
NIKTECH INC

IP Cores Users’ Guide

NIKTECH INC

IP Cores Users Guide

 NikTech Inc
190 Shooting Star Isle
Foster City, CA - 94404

 2222

Table of Contents

TABLE OF CONTENTS ... 2

INTRODUCTION .. 3

UART (SERIAL PORT). ... 4

BLOCK DIAGRAM ... 4

CONFIGURATION PARAMETERS.. 4

REGISTER MAP... 5

THEORY OF OPERATION.. 5

SOFTWARE SUPPORT. ... 6

GPIO (GENERAL PURPOSE I/O) .. 7

BLOCK DIAGRAM ... 7

CONFIGURATION PARAMETERS.. 7

REGISTER MAP... 8

THEORY OF OPERATION.. 9

Output .. 9

Input ... 9

SOFTWARE SUPPORT. ... 10

ON-CHIP RAM .. 11

BLOCK DIAGRAM ... 11

CONFIGURATION PARAMETERS.. 11

REGISTER MAP... 12

THEORY OF OPERATION .. 12

Xilinx – Initialization.. 12

Altera – Initialization ... 12

Vendor neutral Initialization.. 13

SOFTWARE SUPPORT .. 13

SDRAM CONTROLLER .. 14

BLOCK DIAGRAM ... 14

CONFIGURATION PARAMETERS.. 14

REGISTER MAP... 15

THEORY OF OPERATION.. 15

SOFTWARE SUPPORT .. 15

DDR SDRAM CONTROLLER .. 15

BLOCK DIAGRAM ... 16

CONFIGURATION PARAMETERS .. 16

REGISTER MAP... 17

THEORY OF OPERATIONS .. 17

SOFTWARE SUPPORT .. 17

EASYMAC (10BASET ETHERNET MAC).. 17

BLOCK DIAGRAM ... 17

CONFIGURATION PARAMETER.. 18

REGISTER MAP... 19

THEORY OF OPERATION.. 20

MAC Address Module .. 20

Receive Module .. 20

Transmit Module .. 21

SOFTWARE SUPPORT .. 21

 3333

Introduction

This document describes the IP cores that are provided with MANIK 32bit RISC core and the
software usage model (if applicable).

 4444

UART (Serial Port).

The UART IP core provides a WISHBONE compliant interface to a standard RS232
connection. The following is a block diagram of the core. The source code for the core can be
found in $(MANIK_BASE)/vhdl/cores/serial.vhd.

The Wishbone Signals are prefixed with WBS_. The txpin is the output and must be connected
to the RS232C driver, the rxpin in the input pin and should also be connected to the RS232
driver.

Block Diagram

Configuration Parameters

Name Type Default Value Description

WIDTH Integer 32 Width of Wishbone Bus (should not be
changed)

BAUD_RATE Integer 115200 The default/startup baud rate.

CORE_FREQ_MHZ Integer 50 The frequency of the input wishbone clock in
MHZ. The baudrate is computed based on this
clock.

 5555

Register Map

Name Offset Read/Write Bits Description

Receive/Transmit 0 R/W 8 A write operation to this register will queue a
character into the transmit buffer. If the transmit
buffer is not empty the write operation will block till
it becomes empty.

A read operation from this register will return the
character received. If the receive buffer is empty the
read operation will block till a character is received.

Control/Status 1 R/W 8 Read operation returns the status.

Bit-0 – Transmit buffer empty (R/O)

Bit-1 – Transmit buffer full (R/O)

Bit-2 – Receive buffer full (R/O)

Bit-3 – Receive data available (R/O)

Bit-4 – Polled mode; Interrupt disabled (R/W)

Bit-5 – Overrun – error (R/O)

Bit-6 – Framing error (R/O)

Clock Divisor 4 W/O 32 Clock divisor.

Theory of operation

 The serial port consists of a transmit module and a receive module. The baud rate is
generated by dividing the WISHBONE clock to generate a BAUD RATE * 16 clock. The baud
rate can be provided as a configuration option or can be programmed by software. The following
formula is used to compute the divisor value.

Divisor = ((Baud<<27)+(ClkFrequency>>5))/(ClkFrequency>>4);

The Data and Stop bits are fixed to 8 and 1 respectively and cannot be changed. The read and
write are blocking. The interrupt is generated when the polled bit is zero and a character is ready
in the receive buffer; the transmit module cannot generate an interrupt.

 6666

Software support.

The following functions are provided to interface with the UART IP core. The routines assume
that a macro UART_BASE has been defined, this is the base address for the UART core.

char ser_get_stat() – The function returns the status register of the UART. The
description of the register bits are provided above.

void ser_set_polled(int) – The function is used to set or unset the polled bit in
the control register. A non-zero value as argument will set the polled bit, a zero value will clear the
polled bit.

void ser_set_baud(int) – The function will write the value provided as argument to
the Divisor register. The value of the divisor should be calculated using the formula given in the
previous section.

void ser_put(char) – Writes the value provided as argument to the transmit buffer . The
function call will block till the transmit buffer is empty. If a non-blocking access is required then
the software should read the status register to determine if the transmit buffer is empty before it
writes to it.

char ser_get() – Returns the received character from the UART’s receive buffer. The
routine will block if there are no characters available.

 7777

GPIO (General Purpose I/O)

The GPIO module, provides a WISHBONE interface to a configurable number for I/O ports.
The GPIO can be used to simultaneously output and input (via separate ports). The input ports
can be configured to detect edges or levels. The module is also capable of generating interrupts on
predefined levels or edges on the input port. The source code for the core can be found in
$(MANIK_BASE)/vhdl/cores/gpio.vhd.

Block Diagram

Configuration Parameters

Name Type Default Value Description

WIDTH Integer 32 Width of Wishbone Bus (should not be changed)

I_WIDTH Integer 32 Width of input port

O_WIDTH Integer 32 Width of output port

DEBOUNCE Boolean False Currently not implemented

GENIRQ Boolean False Generate interrupt on input (depending on input type)

I_TYPE Integer 1 Input Type

 8888

1 – Level ;reading input port will return the level on the
input pin. If GENIRQ is true, interrupt will be generated
if any of the inputs is ‘1’.

2- Positive edge; Reading input port will retrun 1 for
those input port that have transitioned from zero to 1. If
GENIRQ is true then an interrupt will be generated
when any of the input ports transition from 0 to 1.

3-- Negative edge; Reading input port will retrun 1 for
those input port that have transitioned from 1 to 0. If
GENIRQ is true then an interrupt will be generated
when any of the input ports transition from 1 to 0.

4 – Either edge; Reading input port will retrun 1 for
those input port that have transitioned from 1 to 0 or
from 0 to 1. If GENIRQ is true then an interrupt will be
generated when any of the input ports transition from 1
to 0 or from 0 to 1.

Register Map

Name Offset Read/Write Bits Description

Input/Output 0 R/W WIDTH A write operation to this register update the output
port.

A read operation from this register will return the
value from the input port.

IRQ Mask 4 R/W WIDTH The value in this register determines the bits that will
used to detect an interrupt. Only the bits that are set
to ‘1’ will be used for the interrupt detection. Writing
a zero to a bit will also clear the corresponding bit
in input capture register

IRQ Detect 8 R/O WIDTH Will return the input edge capture register. The bits
which had the requested transition will be set to 1 in
this register.

 9999

Theory of operation
The GPIO core consists of an output register (to drive the output pins) and an input register (to
capture the values of the input pins). The input pins are double buffered. The GPIO core can be
configured to detect the Level (I_TYPE = 1), rising edge (I_TYPE=2), falling edge (I_TYPE=3)
or any edge (I_TYPE = 4). It can also be configured to generate an interrupt when one of these
events occur..

Output

The output IO pins of the GPIO core (gp_output) is controlled by writing the Input/Output
Register at offset 0. The value once written cannot be read back, the software should maintain a
copy of it if older values are required. The power-up & reset values for the output registers is zero.

Input

The value of the input pins of the GPIO core can be sampled by reading the Input/Output register
at offset 0. The inputs from the pads are double buffered. The core can be configured to generate
an interrupt (GENIRQ configuration parameter). The software can control the interrupt
generation by writing to the IRQ Mask register at offset 4. Clearing a bit in the IRQ mask register
also clears the corresponding bit in the edge detection register (allowing it to capture the next
edge). The recommended steps for generating and handling interrupts from the GPIO core are

a) Generate core with GENIRQ = true, and the desired I_TYPE parameter.

b) Set the desired bits in IRQ Mask to ‘1’.

c) An interrupt will be generated when

i. I_TYPE = Level (1). When the level of an input put pin 1 and the
corresponding bit in the IRQ Mask is 1.

ii. I_TYPE = Rising Edge (2). When the level of an input put pin
transitions from 0 to 1 and the corresponding bit in the IRQ Mask is
1.

iii. I_TYPE = Falling Edge (3). When the level of an input put pin
transitions from 1 to 0 and the corresponding bit in the IRQ Mask is
1.

iv. I_TYPE = Either Edge (4). When the level of an input put pin
transitions from 0 to 1 or from 0 to 1 and the corresponding bit in
the IRQ Mask is 1.

d) The interrupt service routine should read the IRQ Detect register (offset 8) and
determine the bit that caused the interrupt. The IRQ Mask register should be updated
with this bit set to 0 this will clear the interrupt. The software can then re-enable the
interrupt by updating the IRQ Mask register bit to 1.

 10101010

Software support.
The GPIO core has no software support. See MANIK-Software Developers Guide for details on
registering and handling interrupts.

 11111111

On-Chip RAM

This CORE provides a WISHBONE compliant interface to On-chip memory. The memory can
be initialized with some values, the initialization process is vendor specific. The source code the
core can be found in $(MANIK_BASE)/vhdl/cores/ocsyncram.vhd.

Block Diagram

Configuration Parameters

Name Type Default Value Description

WIDTH Integer 32 Width of Wishbone Bus (should not be
changed)

ADDR_WIDTH Integer 32 Width of Wishbone Address Bus (Should not
be changed)

RAM_AWIDTH Integer 11 Width of RAM address bus

RAM_INITFILE String “” The Name of the initialization file. The format
of the initialization file is vendor and synthesis
tool specific.

 12121212

Register Map
 Not applicable.

Theory Of Operation
The core instantiated vendor specific memory elements to provide the desired size of memory.
The memory is byte addressable, the core will perform a read modify write if the vendor specific
memory element does not provide byte access.

Xilinx – Initialization

 The Xilinx synthesis tool (XST) provides VHDL Textio interface to read memory
initialization values from a file. The initialization routine requires the file to be in a format that be
read by the Textio routines. The steps to create the initialization files are

a) Create the application ELF file (.elf).

b) Use objcopy to convert the ELF file to a binary file.

manik-elf-objcopy –O binary <Application>.elf

<Application>.bin

c) Use conv2bin utility to convert the binary file to Textio readable format.

conv2bin <Application>.bin <Application>.mem

The .mem file created can be used as the RAM_INITFILE parameter for the memory.

 Note: Synplicity (Synplify) does NOT support this method of memory
initialization.

Altera – Initialization

 Memories for Altera are created by instantiated using the Altera provided altsyncram
(lpm). This lpm can take an Intel Hex file formatted file to initialize the memory. The Intel hex
file needs to be in a specific format for the initialization to work correctly. The steps to create the
initialization file are

a) Create the application ELF file (.elf).

b) Use objcopy to convert the ELF file to Intel Hex format. manik-elf-
objcopy –O hex <Application>.elf <Application>.hex

c) Use Altera Quartus-II to convert this Intel Hex file to a format that the Altera tools
will understand.

i. Start Quartus-II and open the Intel Hex file. File -> Open (Select
file type .mem)

ii. A dialog box will appear enter Word Size: 8

 13131313

iii. Then open . Edit -> Memory Size Wizard …

iv. Change Word Size : 32 then click Next >.

v. Select radio button Combine existing Words. Then click Next >
then Finish

vi. Save the file

This will modify the Intel hex format to be compatible with the initialization required for the
memory. Note if you recompile the application the process has to be repeated.

Vendor neutral Initialization

The MANIK system comes with an utility that will create a .vhdl file with generic memory
initialization that vendor independent synthesis tools such as Synplify as well as vendor specific
tools can infer initialized RAMs. The steps to create such file are

a) Create the application ELF file (.elf).

b) Use objcopy to convert the ELF file to a binary file.

 manik-elf-objcopy –O binary <Application>.elf <Application>.bin

c) Use utility gen_vhdl_ram to create an initialized memory file

gen_vhdl_ram <Application>.bin <Application>.vhd <Application>

The first parameter is the input file, the second is the output file and third is the
name of the vhdl entity name.

The source code for the utility is provided with the package.

Software Support
 Not Applicable.

 14141414

SDRAM Controller

The basic SDRAM controller is available from XESS Corporation, a WISHBONE interface was
added to the memory controller, some of the vendor specific code was converted to generic vhdl.

Block Diagram

Configuration Parameters
Name Type Default Value Description

WIDTH Integer 32 Width of Wishbone Bus (should not be
changed)

ADDR_WIDTH Integer 32 Width of Wishbone Address Bus (Should not
be changed)

FREQ Integer 50000 Frequency of wishbone clock in KHz

PIPE_EN Boolean False Enables pipelining for read (True NOT
Tested)

MAX_NOP Natural 1000 Number of NOPS before starting self-refresh

MULTI_ACT_ROWS Boolean False True will allow an active row in each bank

CAS_LATENCY Integer 3 CAS latency of SDRAM

 15151515

NROWS Integer 4096 Number of ROWS in the SDRAM Array

NCOLS Integer 256 Number of Columns in the SDRAM Array

RAM_ADDR_WIDTH Integer 12 Number of address bits for the SDRAM

SDRAM_CKES Integer 1 Number for CKEs signals (For multiple
banks)

Register Map
 Not applicable.

Theory of operation
 Refer to the document http://www.xess.com/appnotes/an-071205-xsasdramcntl.pdf for
details of the operation.

Software Support
 Not Applicable.

DDR SDRAM Controller

The basic DDR SDRAM controller is the available from http://www.opencores.org . A
WISHBONE interface was added to the controller. Support for dm signal has also been added.

 16161616

Block Diagram

Configuration parameters
Name Type Default Value Description

WIDTH Integer 32 Width of Wishbone Bus (should not be
changed)

ADDR_WIDTH Integer 32 Width of Wishbone Address Bus (Should
not be changed)

FREQ_KHZ Positive 50_000 Frequency of Wishbone clock in KHz

DDR_DM_WIDTH Positive 2 Width of DM Signal

DDR_DQS_WIDTH Positive 2 Width of DQS Signal

DDR_DATA_WIDTH Positive 16 DDR Module DATA Width

DDR_ADDR_WIDTH Positive 13 DDR Module Address width

DDR_BANK_WIDTH Positive 2 Number of Bank address lines

AUTO_PRECHARGE Positive 10 Bit position in column address for auto

 17171717

precharge

Register Map
 Not Applicable

Theory of operations
The core uses many XILINX specific components and is tested on a XILINX platform

only. It uses two DCM’s . For more information refer to documentation for the core on
http://www.opencores.org.

Software Support
 Not Applicable

EasyMAC (10BaseT Ethernet MAC)

The core is a small Wishbone compliant Ethernet MAC. It is capable of operating at 10BaseT.
The core is designed to have a small foot print. The source code for core can be found in
$(MANIK_BASE)/vhdl/cores/eth_mac.vhd.

Block Diagram

 18181818

Configuration Parameter

Name Type Default
Value

Description

WIDTH Integer 32 Width of Wishbone Bus (should not
be changed)

ADDR_WIDTH Integer 32 Width of Wishbone Address Bus
(Should not be changed)

ETH_ADDR_AWIDTH Integer 11 Address width for internal FIFO.
(Should not be changed)

DEFAULT_MAC_ADDRESS Std_logic_vector 0 The default Mac address .

 19191919

Register Map

Name Offset Read/
Write

Bits Description

Control/Status
Register

0 R/W WIDTH Bit(s) R/W Description

0 W/O Resets the write FIFO pointer for the
transmit buffer

1 R/W Receive enable

2 R/W Read - Transmit busy

Write – Start Transmitting

3 W/O Reset MAC address pointer

4 W/O Read from Receive FIFO complete

5 R/W Receive interrupt
enabled(1)/disabled(0)

6 R/W Transmit interrupt
enabled(1)/disabled(0)

7 R/W Enable(1)/Disable(0) Promiscuous
mode

8 R/O Receive packet waiting in FIFO

9 R/O Received packet has CRC error (valid
when bit 8 is 1)

10:15 Reserved

31:16 R/O Length of received packet (valid when
bit 8 is 1)

Data Register 4 R/W WIDTH This register is used to Read from the receive FIFO or to

write to the transmit FIFO. Note only lower 8 bits contain
valid data.

MAC Address
Register

8 R/W WIDTH This register is used to read/update the MAC Address.
Only the lower 8 bits contain valid data, six read/write
operations need to be performed to get/update the entire

 20202020

MAC address.

Counter
Register

12 R/O WIDTH The counter returns the number of invalid frames received
from the PHY interface.

Theory of operation
The EasyMAC core is designed to have small hardware footprint and to have a easy software
interface. The core consists of three modules, the MAC address module, the receive module &
transmit module.

MAC Address Module

This module maintains the MAC address of the core. The default value for the MAC address is all
zeros. The read or write the MAC address the follow the step.

a) Set the Reset MAC Address pointer bit (3) in the Control register (Offset 0).

b) Read/Write the MAC address Register (offset 8). The read or write does a 32 bit
load/store however only the lowest order 8 bits are read/written. The MAC address
is read/written lowest order byte first. The core assumes that the MAC address is 6
bytes (48 bits) and auto increments the MAC address pointer after each read/write.
Reading/Writing more than 6 bytes will result in undefined behaviour.

Receive Module

The receive module will receive packets when the receive enable bit (1) is set to 1. It will receive
packets with MAC destination address that matches the programmed MAC address or a
broadcast packet; when the promiscuous mode is set all packets received will be received.

The receive module writes the packets to a FIFO (2Kbytes), when a complete packet has been
received the module will set the Packet Received (bit 8) in the Control register; if a CRC error was
detected the module will also set the CRC error flag. An interrupt will be generated if the Receive
Interrupt bit (5) is set in the control register.

Note no other packets will be received till the processor empties the FIFO and writes a 1 into the
Read from FIFO complete (bit 4) in the control register. The software should use the following
steps to receive a packet from the receive FIFO.

a) Wait for packet to arrive (either receive interrupt or polling the receive flag in
the control register).

b) Get the length of the received packet. (Higher order 16 bits of the control
register)

c) Read the data from the FIFO (one byte at a time) by reading the DATA port
(Offset 4).

 21212121

d) Write 1 into the Read Complete flag (bit 4). This will allow the next packet to
be received.

Transmit Module

The transmit module reads data from a FIFO and transmits it to the PHY. The module will patch
in the MAC address that is programmed into the MAC address, it will also patch in the CRC at
the end of the packet. The Transmit unit DOES NOT pad packets that re smaller then the
minimum size.

The transmit module is design to handle collisions and will follow the standard protocol if a
collision is detected. To transmit a packet the software should follow the step

a) Should wait till the transmit module is free (Transmit Busy Flag bit 2 is zero).

b) Write a 1 in the Reset Write Pointer Flag in the Control Register (bit 0).

c) Write the data one byte at a time into the DATA register. The transmit module will
auto increment the pointer for each write.

d) Once all the data is written into the FIFO , write a 1 into the Transmit start bit (2) of
the control register.

Software support
A basic set of routines to access the EasyMAC registers, to send / receive packets. All the
routines assume that a #define symbol EEMAC_BASE is provided in sys_config.h.

unsigned int eth_get_status() – returns the control/status register of the
EasyMAC.

void eth_set_status(unsigned int bits) – Will set the bits specified in the
parameter in the control/status register.

void eth_clr_status(unsigned in bits) – Will clears the bits specified in the
parameter.

int eth_get_len() – returns the length field of the control/status register.

void eth_get_packet(char *buff, int len) – will copy len bytes from the
data register (Receive FIFO) into the buffer specified. Will also set the Read complete bit after the
data is copied into the receive buffer.

void eth_send_packet(char *buff, int len) – will wait for the transmit busy
bit to become 0 then copy len characters from buff to the transmit FIFO. After the copy is
complete it will start transmission by writing 1 to the start transmit bit in the status/control
register.

void eth_set_macaddr(char *maccaddr, int len) – will set the MAC
address to the specified by the macaddr, len <= 6.

 22222222

void eth_get_macaddr(char *macaddr, int len) – will read the macc
address from the Mac module and place in the buffer specified, len should be <= 6.

