
Lockheed Martin Corporation

Advanced Technology Laboratories

A & E - 2W

1 Federal Street

Camden, NJ 08102

Draft Build 1A

System Description

Document No. RASSP-EN-044

October 31, 1995

Table Of Contents

1 Introduction

 1 .1 Purpose

 1 .2 Scope

 1 .3 Notes

 1 .4 Format

2 Program Plan based on Workflows

 2 .1 Benchmark 3 Enterprise System Architecture Diagram

 2 .2 Benchmark 3 Schedule

3 CAD Tool List

3.1 Systems Definition Tools
3.2 Architecture Definition Tools
3.3 Detailed Design Tools

4 Workflows

4.2 Business Item Definitions
4.3 Logical Referencing for Tools
4.4 Special Concurrent Engineering Cases / Workflow Approaches
4.4.1 Multiple Concurrent Tasks using Parallel Copies of Data Sets

4.4.2 Multiple Design Alternatives Developed Concurrently
4.4.3 Pipeline of Data Sets Thru a Workflow
4.4.4 Failback Paths
4.4.5 Multiple Iterations in a Workflow

RASSP Data Management System (DMS)

 5 .1 Overview of Functionality

 5.1b Overview of the Information Model

 5 .2 Configuration Management

5.2.1. Workspaces
5.2.1.1 Shared and Private Workspaces
5.2.1.2 Workspaces in DM 2.0

The version numbers used in the above figure do not reflect the DM 2.0 naming
convention, but are used to provide clarity to the figure .

5.2.2. Data Object Management
5.2.2.1 Configurations and Version Control
5.2.2.2 DM 2.0 Strategy For Version Control
5.2.3. CM Functions
5.2.3.1 Workspace Functions
5.2.3.1.1 Creating a workspace
5.2.3.1.2 Accessing an arbitrary workspace
5.2.3.1.3 Accessing child workspaces
5.2.3.1.4 Accessing the parent workspace
5.2.3.1.5 Making a workspace visible
5.2.3.2 Version Management Functions
5.2.3.2.1 Creating a configuration
5.2.3.2.2 Inserting data objects into a configuration
5.2.3.2.3 Check out
5.2.3.2.4 Check in
5.2.3.2.5 Accessing child versions
5.2.3.2.6 Accessing parent versions
5.2.3.2.7 Naming versions
5.2.3.2.8 Retrieving a named version

 5 .3 Build 1A User Definitions

 5 .3 Project Workspace Definitions

 5 .4 Other Data Management Enhancements

5.4.1 DM M / DM2.0 Interaction

 5 .5 Business Item Definitions

6 DMM / Project Mgmt Capabilities

 6 .1 Execution Control

 6 .2 Tool Launch Pad Operation

 6 .3 Data Management Interaction

 6 .4 Status Logging Capability

 6 .5 Interface with MS Project

7 Build 1A Hardware Configuration

8 Reuse Library System Definition - RASSP Reuse Data Manager (RRDM)

 8 .1 Aspect Explore-CIS Software Baseline

 8 .2 ATL User Environment

 8 .3 Benchmark Reuse/Reference Database

 8 .4 Manufacturing Interface

9 Notes

10 Miscellaneous

 10.1 Glossary

 10.2 References

Appendices

A.1 Enterprise Startup Procedure

A.2 Naming Conventions used for Build 1A Environment / Project

A.3 DMM Process Script

A.4 Automatic Script Generation Approach

A.5 UYS-2A Upgrade Processor Requirements

A.6 Example UYS-2A Schedule

Architecture Development

Hardware Development

Software Development

AN/UYS-2A Upgrade Module and System Integration and Test

Environmental, Mechanical, QA, & Reliability

AN/UYS-2A Upgrade Acceptance Tests

Rapid Prototyping of

Application-Specific Signal Processors (RASSP)

Build 1ASystem Design Document

Version 1A

1. Introduction

1.1 Purpose

The intent of this document is to define the enterprise system as configured to support the
benchmark 3 / UYS2 upgrade program.

1.2 Scope

1.3 Notes

The UYS2 upgrade includes several organizations (multiple locations). This build 1A system applies
to the environment at the Camden NJ facility.

Note: This document is a draft / working form document.

1.4 Format

The format will be updated for consistence with standard specification practices in a later version.

2. Program Plan based on Workflows

The RASSP program is producing workflow templates, which represent various parts of sections of
the RASSP methodology. The workflow expresses a series of steps (activities) of the methodology
to be performed / executed in the RASSP environment. For each activity, the following information is
defined: task to be performed, CAD tools required, Personnel required, and data objects needed as
inputs, or produced as outputs. In addition, the precedence relationship between successive
workflow steps are also performed. The workflows are executed in the enterprise environment using
the DMM Workflow tool.

A project plan is a specific collection of workflows which have been customized to meet the specific
requirements of the project, and the performing organization. A UYS-2 program plan, constructed
from workflow segments, will be used to control project execution in the enterprise environment.

The RASSP enterprise system approach is to construct project plans utilizing workflow segments, or
other project plans which are maintained in the workflow reuse system. Tools will be used in build 2
and later builds to support construction of the project plans via combination of the workflow
segments.

Since the workflows also include the data object definitions, the process of combining workflows into
projects also produces data object templates - from the collection of the object definitions on the
individual activities. This data object template is implemented as a set of "business items" associated
with the project.

2.1 Benchmark 3 Enterprise System Architecture Diagram

The enterprise system architecture diagram shown below depicts the hardware and software
involved in the benchmark.

2.2 Benchmark 3 Schedule

The architecture and hardware development tasks of the UYS-2 program are planned using RASSP
workflows, while the software development, system integration and test, environmental testing, and
acceptance tasks are planned separately.

The benchmark 3 schedule is indicated in figure 2.2-1 (MS project gantt chart).

Figure 2.2-1 is included in this document as appendix A.

The program plan makes use of the following RASSP workflow segments:

Functional Design

Architecture Selection

Architecture Verification

ASIC (FPGA) Design

Module Preliminary Design

Module Final Design

Hierarchical Simulation

The program plan, when represented as a merge of the workflow segments is indicated in figure
2.2-2.

Figure 2-2 - Top Level Benchmark Three Workflow

Functional Design, Architecture Selection and Architecture verification are performed for the initial
set of ETC algorithms. On delivery of a final set of algorithms, these process segments are
performed again.

The hardware development is associated with the FPCAP and FPCTL modules, and hence there
are preliminary design and final design workflow segments associated with each of these.

In addition, an FPGA workflow is included to accommodate the FPGA on the FPCAP module.

3. CAD Tool List

CAD tools which are being integrated with the enterprise system in support of the build 1A system,
are indicated in the tables below. These include UNIX based tools as well as selected PC tools..

Tool summaries associated with each of the processes are indicated in the subsequent sections.

3.1 Systems Definition Tools

Systems processes are not used in the benchmark 3 program and hence are not used in the build
1A system.

3.2 Architecture Definition Tools

Architecture tools identified in the architecture workflow set are presented in the following table, The
benchmark 3 column indicates if the tool is required for the build 1A system.

Architecture Tools Benchmark 3 Status

Alta SPW 4

ANSYS BM3 ?

Ascent RDD-100 BM3 2

Aspect RRDM BM3 4

AT&T SPEAR (SW Debugger) 2

CADRE OOA 2

Executable Specification Tool 1

ILOGIX Statemate 3

JRS architecture_definition BM3 4

JRS assignment BM3 4

JRS graph_development BM3 4

JRS ProcSyn 3

JRS VHDL BM3 4

LMMC Price-JRS 2

Marconi RTM 2

Mathworks Matlab 3

MCCI 2

MGC Autotherm BM3 4

MGC Protoview BM3 3

MGC VTM Top ?

MSI RAM/ILS 2

Omniview PMW 2

PGSE ?

Physical Decomposition Tool 2

QuickVHDL BM3 4

Rome Labs TSTB/Waves ?

SDRC BM3 3

SW Tools (misc Compilers, etc) 1

Spreadsheet BM3 MAC/PC

Summit Visual HDL BM3 3

TMAT Tool (SS) BM3 MAC/PC

TSD Tool (SS) BM3 MAC/PC

Univ. Oregon PIE (Perf. Mon.) 2

VISTA O-O VHDL (pre-proc) 2

Word Processor BM3 MAC/PC

Status Key

1 Tool is not defined

2 Tool is not mature

3 Tool is mature and can be integrated

4 Tool has already been integrated

5 Tool has been integrated for BM3

? Status of tool is unknown

MAC/PC is a MAC or PC tool

3.3 Detailed Design Tools

The design tools associated with detailed design which are integrated with the enterprise system
are indicated below. Tools associated with subsequent builds are also indicated.. Tools indicated by
BM3 are actually being used on the benchmark program, and hence are included in build 1A
system.

Detailed Design Tools BM3? Status FPGA
Design

Module
Design

Module
Final

Design

Aspect RRDM ? 4 BM3 BM3 BM3

IKOS Voyager FS ? 2

Interleaf TPS ? 3

LMG HW Modeler TBD 3

LMG Smartmodels ? 3 BM3

LogicVision ICBIST 2

MGC AutoTherm ? 3 BM3 BM3

MGC BoardStation ? 4 BM3 BM3

MGC DA-LMS ? 4 BM3

MGC FabLink ? 3

MGC PTM Site ? ? BM3

MGC QuickPath 3 BM3 BM3

MGC QuickVHDL ? 3 BM3 BM3 BM3

MGC QvPro 3 BM3

MGC VHDLWrite ? 3 BM3

MGC VTM:TOP ? 3 BM3

NeoCAD ? 3 BM3

Omniview Fidelity 2,3

Precedence Sim. Backplane 2,3

Quickturn Emulator 3

SCRA AP210 Translator 4

SCRA Producibility Advisor 4

SPICE (analog sim) ? 3

Summit TDS ? 3 BM3

Summit VisualHDL ? 4 BM3

Synopsys Design Compiler ? 3 BM3

Teradyne Victory ? 3

TI Asset ? PC

TSTB/WAVES ? ? BM3

Status Key

1 Tool is not defined

2 Tool is not mature

3 Tool is mature and can be integrated

4 Tool has already been integrated

5 Tool has been integrated for BM3

? Status of tool is unknown

MAC/PC is a MAC or PC tool

4. Workflows

Workflow Modeling Overview / General Cases

4.1 Detailed Workflows (IDEF3X) - The workflows associated with build 1A system are as follows:

Functional Design

Architecture Selection

Architecture Verification

ASIC (FPGA) Design

Module Preliminary Design

Module Final Design

Hierarchical Simulation

The architecture workflows are included twice in the program plan - once for ETC Initial, and once
for ETC final.

Likewise Module Preliminary Design and Module Final design are repeated for each of the two
modules (FPCTL, and FPCAP).

Detailed definition of the workflows are included in Appendix A of the methodology document.

4.2 Business Item Definitions

Business items represent collections of information to be managed in the enterprise system
assembled under a logical identifier (business item name). Business items also have states
associated with them. The states defined include:

Business items will be managed in the enterprise data management system during execution of the
project. Business items will be either copied out or checked out of the data management system on
execution of particular workflow steps, and returned (updated) to the data management system on
completion of the steps - the specific approaches for handling the business items on task start and
task completion are included with the definition of each step. In the simplest case, a business item is
checked out at the start of a task, and returned on completion of the task.

A set of business items are defined initially for a project - each workflow segment identifies a set of
business items that are utilized in execution of the workflow segment. The workflow segments are
instantiated for the particular application task on the project. For example: The library workflow
associated with module preliminary design is instantiated for the FPCAP module, and for the FPCTL
module. In instantiating the workflow segment, both the tasks and business items are instantiated
for each specific case of the workflow.

Business Item State Definitions

Preprocessing Requirements

Postprocessing Requirements

4.3 Logical Referencing for Tools

4.4 Special Concurrent Engineering Cases / Workflow Approaches

4.4.1 Multiple Concurrent Tasks using Parallel Copies of Data Sets

4.4.2 Multiple Design Alternatives Developed Concurrently

4.4.3 Pipeline of Data Sets Thru a Workflow

4.4.4 Failback Paths

4.4.5 Multiple Iterations in a Workflow

5. RASSP Data Management System (DMS)

The RASSP data management system is responsible for supplying the correct data set for each
process step. This function is transparently performed in conjunction with the workflow manager.
The data manager also provides the capability to access data independent of the process step or
workflow. Users have access to the data manager interface to perform any functions necessary to
get the job done.

5.1 Overview of Functionality

The DMS will provide the ability to define users and their access authorizations, define workspaces
and configuration management, business items that flow through the processes and their
corresponding data items, and the ability to manage all the information related to a project as a data
set. The DM2.0 core functionality will be tailored to support the RASSP Benchmark 3 processes.

5.1b Overview of the Information Model

The following diagram shows a conceptual information model to support the project management
concepts of the RASSP enterprise system. The model shows how information about projects,
workflows, process steps, and business items, etc. relate to each other.

5.2 Configuration Management

Configuration management is addressed with a hierarchy of workspaces - implemented in the data
management system. Shared workspaces will be defined for the project - the business items will be
created in the shared workspace at the start of the project (a product of the project creation phase).

5.2.1. Workspaces

5.2.1.1 Shared and Private Workspaces

Workspaces are partitions of the design object space to allow designers working on the
various parts of a project to selectively make their design objects visible to others in the
project [Cattell, 1991]. In the RASSP Configuration Management (CM) model, three types
of workspaces exist: private, shared, and global. Workspaces are organized in a hierarchical
fashion as shown in Figure 1.1. Each node in the hierarchy represents a workspace.
Branches in the hierarchy represent a parent-child relationship between workspaces. The
global workspace is at the root of the hierarchy, shared workspaces are the intermediate
nodes in the hierarchy, and private workspaces are the leaves in the hierarchy. [Martin
Marietta, 1994]

5.2.1.2 Workspaces in DM 2.0

The above workspace hierarchy can be implemented in DM 2.0 using the features of users and
vaults . Relationships between workspaces may be enforced by defining groups , which contain
related users, and limiting the access of these groups through the use of rules .

In DM 2.0, each user has a private workspace. That is, there is a one-to-one mapping between a
user and a private workspace. Rules may be used to enforce the privacy of individual workspaces.
Shared workspaces can be implemented through the use of vaults. A vault is a logical collection of
shared objects. Rules can be used to control access to a vault. User-to-vault relationships can be
established to allow visibility of ancestor workspaces. The global workspace will consist of selected
data from all shared workspaces (vaults), obtained through the DM 2.0 query capability.

The proposed DM 2.0 implementation of the RASSP workspace hierarchy is shown in Figure 1.2.

* Legend:

= Represents the physical file system location for the items residing in the

associated vault (shared workspace) or user (private workspace). Vault and

work locations may be on the same host machine or on separate machines

within a network.

VL = Vault Location: Each vault location will be associated with only 1 vault.

WL = Work Location: Each work location will be associated with only 1 user.

= Represents a DM 2.0 saved query.

SQ = Saved Query: Every user will have access to the Global Workspace

through a predefined query.

= Represents a logical collection of objects based on ownership. An owner of

an object is either a user or a vault.

Each vault will have 1 or more vault locations associated with it.

Each user may be associated with 1 or more vaults.

Each user will have 1 or more work locations associated with it.

The version numbers used in the above figure do not reflect the DM 2.0 naming convention, but
are used to provide clarity to the figure.

5.2.2. Data Object Management

5.2.2.1 Configurations and Version Control

The RASSP CM Model uses a data object versioning scheme where related data objects that evolve at the
same time are grouped together as a configuration. At any point in its life cycle, a configuration can exists
in one of three states: transient, working, or released. Upon creation, a configuration is considered to be
transient and is associated with a private workspace. A transient version of a configuration allows for
updates and may be deleted. A transient version may be promoted to a working version when the
configuration has reached a level of maturity such that it can be shared with other users. Working versions
reside in shared workspaces. At this state the configuration cannot be updated, but may be deleted. A
configuration is considered to be in the released state when a working version of that configuration is
promoted to the global workspace. Released configurations cannot be updated or deleted. [Martin Marietta,
1994]

A transient version of a configuration may be created from a previous version regardless of its state. The
source configuration remains unchanged if it is a working or released version. Creation of a transient
version from already existing transient configuration causes the source configuration to be promoted to the
working version level. A configuration may be deleted if it is at the transient or working version level and
is at the lowest level in a workspace hierarchy. [Martin Marietta, 1994]

5.2.2.2 DM 2.0 Strategy For Version Control

The RASSP scheme for version control can be implemented using DM 2.0 features. DM 2.0 is capable of
managing individual objects as well as collections of objects. Hence, a configuration as described in Section
2.1 may be a group of one to many objects. For the purpose documenting an implementation of the RASSP
CM Model in DM 2.0 a folder will be used as an example of a configuration. A folder is a mechanism for
grouping a set of objects together for a specific purpose. The objects may be of different classes and may be
added or removed as required.

A folder will be considered transient if it is created by a user. At this point, the folder may be updated or
deleted. A transient folder may be created in one of the following ways--

initially, by the folder option in the DM create menu in a userís workspace
a copy action on an existing folder, resulting in a newly named folder, regardless of the state that the
source folder is in
a check out action on an existing working folder in a vault
a revise on a released folder in a vault.

Transferring ownership of a folder from an individual user to a vault ìpromotesî the folder to a working
version. A working version of a folder may be checked out, baselined, or deleted. A released version of a
folder will result from baselining a working version. A released folder may not be updated or deleted.
Revising a folder generates a new copy of the folder which can then be manipulated. Therefore, the global
workspace will consist of all baselined objects (including folders) and may be accessed by a predefined
query. All users will have the ability to exercise this query.

Figure 2.1 graphically depicts the DM 2.0 version scheme.

5.2.3. CM Functions

5.2.3.1 Workspace Functions

A global workspace in DM 2.0 is mapped to all baselined objects in all vaults within a database.
Items are visible in a global workspace by use of the DM 2.0 Saved Query Object Class.

A shared workspace in DM 2.0 is mapped to a vault/vault location and can be accessed by
performing transfer, check in, and check out operations. A vault is a logical collection of shared
objects. A vault may contain data objects or actual file system items. A vault location provides a file
system location for storing physical files owned by the vault.

In DM 2.0, each user has a private workspace. Based on projects, a parent-child relationship can
be established between private and shared workspaces. A private workspace may have more than
one work location. Similar to vault locations, a work location provides actual file system space for
objects residing in a private workspace. Note: A private workspace may have relationships with
more than one shared workspace.

5.2.3.1.1 Creating a workspace

In DM 2.0, a workspace is created by default upon creation of a user. Shared workspaces are
created upon creation of a vault/vault location. Rules dictate parent-child relationship between
private and shared workspaces. The global workspace is composed of all baselined objects within

all vaults contained in the database. The following steps/concepts serve as a guide in developing
the DM 2.0 implementation of workspaces within the RASSP CM model--

administration authority is required to create users and vaults (i.e., private workspaces and
shared workspaces)
the global workspace is dynamic in nature and evolves as objects are baselined in project
vaults
vaults will be created with the noreplace attribute set to prevent the overwriting of shared
data items
work locations must be created by workspace owners due to write privileges enforced by the
operating system.

5.2.3.1.2 Accessing an arbitrary workspace

In DM 2.0, the ability to access an arbitrary workspace is controlled by the underlying rules in relation to
the requester. Accessing an arbitrary workspace could involve no more than performing a query on that
workspace to see what items exist in that workspace. It may also involve copying, updating, transferring,
check in/out, baselining, or revising items. Each action is controlled by rules in relation to project, vault,
role, and group assignments. The following steps/concepts will guide the DM 2.0 implementation of
accessing workspaces within the RASSP CM model--

super users will have access to all workspaces within the system
access to shared workspaces (vault/vault locations) will be restricted based on need (i.e., need to
query an item, need to update an item, need to baseline, or revise an item)
access to private workspaces will be restricted by the rules that control the actions available to
non-owners
all users will have access to the global workspace (defined within the context of a database).

5.2.3.1.3 Accessing child workspaces

In DM 2.0, the workspace hierarchy is implemented as relationships defined between an individual
userís private workspace and that userís ability to access shared workspaces (vault/vault locations).
Shared workspaces will be allowed as parents of private workspaces, and can have more than one
child workspace (that is, more than one user) at a time. The ability to access child workspaces will be
provided through the DM 2.0 query method, which will return a list of users who have access to a
shared workspace. This data is for information only since a private workspace cannot be a parent
and a shared workspace will not have more than query access to a private workspace.

5.2.3.1.4 Accessing the parent workspace

The DM 2.0 implementation for accessing a parent workspace is much the same as accessing an

arbitrary workspace. Rules will limit the scope of access to ancestor workspaces residing between
the current workspace and the global workspace. The following DM 2.0 mechanisms will be
available to use when accessing parent workspaces: query, copy, update, transfer, check in/out,
baseline, and revise. Actions will be controlled in relation to project, vault, role, and group
assignments. The following steps/concepts will guide the DM 2.0 implementation of accessing a
parent workspace within the RASSP CM model--

super users will have access to all workspaces within the system
access will be restricted based on the relationship between the current workspace and the
desired parent workspace
all users will have access to the global workspace (defined within the context of a database).

5.2.3.1.5 Making a workspace visible

The RASSP CM model calls for the ability to link an application to a specified workspace. The
application would then have access to all items in that workspace and its ancestor workspaces. This
can be accomplished through tool encapsulation within DM 2.0. Once a tool (application) has been
encapsulated, it may be launched via the graphical user interface (GUI) double-click or
drag-and-drop capabilities. Rules will govern which users have access to certain applications. Once
the application is active within the context of a workspace, the application may manipulate all
associated data items in the current workspace and its ancestor workspaces.

For example: An AutoCAD application would be able to manipulate Drawing files residing in work
and vault locations associated with the current private workspace and its associated shared
workspaces.

5.2.3.2 Version Management Functions

The RASSP concept of a configuration will be implemented in DM 2.0 as a folder.

5.2.3.2.1 Creating a configuration

In DM 2.0, creation of a folder is achieved through the point-and-click capability of the GUI. When
created, the state of a folder is transient (i.e., it will reside in a userís private workspace). The following
steps/concepts will guide the DM 2.0 implementation of creating a configuration within the RASSP CM
model--

super users will be allowed to create folders in any available private workspace
administrators will have authority to create folders in the private workspaces for which rules allow

them access based on established project-to-user relationships
userís will be restricted to folder creation within their private workspace areas only.

5.2.3.2.2 Inserting data objects into a configuration

Once a folder is created in DM 2.0, items may be inserted into it through the use of the
drag-and-drop capability of the GUI. Updates will be allowed to transient level folders only. The
following steps/concepts will guide the DM 2.0 implementation of insertion into configurations within
the RASSP CM model--

super users will be allowed to insert data into a folder regardless of its associated private
workspace location
administrators will be allowed to update folders residing in private workspaces for which rules
allow them access
users will be restricted to updating folders within their private workspace areas only
working and released folders may not be updated.

5.2.3.2.3 Check out

DM 2.0 provides a check out option that creates a new copy of the selected working folder, and
allows the new copy to be modified. The original folder is superseded. File system items attached to
the folder being checked out are copied to the current workspace with the same relative location as
the original folder. A transient folder must first be checked in before it may be checked out. Thus a
folder will be at the working version level prior to check out. The following steps/concepts will guide
the DM 2.0 implementation of checking out a configuration within the RASSP CM model--

super users will be allowed to check out any folder from the shared workspace it resides in
other users will be allowed to check out folders residing in shared workspaces for which rules
allow them access

baselined folders may not be checked out.

5.2.3.2.4 Check in

DM 2.0 contains a check in feature which allows a folder to be returned to a shared workspace (vault), or
transferred to a vault for the first time. If transferred

for the first time, the folder becomes visible to the shared workspace and all itís children. A check in will
not replace a predecessor of the same folder. Once a folder is at a mature state and is ready to be released,
it may be ìpromotedî to the global workspace by using the DM 2.0 baseline feature. All items attached to
the folder are baselined as well. Changes are made to a released folder through the use of the revise feature.
This feature creates the next revision of the released folder. The following steps/concepts will guide the DM
2.0 implementation of checking in a configuration within the RASSP CM model--

super users will have the ability to check in, baseline, and revise folders regardless of that folderís
private/shared workspace location
administrators will be allowed to check in, baseline, and revise folders residing in shared workspaces
for which rules allow them access
users will be allowed to check in/transfer ownership of a folder to shared workspaces for which
rules allow them access
baseline will work only on folders which are at the working version level
revise will work only on released folders.

5.2.3.2.5 Accessing child versions

The DM 2.0 expand relationship feature may be used to show a folderís relationships to other objects. DM
2.0 allows relationships between objects to be displayed in a query window by selecting a folder and
choosing from the available options under the info menu. If desired, DM 2.0 can also provide a ìtreeî like
view of these relationships. Child versions of a folder could be obtained by expanding the ìis superseded byî
relationship. The following steps/concepts will guide the DM 2.0 implementation of accessing child versions
of a configuration within the RASSP CM model--

super users will have the ability to examine the relationships of any folder residing in any workspace
location
administrators and users will be allowed to examine relationships of folders residing in workspaces
for which rules allow them access.

5.2.3.2.6 Accessing parent versions

The DM 2.0 expand relationship feature may be used to show a folderís relationships to other objects. DM
2.0 allows relationships between objects to be displayed in a query window by selecting a folder and
choosing from the available options under the info menu. If desired, DM 2.0 can also provide a ìtreeî like
view of these relationships. Parent versions of a folder could be obtained by expanding the ìsupersedesî
relationship. The following steps/concepts will guide the DM 2.0 implementation of accessing parent
versions of a configuration within the RASSP CM model--

super users will have the ability to examine the relationships of any folder residing in any workspace
location
administrators and users will be allowed to examine relationships of folders residing in workspaces
for which rules allow them access.

5.2.3.2.7 Naming versions

DM 2.0 will not allow the name attribute of a folder to be directly changed. Renaming a folder can be
indirectly accomplished by using the DM 2.0 copy feature. Copying the folder will produce a new folder
object containing the same attributes as the source folder, but with a different name. The following
steps/concepts will guide the DM 2.0 implementation of naming versions of a configuration within the
RASSP CM model--

super users will have the ability to copy any folder
administrators and users will have copy privileges for only those folders residing in workspaces for
which rules allow them access.

5.2.3.2.8 Retrieving a named version

The DM 2.0 query feature may be used to access the named version of a given folder based upon attribute
values in the search criteria. The following steps/concepts will guide the DM 2.0 implementation of
retrieving named versions of a configuration within the RASSP CM model--

super users will have the ability to query for folders residing in any workspace location
administrators and users will be allowed to query for folders residing in workspaces for which rules
allow them access.

5.3 Build 1A User Definitions

Users of the build 1A system are classified into the following categories (determines authorization
privileges in the system:

DM2Admin. This person is the super user of the Build 1A / Metaphase system. He can do everything
plus anything that the following users can do.

RASSP Administrator. This person is the all powerful user with in the RASSP system and CM model.
He can do everything the following users can do. The difference in this user and the DM2Admin
person is that the RASSP Administrator cannot alter the rules governing the RASSP CM model, etc.

User Manager. Sole responsibility is to create users in the system, assign them to user group, and
perform user functions when a user is not present.

Project Manager. Has control over the project shared workspace and is a member of the project
team. This person also assigns users to the project that he is in charge of.

Project member. A member of the project. Can put things in the project shared workspace. In charge
of his own items within the context of a project.

User. Every user should be in this group.

5.3 Project Workspace Definitions

5.4 Other Data Management Enhancements

5.4.1 DM M / DM2.0 Interaction

5.5 Business Item Definitions

6. DMM / Project Mgmt Capabilities

The project plan is implemented as a single workflow in Design Methodology Manager.

Modifications to the project plan (workflow) is an administrator function - user interaction will be
through the DMM Displayer.

6.1 Execution Control

Each process step as specified in the IDEF model for the workflow will be executed by a DMM
process script which is invoked when the user "clicks" on the appropriate step in the process.

6.2 Tool Launch Pad Operation

6.3 Data Management Interaction

6.4 Status Logging Capability

DMM Toolpad will maintain a status log of events occurring in the execution of the project plan. This
status log viewable from the DM User interface, A file containing the status log is also exportable in a
CSV format - compatible with Microsoft Project.

The following are metrics are to be supported - the approach for support with DMM / Toolpad is
indicated in Italics

1. Number of Iterations Thru a Path / Step - For a process step that is executed multiple times
(feedback path) - desire to know the status each time the step is executed.

DMM currently keeps a status log which has an entry for each process step that is
used: Step #, User, Time Stamp, Status (started / finish / fail / etc.). An entry is made
for each event that happens with a process step.

2. Tool Usage - Desire to know the elapsed time for tool usage per process step.

Because we are using a tool launch pad (multiple tools per step) - the DMM status log
does not track the actual tool usage. An additional status log will be generated by the
tool launch pad - which will include the tool usage (launch and exit time stamps)

3. Person Per Step - Desire to track the person executing each process step.

This is currently tracked in the DMM status log.

4. Notes Per Process Step - Desire to have a form to be filled out on completion of process steps by
the engineer on completion of the process step - information needs to be kept with status log.

The completion status dialog box that is used at completion of a process step
includes a comment field - which can be used for this purpose. This information is
maintained with the status log entry.

6.5 Interface with MS Project

A list of the tasks associated with the project is exported from DMM as a CSV file - which can be
imported to MS Project. Editing of the file may be required to resolve consistency issues with the
task definitions in DMM and MSProject (support for hierarchy in the interface is the issue).

7. Build 1A Hardware Configuration

The following represents the hardware complement defined for the build 1A system. Systems
without a userid indicated are physically located in the RASSP design center; where a userid in
indicated - the location is the users desktop.

ARIEL (Sparc 10) (SunOS) 166.20.232.173 (jmeckley)

BISHOP (Sparc 20) (SunOS) 166.120. (License Server)

CYGNUS (Sparc 10) (SunOS) 166.20.232.121 (cfry)

DONALD (Sparc 10) (SunOS) 166.20.232.126 (lkline)

DORADO (Sparc 10) (SunOS) 166.20.232.124 (cstrasbe)

HICKS (Sparc 20) (SunOS) 166.120.

HUDSON (Sparc 20) (SunOS) 166.120.

MERCURY (Sparc 10) (SunOS) 166.20.232.120 (jpridgen)

MICKY (Sparc 10) (SunOS) 166.20.232.125 (hzebrowi)

MOLLY (Sparc 10) (SunOS) 166.20.236.252 (ssharma)

NEWT (Sparc 5) (SunOS) 166.120.

PAVO (Sparc 10) (SunOS) 166.20.232.123 (chein)

RIPLEY (Sparc 5) (SunOS)

SATURN (Sparc 10) (SunOS) 166.20.232.122 (rjaffe)

SULACO (Sparc 5) (Solaris) (File Server)

Intergraph TD2 (RASSP Lab)

8. Reuse Library System Definition - RASSP Reuse Data Manager (RRDM)

8.1 Aspect Explore-CIS Software Baseline

The Build 1A Benchmark 3 RRDM is implemented in Aspect's Explore-CISVersion 2.4.0 system.
This release is supported by a Solaris 2.4database and server environment, built on Oracle 7.0.16.4
for Solaris, with SunOS and Solaris client applications. It also includes Aspect's read-only API
version 1.0.0 for SunOS and Solaris, which may be used for integration purposes, as needed.

8.2 ATL User Environment

The software is installed on sulaco, with client access through the standard ATL environment. To
run it from any SunOS or Solaris workstation on the ATL/RASSP network, execute the following
commands:

% cd /opt/aspect

% source .cshrc

% cd bin

% startObjectViewer

ATL Benchmark team members will have their own accounts, and initially may access the system by
entering their ATL UNIX account name for both the username and password. Passwords may then
be changed via the user interface, as desired.

8.3 Benchmark Reuse/Reference Database

The initial Benchmark 3 implementation includes the Aspect VIP 1/2 Reference Database, which
contains component information for ~500K integrated circuit, discrete, and passive component
classes, with online databook information available for all parts. Online data dictionaries are also
associated with each class of components, and may be viewed as attachments for any component
record.

In addition to the Aspect reference information, an initial class hierarchy has been implemented for
Assembly (Module and Substrate)and System classes, as well as for a variety of hardware design
views(logic symbols, geometries, LMS catalog information, etc.) Although manufacturer reference
data for the assembly and system classes is limited, work is ongoing to load all of the EPI released
Mentor Graphics library data and associate that data with the related manufacturer component
classes. This effort should be complete by the end of October, 1995.

Architecture Design classes, based on the RASSP Model Year Architecture report, have also been
implemented in this first release of the RASSP Reuse Design Object Classification Hierarchy
(RDOCH). A number of these classes have been populated with the available architecture
information from the JRS NetSyn environment.

Algorithm Design classes, defined as per the MCCI Specification, Q003 Specification, Alta Group
documentation, and JRS NetSyn documentation, are also included in this release. Data dictionaries
and actual population of the ddatabase will be completed over the next 2-3 months.

A number of Software Design classes have been identified for implementation based on information
available through the Reuse Library Library Interoperability Group (RIG), various government
organizations (NASA, ARPA, NSA, etc.), and internal Lockheed corporate software libraries. These
classes will be implemented and populated after the first of the year, as a part of ongoing support for
the program.

Design View classes, which apply to all of the four major reuse areas identified to date, include
Design For Test, Simulation Model, and Documentation classes. The Simulation Model class
definition is complete, and is based on the taxonomy presented at the '95 RASSP Annual
Conference by Carl Hein. A few program-related models have been classified as examples from
benchmark 2, and additional models and libraries of models will be loaded as a part of the ongoing
maintenance effort. Documentation classes include all of the VIP 1.2 electronic data books, as well
as product information that has been provided by some of the tool vendors on the program. These
classes will be continually updated as more documentation becomes available.

Supplier/Manufacturer classes have been implemented based on the GE Consolidated Purchasing
System (CPS) definition. This system, which is currently in use at ATL, supports supplier
management and procurement, and has been partially implemented in the RRDM for
demonstration purposes as well as to decrease the procurement cycle for the program, where
possible.

A couple of the RASSP Product & Services classes have been defined at this point in the program,
including Design Tool and Specifications & Standards classes. The design tool class is currently
under development, and will include configuration information and online documentation for all
design tools encapsulated in the RASSP environment, as available. Specs and standards used on
the program will be sourced from the appropriate organizations and included, again, as they
become available.

8. Manufacturing Interface

9. Notes

10. Miscellaneous

10.1 Glossary

10.2 References

Appendices

This section contains specific note on implementation aspects of the build 1A system. This section is
included for documentation purposes - regular updates are expected to be required.

A.1 Enterprise Startup Procedure

The startup of the Enterprise Framework requires actions to be performed by a System
Administrator as well as actions performed by each user. These actions are outlined as follows:

System Administrator actions:

1) Start Oracle database on bishop as follows:

a) Login user: oradm

password: rassp

b) Type bin/dbstart

2) Start DMM Server on bishop

a) Verify the mce daemon is running on bishop.

This should start at boot time. If it isn't,

it must be start as root on bishop. Login

to bishop. Change directory to

/opt/ingr/vbest14/exec/vbdmm. Type rc.dmmbk

3) Start Metaphase server daemons on bishop:

a) Login user dm20adm

password dm20adm

b) Type muxstart, then type dspstart

4) Start the Metaphase client daemons.

a) Repeat step 3 on client machines.

5) Start the Enterprise Desktop on client.

a) At users login prompt, type projlist&.

A.2 Naming Conventions used for Build 1A Environment / Project

The following naming conventions are being used within the build 1A system - information included
here for diagnistic purposes.

environment variables (defined in env):

RASSP_PROJ_VL_HOST - the host name where the project's vault locations will be

RASSP_PROJ_VL_ROOT - the full path to the dir where the project's vault locations will be

CURRENT_PROJ_NAME - current project name

CURRENT_PROJ_DIR - current project dir (full path)

Project name: PROJ_NAME

A string of upto 8 chars

Project dir name:

$PROJ_NAME.prj

Process number: PROC_NUMBER

digits separated by dots (e.g. 2.3.1.12)

Process name:

A string with first word being $PROC_NUMBER

(e.g. 2.3.1.12 Schematic Editing)

Process id: PROC_ID

proc$PROC_NUMBER

Global Vault:

Global Vault

Global Vault Location name:

Global VL

Project Vault: PROJ_VAULT

$PROJ_NAME's Vault

Project Shared Vault Location name:

$PROJ_NAME's Shared VL

Project shared vault location dir:

$RASSP_PROJ_VL_HOST:$RASSP_PROJ_VL_ROOT/$PROJ_NAME/Shared.vl

Project process' vault location name:

$PROJ_NAME's $PROC_ID VL

Project process' vault location dir:

$RASSP_PROJ_VL_HOST:$RASSP_PROJ_VL_ROOT/$PROJ_NAME/$PROC_ID.vl

Project's Shared user:

$PROJ_NAME

Project's Shared Work Location:

$PROJ_NAME's WL

$RASSP_PROJ_VL_HOST:$RASSP_PROJ_VL_ROOT/$PROJ_NAME/Shared.wl

User's Private Work Location:

$USER's WL

$HOME/$USER.wl

A.3 DMM Process Script

The approach for encapsulation is to encode tool and data item lists required for particular process
steps as attributes for the process steps. A script generation routine is used to generate the actual
process script for execution, on invocation of the process step.

The following is the proposed sequence of activities to be performed

by a DMM process script - in controlling the task execution of a process step..

(Please comment and answer the questions if you know them.).

New process script structure:

Step 1. Initial setup

setup necessary environment variables

setup necessary local variables

Step 2. Input data gathering

for input data, either copy or checkout them as specified in

the process attributes. if error then exit script. if an input

is to be modified to become output, then the input will always

be checked-out

for control data, either reference or copy them as specified

in the process attributes. if error then exit script

for output data, if it is to be created from scratch, then checkout

the place holder from the shared vault (the place holder is

assumed in the shared vault). if the output is to be modified from

an input data, then do nothing, because the input should have been

checked-out (see above)

Step 3. Tool launch setup

for tools, present them to the user in toolpad. the data for

each tool is set according to the process attributes

if user choose to transit the process from the toolpad, then

continue the script, else if user click Cancel from the toolpad

then exit the script

Step 4. Output data verification

if a process finished successfully, the output data should be

present in proper location. if it is modified from an input,

then checkin it. if it is created from scratch, then the user

is responsible to attach the physical data to the place holder.

the script will checkin it.

if error then exit script

Step 5. Input data restoring

for input data, dispose them as specified in the process attributes.

if an input is modified to an output, it should have been checked-in

(see above 4.). if error then exit script

for control data, dispose them as specified in the process attributes.

if error then exit script

Step 6. DMM notification

present to the user a list of exit statuses, notify the DMM

with the status the user picked.

Script flow control for the automatically generated DMM process script:

Concept:

when a user double click at a process in the DMM

Displayer, a script is generated based on the attributed defined

for the process. During the execution of the script, an error

might occur due to unusual situation. For example, the script

successfully finished Steps 1 - 4, but failed at Step 5,

this resulted in an error. Whenever an error is

encountered, the script will stop the execution and exit.

Now, say, the user solved the problem that caused the fail of

Step 5, and double clicked at the process in the DMM Displayer

again. Without the flow control, the same script would then be

generated for the process and executed, the output would be

checked-out, and then checked-in even though it had been done

before.

With the Script Flow Control, however, depending on how the

script was executed in the previous run, a script can be

generated such that some of the Steps is skipped. In the above

example, the checkout and checkin of the output data is skipped.

Implemented flow control features:

1. If Step 4 finished successfully, but Step 5 failed, then when the

next the script is generated:

if the output data is created from scratch, the output is not

checked-out in Step 1

if the output data is modified from an input data, the input

is not checked-out in Step 1

the output data is not checked-in in Step 4

2. If Step 5 finished successfully, but Step 6 failed, then when the

next the script is generated:

Steps 1 - 5 are skipped

A.4 Automatic Script Generation Approach

A list of attributes will be attached to a process in a DMM workflow. A script generating application
will use these attributes to create a script and then run the script.

Attributes

An attribute named DataList will be used to specify a list of data

items involved in a workflow process. DataList's value is a list of

(data) attribute names separated by colons:

DataList Data1:Data2:...:DataN[:]

where Data1, Data2, ..., DataN are attribute names to be defined in

separate attribute line. They will be called data attribute in this

note.

Each data attribute's value contain a list of fields separated by

colons. These fields are defined as follows:

DataI

Data Name:Data State:Data Type[:[Destination[:[Retrieve[:[Dispose[:]]]]]]

This is in BNF format

where

Data Name (Required) name of the data (IDEF3 data name)

May contain spaces between words.

Data State state of the data (IDEF3 data state)

May contain spaces between words.

Data Type (Required) Input, Output, or Control

(IDEF3 term)

Destination (Optional) Private or SharedWL or SharedVL

or Global or "",

"" means not defined, use default

For input, it specifies where the data is

checked-out/copied to. The valid values are

Private or SharedWL. The default is the

Private.

For output, it specifies where the data is

to be created. The valid values are

Private or SharedWL. The default is Private.

For control, if it is to be checked-out/

copied, it specifies where the data is

checked-out/copied to. The valid values are

Private or SharedWL. The default is

Private. If it is to be referenced,

it specifies where the data is referred

from. The valid values are SharedWL or

SharedVL or Global. The default is SharedVL.

Retrieve (Optional) how data is retrieved:

copy copy from shared vault

checkout check out from shared vault

reference reference from a location

"" not defined, use default

The default Retrieve is based on the

Data Type:

Input copy

Control reference

Output checkout

Dispose (Optional) how data is disposed:

delcopy delete the copy

delete delete the data

checkin check in to shared vault

nochange leave the data alone

"" not defined, use default

The default Dispose is based on the

Data's Retrieve value:

copy delcopy

checkout checkin

reference nochange

Note: Retrieve-Dispose compatability:

if a data is copied out, it can be delcopied by using the

document name, or deleted by using the full path,

or nochange

if a data is checked-out, it can be deleted, or checked-in,

or nochange

if a data is referenced, no dispose is necessary, hence

using nochange

An attribute named ToolList will be used to specify a list of tool items involved in a workflow process.
ToolList's value is a list of (tool) attribute names separated by colons:

ToolList Tool1:Tool2:...:ToolN[:]

where Tool1, Tool2, ..., ToolN are attribute names to be defined in separate attribute line. They will
be called tool attribute in this note.

Each tool attribute's value contain a list of fields separated by colons. These fields are defined as
follows:

ToolI ToolName[:[Tool Argument[:]]]

This is in BNF format

where

ToolName name of the tool (basename of a .tol file)

May not contain space.

Tool Argument (Optional) The argument passed to toolpad.

May contain data attribute name prefixed by

'$' (e.g. $Data2). In the runtime, the full

path to the data is used if a data attribute

is referenced.

Example:

The attributes defined in workflow process DesignEntry:

==================

attribute('Data1', 'Schematic DB::Input:::delete'),

attribute('DataList', 'Data2:Data1:Data3:Data4:InOut'),

attribute('Data2', 'Requirement Spec:Final:Control'),

attribute('ToolList', 'Tool1:Tool2'),

attribute('Tool1', 'xterm:-e vi $Data1:'),

attribute('Tool2', 'xv'),

attribute('Data3', 'A File:Modified Once:Output'),

attribute('Data4', 'Another Input::Input:SharedWL:checkout'),

attribute('Status', '0:'),

attribute('InOut', 'A File:Initial:Input')

==================

The template script:

==================

#!/bin/sh

Assumption

each input item is of Class Document

#

Input

#

Exit status

0 --- successful

1 --- error copying input from source vault to user's private work

location

Step 1

DMM changed the ND_PATH, add the nd path back

ND_PATH=$RASSP_CUSTOM_PATH/ingr/nd:$ND_PATH; export ND_PATH

Step 2

Don't change the following line!

Input/Control gathering section:

#

Step 3

Don't change the following line!

Tool Launch Pad section:

#

#

Step 4

Don't change the following line!

Output verification section:

#

Don't change the following line!

Script status section:3

#

#

Step 5

Don't change the following line!

Input/Control restoring section:

#

Don't change the following line!

Script status section:4

#

#

Step 6

Don't change the following line!

DMM notification section:

Don't change the following line!

Script status section:0

#

exit 0

==================

Syntax:

==================

Usage: autoscr [-h] -d dir -p proc [-t temp_scr] [-o save_scr]

-h: print this message.

-d dir: the dir where the workflow attached to.

-p proc: name of the process from which this application is

invoked. Put proc in quotes if it contains spaces.

-t tem_scr: template script file name.

This overrides the env RASSP_TEMPLATE_SCRIPT.

-o save_scr: save a copy of the script to save_scr.

==================

The output script generated:

==================

#!/bin/sh

Assumption

each input item is of Class Document

#

Input

#

Exit status

0 --- successful

1 --- error copying input from source vault to user's private work

location

Step 1

DMM changed the ND_PATH, add the nd path back

ND_PATH=$RASSP_CUSTOM_PATH/ingr/nd:$ND_PATH; export ND_PATH

Step 2

Don't change the following line!

Input/Control gathering section:

Data2="Requirement Spec"

Data2_PATH=`get_data reference SharedVL "$Data2"`

if [$? -ne 0]; then exit 1; fi

Data1="Schematic DB"

Data1_PATH=`get_data copy Private "$Data1"`

if [$? -ne 0]; then exit 1; fi

Data4="Another Input"

Data4_PATH=`get_data checkout SharedWL "$Data4"`

if [$? -ne 0]; then exit 1; fi

InOut="A File"

InOut_PATH=`get_data checkout Private "$InOut"`

if [$? -ne 0]; then exit 1; fi

#

Step 3

Don't change the following line!

Tool Launch Pad section:

TOOL_ARG="xterm(-e vi $Data1_PATH) xv() "

toolpad -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -t "$TOOL_ARG"

if [$? -ne 0]; then exit 1; fi

#

#

Step 4

Don't change the following line!

Output verification section:

put_data checkin SharedWL "A File"

if [$? -ne 0]; then exit 1; fi

#

Don't change the following line!

Script status section:3

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 3

#

#

Step 5

Don't change the following line!

Input/Control restoring section:

put_data delete Private "$Data1_PATH"

if [$? -ne 0]; then exit 1; fi

put_data checkin SharedWL "Another Input"

if [$? -ne 0]; then exit 1; fi

#

Don't change the following line!

Script status section:4

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 4

#

#

Step 6

Don't change the following line!

DMM notification section:

notif_dmm -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry"

if [$? -ne 0]; then exit 1; fi

Don't change the following line!

Script status section:0

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 0

#

exit 0

==================

Comments:

DataList includes 4 items: Data1, Data2, Data3, Data4, InOut

Data1 is type Input, no Retrieve specified, so the default is copy,

no destination specified, the default is Private. This

reflects in Step 2:

Data1="Schematic DB"

Data1_PATH=`get_data copy Private "$Data1"`

if [$? -ne 0]; then exit 1; fi

The dispose delete overrides the default dispose delcopy, in

Step 5:

put_data delete Private "$Data1_PATH"

if [$? -ne 0]; then exit 1; fi

Data2 is Control, no Retrieve specified, so the default is reference,

no destination specified, the default is SharedVL. In Step 2:

Data2="Requirement Spec"

Data2_PATH=`get_data reference SharedVL "$Data2"`

if [$? -ne 0]; then exit 1; fi

Since the Retrieve is reference, the dispose is default to

nochange, therefore no Retrieve is taken in Step 5.

Data4 is another input, checkout is the Retrieve that overrides

default copy, the destination SharedWL overrides the default

Private. In Step 2:

Data4="Another Input"

Data4_PATH=`get_data checkout SharedWL "$Data4"`

if [$? -ne 0]; then exit 1; fi

Since Data4 is checkout, it needs to be checkin. So in

Step 5:

put_data checkin SharedWL "Another Input"

if [$? -ne 0]; then exit 1; fi

Inout is Input with state Initial

Data3 is Output with state Modified Once

Since the output Data3 is modified from the input InOut,

the Retrieve for InOut is set to checkout, therefore in

Step 2:

InOut="A File"

InOut_PATH=`get_data checkout Private "$InOut"`

if [$? -ne 0]; then exit 1; fi

The destination for Data3 is set to the same as InOut,

which is Private. The output Data3 is checked-in in Step 4:

put_data checkin Private "A File"

if [$? -ne 0]; then exit 1; fi

ToolList includes 2 items: Tool1 and Tool2

Tool1 has argument "-e vi $Data1", which refering to data item

Data1. As the result it is expanded to "-e vi $Data1_PATH"

when it is used in the toolpad invocation. The Data1_PATH

is set as the result of get_input.

Tool2 does not have arg, so it is simply passed to toolpad.

Examples of Script flow control

1. Suppose Steps 1-4 was finished successfully in the first run, then

in the second run, the script becomes

==================

#!/bin/sh

Assumption

each input item is of Class Document

#

Input

#

Exit status

0 --- successful

1 --- error copying input from source vault to user's private work

location

Step 1

DMM changed the ND_PATH, add the nd path back

ND_PATH=$RASSP_CUSTOM_PATH/ingr/nd:$ND_PATH; export ND_PATH

Step 2

Don't change the following line!

Input/Control gathering section:

Data2="Requirement Spec"

Data2_PATH=`get_data reference SharedVL "$Data2"`

if [$? -ne 0]; then exit 1; fi

Data1="Schematic DB"

Data1_PATH=`get_data copy Private "$Data1"`

if [$? -ne 0]; then exit 1; fi

Data4="Another Input"

Data4_PATH=`get_data checkout SharedWL "$Data4"`

if [$? -ne 0]; then exit 1; fi

#

Step 3

Don't change the following line!

Tool Launch Pad section:

TOOL_ARG="xterm(-e vi $Data1_PATH) xv() "

toolpad -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -t "$TOOL_ARG"

if [$? -ne 0]; then exit 1; fi

#

#

Step 4

Don't change the following line!

Output verification section:

#

Don't change the following line!

Script status section:3

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 3

#

#

Step 5

Don't change the following line!

Input/Control restoring section:

put_data delete Private "$Data1_PATH"

if [$? -ne 0]; then exit 1; fi

put_data checkin SharedWL "Another Input"

if [$? -ne 0]; then exit 1; fi

#

Don't change the following line!

Script status section:4

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 4

#

#

Step 6

Don't change the following line!

DMM notification section:

notif_dmm -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry"

if [$? -ne 0]; then exit 1; fi

Don't change the following line!

Script status section:0

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 0

#

exit 0

==================

Comment: the following lines are skipped in Step 2:

InOut="A File"

InOut_PATH=`get_data checkout Private "$InOut"`

if [$? -ne 0]; then exit 1; fi

because the output Data3 is modified from InOut, and had

been generated successfully in the first run.

The following lines are skipped in Step 4:

put_data checkin SharedWL "A File"

if [$? -ne 0]; then exit 1; fi

because the output Data3 had been generated successfully

in the first run.

2. Suppose Steps 1-5 was finished successfully in the first run, then

in the second run, the script becomes

==================

#!/bin/sh

Assumption

each input item is of Class Document

#

Input

#

Exit status

0 --- successful

1 --- error copying input from source vault to user's private work

location

Step 1

DMM changed the ND_PATH, add the nd path back

ND_PATH=$RASSP_CUSTOM_PATH/ingr/nd:$ND_PATH; export ND_PATH

Step 2

Don't change the following line!

Input/Control gathering section:

#

Step 3

Don't change the following line!

Tool Launch Pad section:

#

#

Step 4

Don't change the following line!

Output verification section:

#

Don't change the following line!

Script status section:3

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 3

#

#

Step 5

Don't change the following line!

Input/Control restoring section:

#

Don't change the following line!

Script status section:4

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 4

#

#

Step 6

Don't change the following line!

DMM notification section:

notif_dmm -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry"

if [$? -ne 0]; then exit 1; fi

Don't change the following line!

Script status section:0

dmm_attr_set -d "/tmp_mnt/opt/dm2.0/jjyou/toolpad" -p "DesignEntry" -v 0

#

exit 0

==================

Comment: effectively only the Step 6 is kept in this script,

because all the previous steps have been finished

successfully.

9.5 Tool File Conventions

I. Format of a tool file:

Tool File Format 1.0.0

tool_name:

$TOOL_ARG_LIST

arg1_name:arg1_value:

arg2_name:arg2_value:

...

$END

displayed tool name:tool_path_name::icon_file:command argument:

$TOOL_ENV_LIST

env1_name:env1_value::

env2_name:env2_value::

...

$END

II. Example: content of tool file da.tol

Tool File Format 1.0.0

da:

$TOOL_ARG_LIST

MentrDir::

A_Label:default label:

$END

MGC Design Architect ($A_Label):new_da::da.bmp:$MentrDir:

$TOOL_ENV_LIST

MGC_LOCATION_MAP:$MentrDir/mgc_loc_map::

$END

III. Comments:

1. tool file must have extension .tol

e.g. da.tol

2. all line starts from the first column

3. fields are separated by ':', therefore no ':' is allowed in any field

4. tool_name ususlly is the base name of the tool file

e.g. da vs da.tol

5. the number of arguments in TOOL_ARG_LIST section indicates the number

of arguments required when the tool is invoked. The values of the

arguments will be passed in when the tool is invoked. The order of the

pass-in arguments is the order of arguments in TOOL_ARG_LIST section.

6. arguments in TOOL_ARG_LIST section can be referenced in fields

'displayed tool name', and/or 'command argument', and/or 'env_value'

with the format '$arg_name'. The value of the argument will be used

wherever it is referenced.

e.g. argument MentrDir is referenced as $MentrDir, as the result

$MentrDir will be replaced by the value of argument MentrDir,

whatever it will be, in the runtime

7. no space is allowed in fields arg_name, tool_path_name, icon_file, env_name

8. the field 'displayed tool name' will be used to describe the tool in

the tool launch pad. If multiple instances of a tool is needed for

different data/argument, it would be helpful to use a label in the

'displayed tool name' to distinguish one from the other.

e.g. if the da tool is invoked for 2 schematics: sch1 and sch2,

then invoke the toolpad with two instances of da tool and

pass in sch1 and sch2 as the second argument (A_Label) of

da instance1 and da instance2, respectively. As the result,

the icons in the toolpad will be labeled as 'MGC Design

Architect (sch1)' and 'MGC Design Architect (sch2)',

respectively.

9. tool_path_name is the executable path name. full path is not necessary

if the tool_path_name is in the search PATH

10. the final command line will be formed as

'tool_path_name' 'command argument'

11. the env_name are set to env_value before the tool is invoked and they

become part of the environment variables

A.5 UYS-2A Upgrade Processor Requirements

The AN/UYS-2A upgrade development Requirements are described below. The tasks describe the
technical effort and delivery schedules of all items shall be completed in 20 months after contract
award. The current AN/UYS-2A configuration consists of an FPAP functional element (FPAP/FE),
which is composed of three modules. Any FPAP/FE shall be replaceable with an equivalent
FPCAP/FE. The upgraded AN/UYS-2A upgrade deliverable assembly shall consist of a functional
element comprising two (2) floating point commercial arithmetic processor (FPCAP) modules, and
one (1) floating point controller (FPCTL) with application and development software.

At the beginning of the contract the Government shall supply to the Contractor operational
non-real-time C code of the ETC algorithm. Within the first 12 months of the contract the
Government shall supply to the Contractor an updated algorithm to be implemented in real time
software by the Contractor. Government shall supply a stimulus data set along with a set of
expected results from the data using the ETC algorithm. This data set shall be run on the FPCAP/FE
by the Contractor as part of acceptance testing.

Architecture Development

Contractor shall develop end-user requirements that define the system level requirements of the
AN/UYS-2A upgrade. These system level requirements include algorithm, external interface,
control, and BIT requirements. Contractor shall convert these system level requirements into a set
of processing requirements (functional and performance). Contractor shall conduct simulations and
architecture trade studies in order to allocate the processor requirements to different hardware and
software elements. Contractor shall document these allocated requirements in specifications for
each of the hardware and software elements.

Contractor shall analyze the Navy ETC algorithm for processing thruput and memory requirements.
The algorithm hierarchy is described in the ETC preliminary RDD documentation[3]. Figure 2.1-1 is a
schematic of the ETC algorithm architecture showing the possible data flow paths.

Figure 2.1-1 ETC Algorithm Architecture

Contractor shall generate Data Flow Graph (DFG) in PGM from the algorithm description.

Contractor shall consider the effect of design alternatives upon the total AN/UYS-2 life cycle cost. The
Architecture Design Document (ADD) shall contain a section that includes support and maintenance
philosophy together with estimates of their costs.

Contractor shall conduct simulations to verify that all hardware and software requirements are met. A
VHDL based virtual prototype model will be developed for the system.

Contractor shall coordinate with the ALFS system integrator as necessary to ensure a seamless integration
of the UYS-2A processor upgrade into ALFS.

Contractor shall define a test philosophy for ensuring that the FPGAs, modules and integrated system are
testable. It will describe what test types are appropriate such as hardware test points, embedded firmware
test routines, JTAG schemes, built-in self test, and test adapters.

Contractor shall perform a feasibility analysis for thermal, reliability, testability, maintainability,
repairability, upgradeability, and NRE, manufacturing, and life-cycle costs. A risk assessment will be done

of the selected implementation approach for each component based on experience, complexity, schedule
criticality, and design challenge.

Hardware Development

Contractor shall design and fabricate three functional sets of the FPCAP/FE enabling the AN/UYS-2A
processing assembly to be upgraded in processing capacity and input/output bandwidth. The FPCAP/FE
shall be able to replace or be inserted in any slot within the AN/UYS-2A assembly that is currently
designated for a FPAP/FE. The FPCAP/FE specifications shall be accomplished according to the top-level
design architecture and specifications as derived in section 2.1.

Contractor shall develop the detailed design information necessary for the manufacture of the FPCAP and
FPCTL modules. This information will be captured in a Detailed Design Document. Contractor shall
develop test plans and procedures for the FPCAP and FPCTL modules. Test vectors will be developed for
the FPCAP and FPCTL modules in accordance with the test plans and procedures.

Contractor shall build or modify existing test fixtures to test/verify the requirements of the AN/UYS-2A
upgrade. All FPCAP/FE modules shall be tested for functional and operational performance, verifying
processing power, software control, communication bandwidth, power dissipation, and weight.

Software Development

Contractor shall implement in the AN/UYS-2A upgrade, the system interface software needed to utilize
effectively the EMSP Common Operational Software (ECOS) [2] and RASSP run time software.

Contractor shall develop software supporting the seamless integration of the applications developed in the
RASSP domain for the FPCAP/FE platform and the AN/UYS-2A application development environment and
run-time support domains. Contractor shall modify RASSP autocoding tools to optimize their use for
implementing the FPCAP/FE features. Contractor shall develop FPCAP/FE support interfaces for the of the
FPCAP/FE AN/UYS-2A PIDs on the FPCAP/FE modules.

Contractor shall code and implement in the FPCAP/FE the software control and interface functions needed
to operate the functional element under the ECOS enhanced with the RASSP methodology.

Contractor shall code and implement the system test and diagnostic software pertaining to the FPCAP/FE.
Contractor shall implement the system and module test and diagnostic software. It shall include
comprehensive built-in-tests (BITs) addressing each major hardware item of the FPCAP/FE.

Contractor shall develop real time application software of the ETC algorithm.

AN/UYS-2A Upgrade Module and System Integration and Test

Contractor shall test the FPCTL and FPCAP modules according to documented test plans and procedures
and document test results.

Contractor shall test the FPCAP/FE within the AN/UYS-2A enclosure verifying the correct interaction with
the other modules and subassemblies within the system.

Environmental, Mechanical, QA, & Reliability

Contractor shall perform testing to verify the environmental constraints of the AN/UYS-2A upgrade are
met as established in section 2.1.

Contractor shall perform mechanical, thermal, and environmental analysis.

Contractor shall keep logs of operational time and all failures of FPCAP after completion of engineering
evaluation to make reliability growth predictions.

AN/UYS-2A Upgrade Acceptance Tests

Contractor shall perform system level end-to-end formal tests verifying functional and performance
compliance to system to be conducted at a U.S. Navy designated site and witnessed by U.S. Navy
representatives.

The Government will be performing temperature and vibration tests on the UYS-2 system with upgraded
processor, Contractor will supply nominal engineering support to this testing if required.

A.6 Example UYS-2 Schedule

The attached MS Project Plan is included for reference - Note - it may be out of date relative to the
project plan in use on the program. This represents the project plan for the workflow represented in
figure 2.2-2, together with other aspects of the program.

