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Chapter 1 - Introduction
The Wishbone1 interconnection is a portable and flexible interface for use with semiconductor IP cores.  Its
purpose is to foster design reuse by alleviating system-on-a-chip integration problems.  This is
accomplished by creating a common interface between IP cores.  This improves the portability and
reliability of the system, and results in faster time-to-market for the end user.

Previously, IP cores used non-standard interconnection schemes that made them difficult to integrate.  This
required the creation of custom glue logic to connect each of the cores together.  By adopting a standard
interconnection scheme, the cores can be integrated more quickly and easily by the end user.

This specification can be used for soft core, firm core or hard core IP.  Since firm and hard cores are
generally conceived as soft cores, the specification is written from that standpoint.

This specification does not require the use of specific development tools or target hardware.  Furthermore,
it is fully compliant with virtually all logic synthesis tools.  However, some of the examples presented in
the specification do use the VHDL hardware description language.  These are presented only as a
convenience to the reader, and should be readily understood by users of other hardware description
languages (such as Verilog).  Schematic based entry tools can also be used.

The Wishbone interconnect is intended as a general purpose interface.  As such, it defines the standard data
exchange between IP core modules.  It does not attempt to regulate the application-specific functions of the
IP core.

The Wishbone architects were strongly influenced by two factors.  First, there was a need for a good,
reliable system-on-a-chip integration solution.  Second, they were impressed by the traditional system
integration solutions afforded by microcomputer buses such as PCI bus and VMEbus.

In fact, the Wishbone architecture is analogous to a microcomputer bus in that that they both: (a) offer a
flexible integration solution that can be easily tailored to a specific application; (b) offer a variety of bus
cycles and data path widths to solve various system problems; and (c) allow products to be designed by a
variety of suppliers (thereby driving down price while improving performance and quality).

However, traditional microcomputer buses are fundamentally handicapped for use as a system-on-a-chip
interconnection.  That’s because they are designed to drive long signal traces and connector systems which
are highly inductive and capacitive.  In this regard, system-on-a-chip is much simpler and faster.
Furthermore, the system-on-a-chip solutions have a rich set of interconnection resources.  These do not
exist in microcomputer buses because they are limited by IC packaging and mechanical connectors.

The Wishbone architects have attempted to create a specification that is robust enough to insure complete
compatibility between IP cores.  However, it has not been over specified so as to unduly constrain the
creativity of the core developer or the end user.  It is believed that these two goals have been accomplished
with the publication of this document.

The terminology used throughout this specification is defined in the Glossary at the end of this document.

                                                       
1 Webster’s dictionary defines a wishbone as “the forked clavicle in front of the breastbone of most birds.”
The term ‘Wishbone interconnect’ was coined by Wade Peterson of Silicore Corporation.  During the
initial definition of the bus he was attempting to find a name that was descriptive of a bi-directional data
bus that used either multiplexors or three-state logic.  This was solved by forming an interface with
separate input and output paths.  When these paths were connected to three-state logic it formed a ‘Y’
shaped configuration that resembled a wishbone.  The actual name was conceived during a Thanksgiving
Day dinner that included roast turkey.  Thanksgiving Day is a national holiday in the United States, and is
observed on the third Thursday in November.  It is generally celebrated with a traditional turkey dinner.
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1.1 Wishbone Features

The Wishbone interconnection makes system-on-a-chip and design reuse easy by creating a standard data
exchange protocol.  Features of this technology include:

• Simple, compact, logical IP core hardware interfaces require very few logic gates.

• Full set of popular data transfer bus protocols including:

- Single READ / WRITE cycle
- BLOCK transfer cycle
- RMW cycle
- EVENT cycle

• Data bus widths2 and operand sizes from 8 to 64-bits.

• Supports both BIG ENDIAN and LITTLE ENDIAN data ordering.

• Flexible interface supports memory mapped, FIFO memory and crossbar interconnections.

• Handshaking protocol allows each core to throttle data transfer speed.

• Up to one data transfer per clock cycle.

• Supports normal cycle termination, retry termination and termination due to error.

• Address widths3 up to 64-bits.

• User-defined tag support.  This is useful for identifying data transfers such as:

- Data transfers
- Interrupt vectors
- Cache control operations

• MASTER / SLAVE architecture for very flexible system designs.

• Multiprocessing (multi-MASTER) capabilities.  This allows for a wide variety of system-on-a-
chip configurations, including:

- Single MASTER / single SLAVE
- Multiple MASTER / single SLAVE
- Single MASTER / multiple SLAVE
- Multiple MASTER / multiple SLAVE
- Crossbar switches

• Arbitration methodology is defined by the end user (priority arbiter, round-robin arbiter, etc.).

                                                       
2 Specifications are given for data port and operand sizes up to 64-bits.  However, the basic architecture can
theoretically support any data width (e.g. 128-bit, 256-bit etc.).

3 Specifications are given for address widths between zero (non-existent) and 64-bits.  However, the basic
architecture can theoretically support any address width.
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• Supports various IP core interconnection means, including:

- Unidirectional bus
- Bi-directional bus
- Multiplexor based interconnections
- Three-state based interconnections
- Off chip I/O

• Synchronous design assures portability, simple design and ease of test.

• Very simple timing specification.

• Documentation requirements allow the end user to quickly evaluate interface needs.

• Independent of hardware technology (FPGA, ASIC, etc.).

• Independent of delivery method (soft, firm or hard core).

• Independent of synthesis tool, router and layout tool technology.

1.2 Wishbone Objectives

The main objective of the specification is to create a flexible interconnection means for use with
semiconductor IP cores.  This allows various IP core modules to be connected together to form a system-
on-a-chip.

A further objective of the specification is to enforce good compatibility between IP core modules.  This
enhances design reuse.

A further objective of the specification is to create a robust standard, but one that does not unduly constrain
the creativity of the core developer or the end user.

A further objective of the specification is to make it easy to understand by both the core developer and the
end user.

A further objective of the specification is create a portable interface that is independent of the underlying
semiconductor technology.  For example, the interconnect must be capable of working with both FPGA and
ASIC hardware target devices.

A further objective of the specification is to make the interface independent of logic signaling levels.

A further objective of the specification is to create a flexible interconnection scheme that is independent of
the IP core delivery method.  For example, it may be used with ‘soft core’, ‘firm core’ or ‘hard core’
delivery methods.

A further objective of the specification is to be independent of the underlying hardware description.  For
example, soft cores may be written and synthesized in VHDL, Verilog or some other hardware
description language.  Schematic entry may also be used.

A further objective of the specification is to require a minimum standard for documentation.  This allows IP
core users to quickly evaluate and integrate new cores.
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A further objective of the specification is to eliminate extensive interface documentation on the part of the
IP core developer.  In most cases, this specification along with the WISHBONE DATASHEET is sufficient
to completely document an IP core interface.

A further objective is to create an architecture that has a smooth transition path to support new
technologies.  This increases the longevity of the specification as it can adapt to new, and as yet un-
thought-of, requirements.

A further objective is to create an architecture that allows various interconnection means between IP core
modules.  This insures that the end user can tailor the system-on-a-chip to his/her own needs.

A further objective is to create an architecture that requires a minimum of glue logic by the end user.  In
some cases the system-on-a-chip needs no glue logic whatsoever.  However, in other cases the end user
may choose to use a more sophisticated interconnection method (for example with FIFO memories or
crossbar switches) that requires additional glue logic.

A further objective is to create an architecture with variable address and data path widths to meet a wide
variety of system requirements.

A further objective is to create an architecture that supports both BIG ENDIAN and LITTLE ENDIAN data
transfer organizations.

A further objective is to create an architecture that supports one data transfer per clock cycle.

A further objective is to create an architecture that allows data to be tagged.  This allows the purpose for
each bus cycle to be identified by a SLAVE.  For example, in microprocessor based systems it is often
necessary to discriminate between data transfer, interrupt acknowledge and caching operations.

A further objective is to create an architecture with a MASTER/SLAVE topology.  Furthermore, the system
must be capable of supporting multiple MASTERs and multiple SLAVEs with an efficient arbitration
mechanism.

A further objective is to create an architecture that supports crossbar switches.

A further objective is to create a synchronous protocol to insure ease of use, good reliability and easy
testing.  Furthermore, all transactions can be coordinated by a single clock.

A further objective is to create a synchronous protocol that works over a wide range of interface clock
speeds.  The effects of this are: (a) that the Wishbone interface can work synchronously with all attached IP
cores, (b) that the interface can be used on a large range of target devices, (c) that the timing specification is
much simpler and (d) that the resulting semiconductor device is much more testable.

A further objective is to create a synchronous protocol that provides a simple timing specification.  This
makes the interface very easy to integrate.

A further objective is to create a synchronous protocol where each MASTER and SLAVE can throttle the
data transfer rate with a handshaking mechanism.

A further objective is to create a synchronous protocol where data may be transferred through memory
mapped, FIFO memory or crossbar switch interconnections.

A further objective is to create a synchronous protocol that is optimized for system-on-a-chip, but that is
also suitable for off-chip I/O routing.  Generally, the off-chip Wishbone interconnect will operate at slower
speeds.
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1.3 Specification Terminology

To avoid confusion, and to clarify the requirements for compliance, this specification makes use of five
keywords to define the operation of the Wishbone interconnect.  The keywords are:

• RULE
• RECOMMENDATION
• SUGGESTION
• PERMISSION
• OBSERVATION

Any text not labeled with one of these keywords describes the operation in a narrative style.  The keywords
are defined as follows:

RULE
Rules form the basic framework of the specification.  They are sometimes expressed in text form and
sometimes in the form of figures, tables or drawings.  All rules MUST be followed to ensure compatibility
between interfaces.  Rules are characterized by an imperative style.  The upper-case words MUST and
MUST NOT are reserved exclusively for stating rules in this document, and are not used for any other
purpose.

RECOMMENDATION
Whenever a recommendation appears, designers would be wise to take the advice given.  Doing otherwise
might result in some awkward problems or poor performance.  While this specification has been designed
to support high performance systems, it is possible to create an interconnection that complies with all the
rules, but has very poor performance.  In many cases a designer needs a certain level of experience with the
system architecture in order to design interfaces that deliver top performance.  Recommendations found in
this document are based on this kind of experience and are provided as guidance for the user.

SUGGESTION
A suggestion contains advice which is helpful but not vital.  The reader is encouraged to consider the
advice before discarding it.  Some design decisions are difficult until experience has been gained.
Suggestions help a designer who has not yet gained this experience.  Some suggestions have to do with
designing compatible interconnections, or with making system integration easier.

PERMISSION
In some cases a rule does not specifically prohibit a certain design approach, but the reader might be left
wondering whether that approach might violate the spirit of the rule, or whether it might lead to some
subtle problem.  Permissions reassure the reader that a certain approach is acceptable and will not cause
problems.  The upper-case word MAY is reserved exclusively for stating a permission and is not used for
any other purpose.

OBSERVATION
Observations do not offer any specific advice.  They usually clarify what has just been discussed.  They
spell out the implications of certain rules and bring attention to things that might otherwise be overlooked.
They also give the rationale behind certain rules, so that the reader understands why the rule must be
followed.
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1.4 Use of Timing Diagrams

Figure 1-1 shows some of the key features of the timing diagrams in this specification.  Unless otherwise
noted, the MASTER signal names referenced in the timing diagrams.  In some cases the MASTER and
SLAVE signal names are different.  For example, in the single MASTER / single SLAVE configuration,
the [ADR_O] and [ADR_I] signals are connected together.  Furthermore, the actual waveforms at the
SLAVE may vary from those at the MASTER.  That’s because the MASTER and SLAVE interfaces can be
connected together in different ways.  In all cases, the timing diagrams show how the two interfaces are
connected together.

Figure 1-1.  Use of timing diagrams.

Individual signals may or may not be present on an specific interface.  That’s because most of the signals
are optional.

Two symbols are also presented in relation to the [CLK_I] signal.  These include the positive going clock
edge transition point and the clock edge number.  In most diagrams a vertical guideline is shown at the
positive-going edge of each [CLK_I] transition.  This represents the theoretical transition point at which
flip-flops register their input value, and transfer it to their output.  The exact level of this transition point
varies depending upon the technology used in the target device.  The clock edge number is included as a
convenience so that specific points in the timing diagram may be referenced in the text.  The clock edge
number in one timing diagram is not related to the clock edge number in another diagram.

Gaps in the timing waveforms may be shown.  These indicate either: (a) a wait state or (b) a portion of the
waveform that is not of interest (in the context of the diagram).  When the gap indicates a wait state, the
symbols ‘-WSM-‘ or ‘-WSS-‘ are placed in the gap along the [CLK_I] waveform.  These correspond to
wait states inserted by the MASTER or SLAVE interfaces.

Undefined signal levels are indicated by a hatched region.  In MASTER interfaces, this region indicates
that the signal level is undefined, and may take any state.  In SLAVE interfaces, this region indicates that
the current state is undefined, and should not be relied upon.  When signal arrays are used, stable and
predictable signal levels are indicated with the word ‘VALID’.  Non-array signals show a steady high or
low state.

CLK_I 10

ADR_O() VALID

-WSS-

Signal Name

Signal Level
Undefined

Clock Edge
Transition

Point

Edge Number

Stable, Valid Data

Wait State
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1.5 Signal Naming Conventions

All signal names used in this specification have the ‘_I’ or ‘_O’ characters attached to them.  These indicate
if the signals are an input (to the core) or an output (from the core).  For example, [ACK_I] is an input and
[ACK_O] is an output.  This convention is used to clearly identify the direction of each signal.

Signal arrays are identified by a signal name followed by the array boundaries in parenthesis.  For example,
[DAT_I(63..0)] is a signal array with upper array boundary number sixty-three, and lower array boundary
number zero.  Furthermore, the array boundaries indicate the full range of the permissible array size.  The
array size on any particular core may vary.  In many cases the array boundaries are omitted if they are
irrelevant to the context of the description.

When used as part of a sentence, signal names are enclosed in brackets ‘[ ]’.  This helps to discriminate
signal names from the words in the sentence.
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Chapter 2 – Interface Specification
This chapter describes the signaling method between MASTER and SLAVE modules.  This includes
numerous options which may or may not be present on a particular interface.  Furthermore, it describes a
minimum level of required documentation that must be created for each IP core.

2.1 Required Documentation

Documentation must be provided for each IP core with a Wishbone interconnect.  This helps the end user
understand the operation of the core, and how to connect it to other cores.  The documentation takes the
form of a WISHBONE DATASHEET.  This can be included in a technical reference manual for the IP
core.

RULE 2.10
Each Wishbone compatible IP core MUST include a WISHBONE DATASHEET as part of the IP core
documentation.

RULE 2.20
The WISHBONE DATASHEET MUST include the signal names that are defined for the IP core.
Furthermore, each core-specific signal name MUST be cross-referenced to the signal name used in this
specification.

PERMISSION 2.10
Any signal name MAY be used to describe each of the Wishbone signals.

RULE 2.30
Signals MUST be named in accordance with the rules of the native tool in which the IP core was designed.

OBSERVATION 2.10
Most hardware description languages (such as VHDL or Verilog) have naming conventions.  For
example, the VHDL hardware description language defines the alphanumeric symbols which may be used.
Furthermore, it states that UPPERCASE and LOWERCASE characters may be used in a signal name.

SUGGESTION 2.10
It is recommended that the interface use the signal names that are defined in this document.

OBSERVATION 2.20
Core integration is simplified if the signal names match those given in this specification.  However, in some
cases (such as IP cores with multiple Wishbone interconnects) they cannot be used.  The use of non-
standard signal names will not result in any serious integration problems since all hardware description
tools allow signals to be renamed.

RULE 2.40
All Wishbone interface signals MUST use active high logic.
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2.2 Wishbone Signal Description

This section describes the signals used in the Wishbone interconnect.  Some of these signals are optional,
and may or may not be present on a specific interface.

2.3.1 Signals Common to MASTER and SLAVE Interfaces

CLK_I
The clock input [CLK_I] coordinates all activities for the internal logic within the Wishbone interconnect.
All Wishbone output signals are registered at the rising edge of [CLK_I].  All Wishbone input signals must
be stable before the rising edge of [CLK_I].

RST_I
The reset input [RST_I] forces the Wishbone interface to restart.  Furthermore, all internal self-starting
state machines will be forced into an initial state.

2.3.2 MASTER Signals

ACK_I
The acknowledge input [ACK_I], when asserted, indicates the termination of a normal bus cycle.  Also see
the [ERR_I] and [RTY_I] signal descriptions.

ADR_O(63..0)
The address output array [ADR_O(63..0)] is used to pass a binary address, with the most significant
address bit at the higher numbered end of the signal array.  The lower array boundary is specific to the data
port size.  The higher array boundary is core-specific.  In some cases (such as FIFO interfaces) the array
may not be present on the interface.

CYC_O
The cycle output [CYC_O], when asserted, indicates that a valid bus cycle is in progress.  The signal is
asserted for the duration of all bus cycles.  For example, during a BLOCK transfer cycle there can be
multiple data transfers.  The [CYC_O] signal is asserted during the first data transfer, and remains asserted
until the last data transfer.  The [CYC_O] signal is useful for interfaces with multi-port interfaces (such as
dual port memories).  In these cases, the [CYC_O] signal requests use of a common bus from an arbiter.
Once the arbiter grants the bus to the MASTER, it is held until [CYC_O] is negated.

DAT_I(63..0)
The data input array [DAT_I(63..0)] is used to pass binary data.  The array boundaries are determined by
the port size.   Also see the [DAT_O(63..0)] and [SEL_O(7..0)] signal descriptions.

DAT_O(63..0)
The data output array [DAT_O(63..0)] is used to pass binary data.  The array boundaries are determined by
the port size.   Also see the [DAT_I(63..0)] and [SEL_O(7..0)] signal descriptions.
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ERR_I
The error input [ERR_I] indicates an abnormal cycle termination.  The source of the error, and the response
generated by the MASTER is defined by the IP core supplier in the WISHBONE DATASHEET.  Also see
the [ACK_I] and [RTY_I] signal descriptions.

RTY_I
The retry input [RTY_I] indicates that the indicates that the interface is not ready to accept or send data,
and that the cycle should be retried.  When and how the cycle is retried is defined by the IP core supplier in
the WISHBONE DATASHEET.  Also see the [ERR_I] and [RTY_I] signal descriptions.

SEL_O(7..0)
The select output array [SEL_O(7..0)] indicates where valid data is expected on the [DAT_I(63..0)] signal
array during READ cycles, and where it is placed on the [DAT_O(63..0)] signal array during WRITE
cycles.  Also see the [DAT_I(63..0)], [DAT_O(63..0)] and [STB_O] signal descriptions.

STB_O
The strobe output [STB_O] indicates a valid data transfer cycle.  It is used to qualify various other signals
on the interface such as [SEL_O(7..0)].  The SLAVE must assert either the [ACK_I], [ERR_I] or [RTY_I]
signals in response to every assertion of the [STB_O] signal.

TAGN_O
The tag output(s) [TAGN_O] can be used to indicate the type of data transfer in progress.  Furthermore,
‘N’ in this signal name refers to a tag number because multiple tags may be used.  For example, [TAG1_O]
may indicate a valid data transfer cycle, [TAG2_O] may indicate an interrupt acknowledge cycle and so on.
The exact meaning of each tag is defined by the IP core provider in the WISHBONE DATASHEET.

WE_O
The write enable output [WE_O] indicates whether the current local bus cycle is a READ or WRITE cycle.
The signal is negated during READ cycles, and is asserted during WRITE cycles.

2.3.3 SLAVE Signals

ACK_O
The acknowledge output [ACK_O], when asserted, indicates the termination of a normal bus cycle.  Also
see the [ERR_O] and [RTY_O] signal descriptions.

ADR_I(63..0)
The address input array [ADR_I(63..0)] is used to pass a binary address, with the most significant address
bit at the higher numbered end of the signal array.  The lower array boundary is specific to the data port
size.  The higher array boundary is core-specific.  In some cases (such as FIFO interfaces) the array may
not be present on the interface.

CYC_I
The cycle input [CYC_I], when asserted, indicates that a valid bus cycle is in progress.  The signal is
asserted for the duration of all bus cycles.  For example, during a BLOCK transfer cycle there can be
multiple data transfers.  The [CYC_I] signal is asserted during the first data transfer, and remains asserted
until the last data transfer.
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DAT_I(63..0)
The data input array [DAT_I(63..0)] is used to pass binary data.  The array boundaries are determined by
the port size.   Also see the [DAT_O(63..0)] and [SEL_O(7..0)] signal descriptions.

DAT_O(63..0)
The data output array [DAT_O(63..0)] is used to pass binary data.  The array boundaries are determined by
the port size.   Also see the [DAT_I(63..0)] and [SEL_O(7..0)] signal descriptions.

ERR_O
The error output [ERR_O] indicates an abnormal cycle termination.  The source of the error, and the
response generated by the MASTER is defined by the IP core supplier in the WISHBONE DATASHEET.
Also see the [ACK_O] and [RTY_O] signal descriptions.

RTY_O
The retry output [RTY_O] indicates that the indicates that the interface is not ready to accept or send data,
and that the cycle should be retried.  When and how the cycle is retried is defined by the IP core supplier in
the WISHBONE DATASHEET.  Also see the [ERR_O] and [RTY_O] signal descriptions.

SEL_I(7..0)
The select input array [SEL_I(7..0)] indicates where valid data is placed on the [DAT_I(63..0)] signal array
during WRITE cycles, and where it should be present on the [DAT_O(63..0)] signal array during READ
cycles.  Also see the [DAT_I(63..0)], [DAT_O(63..0)] and [STB_I] signal descriptions.

STB_I
The strobe input [STB_I] indicates a valid data transfer cycle.  It is used to qualify various other signals on
the interface such as [SEL_I(7..0)].  The SLAVE must assert either the [ACK_O], [ERR_O] or [RTY_O]
signals in response to every assertion of the [STB_I] signal.

WE_I
The write enable input [WE_I] indicates whether the current local bus cycle is a READ or WRITE cycle.
The signal is negated during READ cycles, and is asserted during WRITE cycles.
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Chapter 3 – Bus Interface
The bus interface is described in terms of its general operation, reset operation, handshaking protocol, bus
cycles and the data organization during transfers.  Additional requirements for the bus interface (especially
those relating to [CLK_I]) can be found in the timing specifications in Chapter 4.

3.1 General Operation

Each MASTER and SLAVE are interconnected with a set of signals that permit them to exchange data.
For descriptive purposes this interconnection is called a bus.  Address, data and other information is
impressed upon this bus in the form of bus cycles.

3.1.1 Reset Operation

All hardware must be initialized to a pre-defined state.  This is accomplished with the reset signal [RST_I].
This signal can be asserted at anytime.  It is also used for test simulation purposes by initializing all self-
starting state machines and counters which may be used in the interface.

RULE 3.10
MASTER and SLAVE interfaces MUST initialize themselves after the assertion of [RST_I].

RULE 3.20
[RST_I] MUST be asserted for at least one [CLK_I] cycle.

RULE 3.30
The interface MUST be capable of reacting to [RST_I] at any time.

RULE 3.40
Self-starting state machines and counters on the Wishbone interface MUST initialize themselves to a pre-
defined state after the assertion of [RST_I].

OBSERVATION 3.10
In general, a self-starting state machine does not need to be initialized.  However, this may cause problems
because some simulators may not be sophisticated enough to find an initial starting point for the state
machine.  The initialization rule prevents this problem by forcing the state machine to a pre-defined state.

RULE 3.50
The following MASTER and SLAVE signals MUST be negated after the assertion of [RST_I]: [STB_O],
[CYC_O], [ACK_O], [ERR_O] and [RTY_O].  The state of all other signals is undefined.

3.1.2 Handshaking Protocol

All bus cycles use a handshaking protocol between the MASTER and SLAVE interfaces.  As shown in
Figure 3-1, the MASTER asserts [STB_O] when it is ready to transfer data.  [STB_O] remains asserted
until the SLAVE asserts one of the cycle terminating signals [ACK_I], [ERR_I] or [RTY_I].  At every
rising edge of [CLK_I] the terminating signal is sampled.  If it is asserted, then [STB_O] is negated.  Both
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sides of the interface can then completely control the rate at which data is transferred. If the SLAVE always
operates at the maximum speed of the core, and if the [ERR_I] and [RTY_I] signals are not used, then the
[ACK_I] signal may be tied ‘high’.  The interface will function normally under these circumstances.

Figure 3-1.  Local bus handshaking protocol.

Most of the examples in the specification describe the use of [ACK_I] to terminate a local bus cycle.
However, the SLAVE can optionally terminate the cycle with an error [ERR_O], or request that the cycle
be retried [RTY_O].

All interfaces include the [ACK_I] terminator signal.  Asserting this signal during a bus cycle causes it to
terminate normally.

Asserting the [ERR_I] signal during a bus cycle will terminate the cycle.  It also serves to notify the
MASTER that an error occurred during the cycle.  This signal is generally used if an error was detected by
SLAVE logic circuitry.  For example, if the SLAVE is a parity-protected memory, then the [ERR_I] signal
can be asserted if a parity fault is detected.  This specification does not dictate what the MASTER will do
in response to [ERR_I].

Asserting the optional [RTY_I] signal during a bus cycle will terminate the cycle.  It also serves to notify
the MASTER that the current cycle should be aborted, and retried at a later time.  This signal is generally
used for shared memory and bus bridges.  In these cases SLAVE circuitry would assert [RTY_I] if the local
resource is busy.  This specification does not dictate when or how the MASTER will respond to [RTY_I].

The simplest form of the Wishbone interconnect is the EVENT cycle.  In this case only the handshaking
signals are present.  To indicate an event the MASTER asserts [STB_O], and the slave reacts by asserting
[ACK_O].

RULE 3.60
As a minimum, the MASTER interface MUST include the following signals: [ACK_I], [CLK_I],
[CYC_O], [RST_I] and [STB_O].  As a minimum, the SLAVE interface MUST include the following
signals: [ACK_O], [CLK_I] and [RST_I].  All other signals are optional.

PERMISSION 3.10
MASTER and SLAVE interfaces MAY be designed to support the [ERR_I] and [ERR_O] signals.  In these
cases, the SLAVE asserts [ERR_O] to indicate that a pre-defined error has occurred during the bus cycle.
This specification does not dictate what the MASTER will do in response to [ERR_I].

RULE 3.70
If a MASTER supports the [ERR_I] signal, then the WISHBONE DATASHEET MUST describe how it
reacts in response to the signal.  If a SLAVE supports the [ERR_O] signal, then the WISHBONE
DATASHEET MUST describe the conditions under which the signal is generated.

CLK_I

STB_O

ACK_I
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PERMISSION 3.20
MASTER and SLAVE interfaces MAY be designed to support the [RTY_I] and [RTY_O] signals.  In these
cases, the SLAVE asserts [RTY_O] to indicate that the interface is busy, and that the bus cycle should be
retried at a later time.  This specification does not dictate what the MASTER will do in response to
[RTY_I].

RULE 3.80
If a MASTER supports the [RTY_I] signal, then the WISHBONE DATASHEET MUST describe how it
reacts in response to the signal.

RULE 3.90
If a SLAVE supports the [ERR_O] or [RTY_O] signals, then the SLAVE MUST NOT assert more than
one of the following signals at any time: [ACK_O], [ERR_O] or [RTY_O]

RULE 3.100
MASTER and SLAVE interfaces MUST be designed so that there are no intermediate logic gates between
a registered flip-flop and the signal outputs on:  [STB_O] and [CYC_O].

OBSERVATION 3.20
The Wishbone interface can be designed so that there are no intermediate logic gates between a registered
flip-flop and the signal output.  This rule prevents sloppy design practices from slowing down the
interconnect.

RULE 3.110
SLAVE interfaces MUST be designed so that the [ACK_O], [ERR_O] and [RTY_O] signals are asserted
and negated in response to the assertion and negation of [STB_O].  Furthermore, this activity MUST occur
asynchronous to the [CLK_I] signal.

OBSERVATION 3.30
The asynchronous logic requirement assures that the interface can accomplish one data transfer per clock
cycle.  Furthermore, it simplifies the design of arbiters in multi-MASTER applications.

PERMISSION 3.30
Under certain circumstances SLAVE interfaces MAY be designed to hold [ACK_O] in the asserted state.
This situation occurs when there is a single SLAVE on the interface, and that SLAVE always operates
without wait states.  In this case, the MASTER will assert the [STB_O] signal for one clock cycle.

RULE 3.130
MASTER interfaces MUST be designed to operate normally when SLAVE interface holds [ACK_I] in the
asserted state.
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3.1.3 Use of [STB_O]

RULE 3.140
MASTER interfaces MUST qualify the following signals with [STB_O]: [ADR_O], [DAT_O()],
[SEL_O()], [WE_O], [SEL_O] and [TAGN_O].

RULE 3.150
MASTER interfaces MUST assert [CYC_O] for the duration of SINGLE READ / WRITE, BLOCK and
RMW cycles.  [CYC_O] MUST be asserted no later than the rising [CLK_I] edge that qualifies the
assertion of [STB_O].  [CYC_O] MUST be negated no earlier than the rising [CLK_I] edge that qualifies
the negation of [STB_O].

3.1.4 Use of [ACK_O], [ERR_O] and [RTY_O]

RULE 3.160
SLAVE interfaces MUST qualify the following signals with [ACK_O], [ERR_O] or [RTY_O]:
[DAT_O()].

3.1.5 Use of [TAGN_O] Signals

Each Wishbone MASTER can drive one or more optional [TAGN_O] signals.  These are user-defined tags
that accompany each data transfer, and allows one type of data to be discriminated from another.  This
allows each bus cycle to be identified as to it’s purpose.  For example, in microprocessor based systems it is
often necessary to discriminate between data transfer, interrupt acknowledge and caching operations.

RULE 3.180
MASTER interfaces that support the [TAGN_O] signal(s) MUST describe their use in the WISHBONE
DATASHEET.
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3.2 SINGLE READ / WRITE Cycles

The SINGLE READ / WRITE cycles perform one data transfer at a time.  These are the basic cycles used
to perform data transfers on the Wishbone interconnect.

RULE 3.190
All MASTER and SLAVE interfaces that support SINGLE READ or SINGLE WRITE cycles MUST
conform to the timing requirements given in sections 3.2.1 and 3.2.2.

PERMISSION 3.40
MASTER and SLAVE interfaces MAY be designed so that they do not support the SINGLE READ or
SINGLE WRITE cycles.
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3.2.1 SINGLE READ Cycle

Figure 3-2 shows a SINGLE READ cycle.  The bus protocol works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER negates [WE_O] to indicate a READ cycle.
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [CYC_O] to indicate the start of the cycle.
MASTER asserts [STB_O] to qualify [ADR_O()], [SEL_O()] and [WE_O].

SETUP, EDGE 1: SLAVE decides inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I()].
SLAVE asserts [ACK_I] in response to [STB_O] to indicate valid data is present.
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

Note: SLAVE may insert wait states (-WSS-) before asserting [ACK_I], thereby
allowing it to throttle the cycle speed.  Any number of wait states may be added.

CLOCK EDGE 1: MASTER latches data on [DAT_I()].
MASTER negates [STB_O] and [CYC_O] to indicate the end of the cycle.

Figure 3-2.  SINGLE READ cycle.
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3.2.2 SINGLE WRITE Cycle

Figure 3-3 shows a SINGLE WRITE cycle.  The bus protocol works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER asserts [WE_O] to indicate a WRITE cycle.
MASTER presents bank select [SEL_O()] to indicate where it will place data.
MASTER asserts [CYC_O] to indicate the start of the cycle.
MASTER asserts [STB_O] to qualify [ADR_O()], [SEL_O()] and [WE_O].

SETUP, EDGE 1: SLAVE decides inputs, and responds by asserting [ACK_I].
SLAVE presents prepares to latch data on [DAT_O()].
SLAVE asserts [ACK_I] in response to [STB_O] to indicate that it will latch data.
MASTER monitors [ACK_I], and prepares to terminate the cycle.

Note: SLAVE may insert wait states (-WSS-) before asserting [ACK_I], thereby
allowing it to throttle the cycle speed.  Any number of wait states may be added.

CLOCK EDGE 1: SLAVE latches data on [DAT_O()].
MASTER negates [STB_O] and [CYC_O] to indicate the end of the cycle.

Figure 3-3.  SINGLE WRITE cycle.
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3.3 BLOCK READ / WRITE Cycles

The BLOCK transfer cycles perform multiple data transfers.  They are very similar to single READ and
WRITE cycles, but have a few special modifications to support multiple transfers.

During BLOCK cycles, the interface basically performs SINGLE READ/WRITE cycles as described
above.  However, the BLOCK cycles are modified somewhat so that these individual cycles are combined
together to form a single BLOCK cycle.  This function is most useful when multiple MASTERs are used
on the interconnect.  For example, if the SLAVE is a shared (dual port) memory, then an arbiter for that
memory can determine when one MASTER is done with it so that another can gain access to the memory.

As shown in Figure 3-4, the [CYC_O] signal is asserted for the duration of a BLOCK cycle.  This signal
can be used to request permission to access from a shared resource from a local arbiter, and hold the access
until the end of the current cycle.  During each of the data transfers (within the block transfer), the normal
handshaking protocol between [STB_O] and [ACK_I] is maintained.

Figure 3-4.  Use of [CYC_O] signal during BLOCK cycles.

It should be noted that the [CYC_O] signal does not necessarily rise and fall at the same time as [STB_O].
[CYC_O] may be asserted at the same time as [CYC_O], or one or more [CLK_I] edges before [CYC_O].
Similarly, [CYC_O] may be negated at the same time as [STB_O], or after an indeterminate number of
clock cycles.

RULE 3.200
All MASTER and SLAVE interfaces that support BLOCK cycles MUST conform to the timing
requirements given in sections 3.3.1 and 3.3.2.

PERMISSION 3.50
MASTER and SLAVE interfaces MAY be designed so that they do not support the BLOCK cycles.

CLK_I

STB_O

ACK_I

CYC_O
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3.3.1 BLOCK READ Cycle

Figure 3-5 shows a BLOCK READ cycle.  The BLOCK cycle is capable of a data transfer on every clock
cycle.  However, this example also shows how the MASTER and the SLAVE can both throttle the bus
transfer rate by inserting wait states.  A total of five transfers are shown.  After the second transfer the
MASTER inserts a wait state. After the fourth transfer the SLAVE inserts a wait state.  The cycle is
terminated after the fifth transfer.  The protocol for this transfer works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER negates [WE_O] to indicate a READ cycle.
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [CYC_O] to indicate the start of the cycle.
MASTER asserts [STB_O].

Note: the MASTER must assert [CYC_O] and/or [TAGN_O] at, or anytime
before, clock edge 1.  The use of [TAGN_O] is optional.

SETUP, EDGE 1: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 1: MASTER latches data on [DAT_I()].
MASTER presents new [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()] to indicate where it expects data.

SETUP, EDGE 2: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 2: MASTER latches data on [DAT_I()].
MASTER negates [STB_O] to introduce a wait state (-WSM-).

SETUP, EDGE 3: SLAVE negates [ACK_I] in response to [STB_O].

Note: any number of wait states can be inserted by the MASTER at this point.

CLOCK EDGE 3: MASTER presents new [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [STB_O].

SETUP, EDGE 4: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 4: MASTER latches data on [DAT_I()].
MASTER presents [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()] to indicate where it expects data.

SETUP, EDGE 5: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 5: MASTER latches data on [DAT_I()].
SLAVE negates [ACK_I] to introduce a wait state.

Note: any number of wait states can be inserted by the SLAVE at this point.
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SETUP, EDGE 6: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 6: MASTER latches data on [DAT_I()].
MASTER terminates cycle by negating [STB_O] and [CYC_O].

Figure 3-5.  BLOCK READ cycle.
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3.3.2 BLOCK WRITE Cycle

Figure 3-6 shows a BLOCK WRITE cycle.  The BLOCK cycle is capable of a data transfer on every clock
cycle.  However, this example also shows how the MASTER and the SLAVE can both throttle the bus
transfer rate by inserting wait states.  A total of five transfers are shown.  After the second transfer the
MASTER inserts a wait state. After the fourth transfer the SLAVE inserts a wait state.  The cycle is
terminated after the fifth transfer.  The protocol for this transfer works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER asserts [WE_O] to indicate a WRITE cycle.
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [CYC_O] and [TAGN_O] to indicate the start of the cycle.
MASTER asserts [STB_O].

Note: the MASTER must assert [CYC_O] and/or [TAGN_O] at, or anytime
before, clock edge 1.  The use of [TAGN_O] is optional.

SETUP, EDGE 1: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
MASTER monitors [ACK_I], and prepares to terminate the current data phase.

CLOCK EDGE 1: SLAVE latches data on [DAT_O()].
MASTER presents [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()] to indicate where it expects data.

SETUP, EDGE 2: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
MASTER monitors [ACK_I], and prepares to terminate the current data phase.

CLOCK EDGE 2: SLAVE latches data on [DAT_O()].
MASTER negates [STB_O] to introduce a wait state (-WSM-).

SETUP, EDGE 3: SLAVE negates [ACK_I] in response to [STB_O].

Note: any number of wait states can be inserted by the MASTER at this point.

CLOCK EDGE 3: MASTER presents [ADR_O()] and [TAGN_O].
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [STB_O].

SETUP, EDGE 4: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
MASTER monitors [ACK_I], and prepares to terminate the current data phase.

CLOCK EDGE 4: SLAVE latches data on [DAT_O()].
MASTER presents [ADR_O()] and [TAGN_O].
MASTER presents new bank select [SEL_O()] to indicate where it expects data.

SETUP, EDGE 5: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
MASTER monitors [ACK_I], and prepares to terminate the current data phase.

CLOCK EDGE 5: SLAVE latches data on [DAT_O()].
SLAVE negates [ACK_I] to introduce a wait state.

Note: any number of wait states can be inserted by the SLAVE at this point.
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SETUP, EDGE 6: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE prepares to latch data on [DAT_O].
MASTER monitors [ACK_I], and prepares to terminate the current data phase.

CLOCK EDGE 6: SLAVE latches data on [DAT_O()].
MASTER terminates cycle by negating [STB_O] and [CYC_O].

Figure 3-6.  BLOCK WRITE cycle.
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3.4  RMW Cycle

The RMW (read-modify-write) cycle is used for indivisible semaphore operations.  During the first half of
the cycle a single read data transfer is performed.  During the second half of the cycle a write data transfer
is performed.  The [CYC_O] signal remains asserted during both halves of the cycle.

RULE 3.210
All MASTER and SLAVE interfaces that support RMW cycles MUST conform to the timing requirements
given in section 3.4.

PERMISSION 3.60
MASTER and SLAVE interfaces MAY be designed so that they do not support the RMW cycles.

Figure 3-7 shows a read-modify-write (RMW) cycle.  The RMW cycle is capable of a data transfer on
every clock cycle.  However, this example also shows how the MASTER and the SLAVE can both throttle
the bus transfer rate by inserting wait states.  Two transfers are shown. After the first (read) transfer, the
MASTER inserts a wait state.   During the second transfer the SLAVE inserts a wait state.  The protocol for
this transfer works as follows:

CLOCK EDGE 0: MASTER presents [ADR_O()] and [TAGN_O].
MASTER negates [WE_O] to indicate a READ cycle.
MASTER presents bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [CYC_O] and [TAGN_O] to indicate the start of the cycle.
MASTER asserts [STB_O].

Note: the MASTER must assert [CYC_O] and/or [TAGN_O] at, or anytime
before, clock edge 1.  The use of [TAGN_O] is optional.

SETUP, EDGE 1: SLAVE decodes inputs, and responds by asserting [ACK_I].
SLAVE presents valid data on [DAT_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

CLOCK EDGE 1: MASTER latches data on [DAT_I()].
MASTER negates [STB_O] to introduce a wait state (-WSM-).

SETUP, EDGE 2: SLAVE negates [ACK_I] in response to [STB_O].
MASTER asserts [WE_O] to indicate a WRITE cycle.

Note: any number of wait states can be inserted by the MASTER at this point.

CLOCK EDGE 2: MASTER presents the same [ADR_O()] and [TAGN_O] as was on clock 1.
MASTER presents WRITE data on [DAT_O()].
MASTER presents new bank select [SEL_O()] to indicate where it expects data.
MASTER asserts [STB_O].

SETUP, EDGE 3: SLAVE decodes inputs, and responds by asserting [ACK_I] (when ready).
SLAVE presents valid data on [DAT_I].
MASTER monitors [ACK_I], and prepares to latch data on [DAT_I()].

Note: any number of wait states can be inserted by the SLAVE at this point.

CLOCK EDGE 3: SLAVE latches data on [DAT_O()].
MASTER negates [STB_O] and [CYC_O] indicating the end of the cycle.
SLAVE negates [ACK_I] in response to negated [STB_O].
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Figure 3-7.  RMW cycle.
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3.5 Data Organization

Data organization refers to the ordering of data during transfers.  There are two general types of ordering
which are called BIG ENDIAN and LITTLE ENDIAN.  BIG ENDIAN refers to data ordering where the
most significant portion of an operand is stored at the lower address.  LITTLE ENDIAN refers to data
ordering where the most significant portion of an operand is stored at the higher address.  The Wishbone
architecture supports both methods of data ordering.

3.5.1 Nomenclature

A BYTE(N), WORD(N), DWORD(N) and QWORD(N) nomenclature is used to define data ordering.
These terms are defined in Table 3-1.  Figure 3-8 shows the operand locations for input and output data
ports.

Table 3-1.  Data transfer nomenclature.

Data Transfer Nomenclature
Nomenclature Granularity Description

BYTE(N) 8-bit An 8-bit BYTE transfer at address ‘N’.
WORD(N) 16-bit A 16-bit WORD transfer at address ‘N’.

DWORD(N) 32-bit A 32-bit Double WORD transfer at address ‘N’.
QWORD(N) 64-bit A 64-bit Quadruple WORD transfer at address ‘N’.

The table also defines the granularity of the interface.  This indicates the minimum unit of data transfer that
is supported by the interface.  For example, the smallest operand that can be passed through a port with 16-
bit granularity is a 16-bit WORD.  In this case, an 8-bit operand cannot be transferred.

Figure 3-9 shows an example of how the 64-bit value of 0x0123456789ABC is transferred through BYTE,
WORD, DWORD and QWORD ports using BIG ENDIAN data organization.  Through the 64-bit
QWORD port the number is directly transferred with the most significant bit at DAT_I / DAT_O(63).  The
least significant bit is at DAT_I / DAT_O(0).  However, when the same operand is transferred through a
32-bit DWORD port, it is split into two bus cycles.  The two bus cycles are each 32-bits in length, with the
most significant DWORD transferred at the lower address, and the least significant DWORD transferred at
the upper address.  A similar situation applies to the WORD and BYTE cases.

Figure 3-10 shows an example of how the 64-bit value of 0x0123456789ABC is transferred through
BYTE, WORD, DWORD and QWORD ports using LITTLE ENDIAN data organization.  Through the 64-
bit QWORD port the number is directly transferred with the most significant bit at DAT_I / DAT_O(63).
The least significant bit is at DAT_I / DAT_O(0).  However, when the same operand is transferred through
a 32-bit DWORD port, it is split into two bus cycles.  The two bus cycles are each 32-bits in length, with
the least significant DWORD transferred at the lower address, and the most significant DWORD
transferred at the upper address.  A similar situation applies to the WORD and BYTE cases.
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Figure 3-8. Operand locations for input and output data ports.
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Figure 3-9.  Example showing a variety of BIG ENDIAN transfers over various port sizes.

Figure 3-10.  Example showing a variety of LITTLE ENDIAN transfers over various port sizes.
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RULE 3.220
Data organization MUST conform to the ordering indicated in Figure 3-8.

RULE 3.230
The WISHBONE DATASHEET MUST indicate the port size.  The port size shall be indicated as 8-bit, 16-
bit, 32-bit or 64-bit.

RULE 3.235
The WISHBONE DATASHEET MUST indicate the port granularity.  The granularity shall be indicated as
8-bit, 16-bit, 32-bit or 64-bit.

RULE 3.237
The WISHBONE DATASHEET MUST indicate the maximum operand size.  The maximum operand size
shall be indicated as 8-bit, 16-bit, 32-bit or 64-bit.

PERMISSION 3.35
In some cases the maximum operand size is unknown.  In those cases, the maximum operand size shall be
the same as the granularity.

RULE 3.240
The WISHBONE DATASHEET MUST indicate the data transfer ordering.  The ordering shall be indicated
as BIG ENDIAN or LITTLE ENDIAN.

PERMISSION 3.70
When the port size equals the granularity, then the interface may be specified as BIG ENDIAN and/or
LITTLE ENDIAN.

OBSERVATION 3.40
When the port size equals the granularity, then BIG ENDIAN and LITTLE ENDIAN transfers are
identical.

3.5.2 Transfer Sequencing

The sequence in which data is transferred through a port is not regulated by this specification.  For
example, a 64-bit operand through a 32-bit port will take two bus cycles.  However, the specification does
not require that the lower or upper DWORD be transferred first.

RECOMMENDATION 3.05
Design interfaces so that data is transferred sequentially from lower addresses to a higher addresses.

OBSERVATION 3.50
The sequence in which an operand is transferred through a data port is not highly regulated by the
specification.  That is because different IP cores may produce the data in different ways.  The sequence is
therefore application-specific.

RULE 2.45
The WISHBONE DATASHEET MUST indicate the sequence of data transfer through the port.  If the
sequence of data transfer is not known, then the datasheet must indicate that it is undefined.
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3.5.3 Data Organization for 64-bit Ports

RULE 3.250
Data organization on 64-bit ports MUST conform to Figure 3-11.

Figure 3-11.  Data organization for 64-bit ports.
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3.5.4 Data Organization for 32-bit Ports

RULE 3.260
Data organization on 32-bit ports MUST conform to Figure 3-12.

Figure 3-12.  Data organization for 32-bit ports.
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3.5.5 Data Organization for 16-bit Ports

RULE 3.270
Data organization on 16-bit ports MUST conform to Figure 3-13.

Figure 3-13.  Data organization for 16-bit ports.
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3.5.6 Data Organization for 8-bit Ports

RULE 3.280
Data organization on 8-bit ports MUST conform to Figure 3-14.

Figure 3-14.  Data organization for 8-bit ports.
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Chapter 4 – Timing Specification
The Wishbone specification is designed to provide the end user with very simple timing constraints.
Although the application specific circuit(s) will vary in this regard, the interface itself is designed to work
without the need for detailed timing specifications.  In all cases, the only timing information that is needed
by the end user is the maximum clock frequency (for [CLK_I]) that is passed to a place & route tool.  The
maximum clock frequency is dictated by the time delay between a positive clock edge on [CLK_I] to the
setup on a stage further down the logical signal path.  This delay is shown graphically in Figure 4-1, and is
defined as Tpd,clk-su.

Figure 4-1.  Definition for Tpd,clk-su.
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OBSERVATION 4.30
The Wishbone interface logic assumes that a low-skew clock distribution scheme is used on the target
device, and that the clock-skew shall be low enough to permit reliable operation over the environmental
conditions.

PERMISSION 4.20
The IP core connected to a Wishbone interface MAY include application specific timing requirements.

RULE 4.30
The clock input [CLK_I] MUST have a duty cycle that is no less than 40%, and no greater than 60%.

SUGGESTION 4.1
Design an IP core so that all of the circuits (including the Wishbone interconnect) follow the
aforementioned RULEs, as this will make the core portable across a wide range of target devices and
technologies.
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Chapter 5 – Application Interface
This chapter describes various methods and issues for Wishbone interconnection.  In some cases, the
interconnection requires no glue logic.  In more sophisticated systems, the user may need to add this logic.
However, the common interface between the system-on-a-chip components will make this task much
simpler.

5.1 Interconnection Methods

There are four general ways to interconnect MASTER and SLAVE IP cores.  These include:

• Single MASTER / Single SLAVE interconnection
• Single MASTER / Multiple SLAVE interconnection
• Multiple MASTER interconnection
• Crossbar interconnection

5.1.1 Single MASTER / Single SLAVE Interconnection

The application interface may be operated with a single MASTER and a single SLAVE.  This
interconnection is generally the simplest and the fastest way to integrate IP cores.  It is simplest because (in
many cases) the MASTER and SLAVE can simply be connected together.  Figure 5-1 shows an example of
this interconnection.  It should be noted that this example assumes that the port widths, port granularities,
operand sizes and address widths are equal.

Figure 5-1.  Single MASTER / Single SLAVE interconnection example.
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5.1.3 Multiple MASTER Interconnection

The Wishbone application interface may be operated with multiple MASTER interconnections.  Figure 5-2
shows a sample application interface with two Wishbone MASTERs, and two Wishbone SLAVEs.  For
purposes of clarity, only the [CYC_O], [STB_O] and [ACK_I] signals are shown.  Figure 5-3 shows a
sample timing diagram for the same circuit.

At the beginning of a bus cycle a MASTER asserts its [CYC_O] signal.  The [CYC_O] signals from the
two MASTERs are routed to an arbiter that determines which gets possession of the interconnection.  The
winning MASTER is identified by the arbiter by the assertion of [GNT1] or [GNT2], which correspond to
the first and second masters respectively.  The grant signals are then used determine which of the
MASTERs will drive the common cycle [COMCYC] and strobe [COMSTB] signals.

The acknowledge signals from the SLAVEs are ‘or’ed together to form a common acknowledge signal
[COMACK].  In this case, each slave will decode the common address (not shown), and will respond if it is
the participating slave in a bus cycle.

The other interconnect signals (e.g. [DAT_I] and [DAT_O]) are not shown in this example.  These can be
interconnected using multiplexors or three-state buses.

5.1.4 Crossbar Interconnection

The Wishbone MASTERs and SLAVEs may be interconnected with a crossbar switch.  Crossbar switches
are systems that usually have multiple MASTERs and multiple SLAVEs.

Crossbar switches are mechanisms that allow individual pairs of MASTERs and SLAVEs to connect and
communicate.  Each connection channel can be operated in parallel to other connection channels.  This
increases the data transfer rate of the entire system by employing parallelism.  Stated another way, two 100
Mbyte/second channels can operate in parallel, thereby providing a 200 Mbyte/second transfer rate.  This
makes the crossbar switches inherently faster than traditional bus schemes.

Crossbar routing mechanisms generally support dynamic configurability.  This essentially creates a
reconfigurable and reliable network system.  Most crossbar architectures are also scalable, meaning that
families of crossbars can be added as the needs arise.
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Figure 5-2.  Sample application with two Wishbone MASTERs, and two Wishbone SLAVEs.
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Figure 5-3.  Timing diagram for multiple MASTER / multiple SLAVE example.

5.2 Three-State Interconnections

The interconnection can take the form of a three-state bus.  Figure 5-4 shows the connection of a MASTER
or SLAVE data input and output buses to a three-state data bus.  Also note that the resistor/current source
listed in the figure can also be a ‘pull-down’ resistor or current source.

Figure 5-4.  Connection of data bus to a three-state interconnection.
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5.3 Endian Conversion

In some cases the user may wish to connect a BIG ENDIAN IP core to a LITTLE ENDIAN IP core.  In
many cases the conversion is quite straightforward, and does not require any exotic conversion logic.
Furthermore, the conversion does not create any speed degradation of the interface.  In general, the
ENDIAN conversion takes place by renaming the data and select I/O signals at the source or destination IP
core.

Figure 5-5 shows a simple example where a 32-bit BIG ENDIAN core output (CORE ‘A’) is connected to
a 32-bit LITTLE ENDIAN core input (CORE ‘B’).  Both cores have 32-bit operand sizes and 8-bit
granularity.  As can be seen in the diagram, the ENDIAN conversion is accomplished by cross coupling the
data and select signal arrays.  This is quite simple since the conversion is accomplished by the
interconnection wiring between the cores.  This is especially simple in soft IP cores (using VHDL or
Verilog hardware description languages), as it only requires the renaming of signals.

In some cases the address lines may also need to be modified between the two cores.  For example, if 64-bit
operands are transferred between two cores with 8-bit port sizes, then the address lines may need to be
modified as well.

Figure 5-5.  Converting a BIG ENDIAN output to a LITTLE ENDIAN input.
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Appendix – Glossary of Terms

0x (prefix)
The ‘0x’ prefix indicates a hexadecimal number.

Active High Logic State
A logic state that is ‘true’ when the logic level is a binary ‘1’.  The high state is at a higher voltage than the
low state.

Active Low Logic State
A logic state that is ‘true’ when the logic level is a binary ‘0’.  The low state is at a lower voltage than the
high state.

ASIC
Acronym for: Application Specific Integrated Circuit.  General term which describes a generic array of
logic gates or analog building blocks which are programmed by a metalization layer at a silicon foundry.
High level circuit descriptions are impressed upon the logic gates or analog building blocks in the form of
metal interconnects.

Asserted
A verb indicating that a logic state as switched from the inactive state to the active state.  When active high
logic is used it means that a signal has switched from a low logic level to a high logic level.

Crossbar Interconnect (Switch)
Crossbar switches are mechanisms that allow IP cores connect and communicate.  Each connection channel
can be operated in parallel to other connection channels.  This increases the data transfer rate of the entire
system by employing parallelism.  Stated another way, two 100 Mbyte/second channels can operate in
parallel, thereby providing a 200 Mbyte/second transfer rate.  This makes the crossbar switches inherently
faster than traditional bus schemes.  Crossbar routing mechanisms generally support dynamic
configurability.  This essentially creates a reconfigurable and reliable network system.  Most crossbar
architectures are also scalable, meaning that families of crossbars can be added as the needs arise.

Data Organization
The specification ordering of data during transfer.  Generally, 8-bit (byte) data can be stored with the most
significant byte of a mult-byte transfer at the highest or the lowest address.  There are two methods
common in the industry which are classified as BIG ENDIAN or LITTLE ENDIAN.  However, these
informal terms are not well defined and are avoided in this specification.  In general, BIG ENDIAN refers
to byte lane ordering where the most significant byte is stored at the lower address.  LITTLE ENDIAN
refers to byte lane ordering where the most significant byte is stored at the higher address.  The term
ENDIAN was allegedly derived from the book Gulliver’s Travels by Jonathan Swift.

ENDIAN
See the definition under ‘Data Organization’.

FIFO Memory
Acronym for: First In First Out. A type of memory used to transfer data between ports on two devices.  The
first data loaded into the FIFO by an output port on one device is the first data read by an input port on
another device.  The FIFO memory is very useful for interconnecting cores of differing speeds.

FPGA
Acronym for: Field Programmable Gate Array.  Generally describes a generic array of logical gates and
interconnect paths which are programmed by the end user.  High level logic descriptions are impressed
upon the gates and interconnect paths, often in the form of IP Cores.
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Glue Logic
Logic gates and interconnections required to connect IP cores together.  The requirements for glue logic
vary greatly depending upon the interface requirements of the IP cores.

Granularity
The smallest unit of data transfer that a port is capable of transferring.  For example, a 32-bit port can be
broken up into four 8-bit BYTE segments.  In this case, the granularity of the interface is 8-bits.  Also see
port size and operand size.

HDL
Acronym for: Hardware Description Language.  Examples include VHDL and Verilog.

IP Core
Acronym for: Intellectual Property Core.  Also see ‘soft core’, ‘firm core’ and ‘hard core’.

MASTER
A Wishbone interface that is capable of generating bus cycles.  All systems based on the Wishbone
interconnect must have at least one SLAVE.

Memory Mapped Addressing
An architecture that allows memory to be stored and recalled at individual, binary addresses.

Negated
A verb indicating that a logic state as switched from the active state to the inactive state.  When active high
logic is used it means that a signal has switched from a high logic level to a low logic level.

Operand Size
The operand size is the largest single unit of data transfer that will be moved through the interface.  For
example, a 32-bit DWORD operand can be moved through an 8-bit port with four data transfers.  Also see
granularity and port size.

PCI
Acronym for: Peripheral Component Interconnect.  Generally used as a specification interconnection
scheme between chips.  While this specification is very flexible, it isn’t practical for system-on-a-chip
applications because if it’s large size and slow speed.

Port Size
The width of the Wishbone data ports in bits.  Also see granularity and operand size.

Router
A software tool that physically routes interconnection paths between logic gates.  Applies to FPGA and
ASIC devices.

RTL Design Methodology
A design methodology that uses register-transfer-logic (RTL) concepts.  This design methodology moves
data between registers.  Data is latched in the registers at one or more stages along the path of signal
propagation.  The Wishbone specification uses a synchronous RTL design methodology which means that
each register is clocked with a common clock.

Silicon Foundry
A factory which produces integrated circuits.

SLAVE
A Wishbone interface that is capable of receiving bus cycles.  All systems based on the Wishbone
interconnect must have at least one SLAVE.
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System-on-a-chip
The ability to create whole systems on a single integrated circuit.  In many cases, this requires the use of IP
cores which have been designed by various IP core providers and individuals.  System-on-a-chip is similar
to traditional systems whereby the individual components.

Target Device
The semiconductor type (or technology) onto which the IP core design is impressed.  Typical examples
include FPGA and ASIC devices.

Verilog
A textual based computer language intended for use in circuit design.  The VHDL language is both a
synthesis and a simulation tool. Verilog was originally a proprietary language first conceived in 1983 at
Gateway Design Automation (Acton, MA), and was later refined by Cadence Corporation.  It has since
been greatly expanded and refined, and much of it has been placed into the public domain.  Complete
descriptions of the language can be found in the IEEE 1364 specification.

VHDL
Acronym for: VHSIC Hardware Description Language.  [VHSIC: Very High Speed Integrated Circuit].  A
textual based computer language intended for use in circuit design.  The VHDL language is both a
synthesis and a simulation tool.  Early forms of the language emerged from US Dept. of Defense ARPA
projects in the 1960’s, and have since been greatly expanded and refined.  Complete descriptions of the
language can be found in the IEEE 1076, 1073.3 and 1164 specifications.

VMEbus
Acronym for: Versa Module Eurocard bus.  A popular microcomputer (board) bus.  While this specification
is very flexible, it isn’t practical for system-on-a-chip applications because if it’s large size and slow speed.

WISHBONE DATASHEET
Documentation must be provided for each IP core with a Wishbone interconnect.  This helps the end user
understand the operation of the core, and how to connect it to other cores.  The documentation takes the
form of a WISHBONE DATASHEET.  This can be included in a technical reference manual for the IP
core.


