \\ F(A,B,C) &= \sum m(1,3,5,6,7) \end{split}$$

BR 2/1/99

10

BR 2/1/99

12

$$\begin{split} Y &= \Pi \; M(0,1,2) \\ Y &= (A{+}B{+}C)(A{+}B{+}C')(A{+}B'{+}C) \\ Again, look for differences in only one variable \end{split}$$

 $\begin{array}{l} Y = \ (A{+}B + CC') \ (A{+}B{+}C) \\ = \ (A{+}B)(A{+}B'{+}C) \\ = \ (A{+}B)((A{+}C) + B') \\ = \ (A{+}B)(A{+}C) + (A{+}B)B' \end{array}$

- = A + BC + AB + BB'
- = A + AB + BC
- = A(1 + B) + BC= A + BC
 - + BC

Karnaugh Maps

BR 2/1/99

13

14

- Karnaugh Maps (K-Maps) are a graphical method of visualizing the 0's and 1's of a boolean function
 - K-Maps are very useful for performing Boolean minimization.
- Will work on 2, 3, and 4 variable K-Maps in this class.
- Karnaugh maps can be easier to use than boolean equation minimization once you get used to it.

BR 2/1/99

```
K-Maps

A K-map has a square for each '1' or '0' of a boolean function.

One variable K-map has 2<sup>1</sup> = 2 squares.

Two variable K-map has 2<sup>2</sup> = 4 squares
3 variable

Three variable K-map has 2<sup>3</sup> = 8 squares
3 variable

I variable
I variable

Variable
I variable

I v
```


		U	4-Varia						
Row		<u>F(A,B,C,D</u>)	, A	B					
0	00 00	?		00	01	11	10		
1	0001	?	00	?	?	?	?		
2	0010	?		-	-	:	4		
3	0011	?	01	?	?	?	?		
4	0100	?	11	9	2	?	?		
5	0101	?		•	·				
6	0110	?	10	?	?	?	?		
7	0111	?							
8	1000	?	1	AB					
9	1001	?	CD	~ 00	01	. 1	1 10	,	
10	1010	?	00	r0	r4	r1	2 r8		
11	1011	?	01	1	-	r1	2 0	1	
12	1100	?		r1	r5	1 11	³ r9	4	
13	1101	?	11	r3	r7	r1	5 r1	1	
14	1110	?	10		-	r1	4 r10	1	
15	1111	?	10	r2	r6	111	4 11	1	

3 00	01	11	10
f(A'B'C'D')	f(A'BC'D')	f(ABC'D')	f(AB'C'D')
f(A'B'C'D)	f(A'BC'D)	f(ABC'D)	f(AB'C'D)
f(A'B'CD)	f(A'BCD)	f(ABCD)	f(AB'CD)
f(A'B'CD')	f(A'BCD')	f(ABCD')	f(AB'CD')
	ı of map adjac ge are adjacer	1	

What do you need to Know?

- Minterm, Maxterm definitions
- Truth table to Minterms, vice versa
- Truth table to Maxterms, vice versa
- · Minterms to Maxterms, vice versa
- Plotting 2,3,4 variable functions on K-Maps

BR 2/1/99

27