
Library Requirements

Table of Contents

Section 1.0

1.1 Purpose 1-1

1.2 Scope 1-1

1.3 Intended Audience 1-2

1.4 Overview 1-2

Section 2.0

2.1 Enterprise System Definition 2-1

2.2 RASSP Reuse Data Manager 2-4

2.3 User Characteristics 2-6

2.3.1 Systems Administrator 2-6

2.3.2 RRDM Database Administrator/Librarian 2-7

2.3.3 CAE/CAD/CAM Librarian 2-8

2.4 Assumptions and Dependencies 2-9

Section 3.0

3.1 Data Model Creation and Management 3-1

3.2 Query Capabilities 3-3

3.3 Methods 3-4

3.4 Reuse Design Data Management 3-5

3.5 Distributed Architecture 3-6

3.6 Release Management 3-7

3.6.1 Usage Lists 3-7

3.6.2 Version Management 3-8

3.7 Authorizations and User Authentication 3-9

3.7.1 Authorizations 3-10

3.7.2 User Authentication 3-12

3.7.3 Access Control Lists 3-13

3.8 Tool Interoperability and External Process Integration 3-13

3.8.1 Data Integration Facilities 3-13

3.8.2 Control Integration Facilities 3-14

Section 4.0

4.1 User Interface Design 4-1

4.2 Levels of Data and Tool Integration 4-2

4.3 Standalone Libraries 4-3

4.4 Enterprise System Integration 4-5

4.4.1 Design Methodology Manager Integration 4-5

4.4.2 Product Data Manager Integration 4-6

4.5 Domain-Specific Tool Integration 4-10

4.5.1 Candidate Tools 4-10

4.5.2 Mentor Graphics Library Management System and 4-10

Section 5.0

5.1 Methodology 5-1

5.2 Data Views and Relationships 5-3

5.3 Domain-Specific Libraries 5-5

Appendix A Definitions, Acronyms, and Abbreviations A-1

Appendix B References B-1

List of Figures

Figure 2-1 The RASSP Enterprise Data Flow Architecture 2-2

Figure 2-2 The Workflow for Reusable Design Object Definition 2-3

Figure 3-1 The Authorization Type Hierarchy for the RRDM 3-11

Figure 5-1 The RASSP Reuse Design Object Classification Hierarchy 5-4

(Preliminary)

1.0 Introduction

1.1 Purpose

The RASSP library management methodology enables engineering design and technical
information reuse throughout the enterprise. This methodology specifies both the process
for classification of reusable design data and the requirements for the underlying library
management system software. It supports automated, semi-automated, and manual
processes for creation and maintenance of the classification scheme, descriptive data, and
physical design objects, with a rigorous class definition process to enable data
normalization over a variety of sources. Three-tiered, fully distributed data access
mechanisms and methods are used to ensure support for concurrent engineering in a
heterogeneous, cooperative, virtual corporation environment. Sophisticated tool
interoperability capabilities, both interactive and through standards-based application
program interfaces (APIs), enable several levels of integration with external libraries,
tools, and the RASSP enterprise environment, and limit the development cost and schedule
normally associated with point-to-point integrations. The RASSP program goals for
library management include lower development costs, reduced design cycle time, and
increased quality due to the reliability and availability of reusable design data.

The purpose of this document is to (1) define the minimum set of requirements for the
RASSP Reuse Data Manager (RRDM), (2) define an integration strategy for reusable
design data, enterprise tools, and domain-specific tools in the RASSP environment, and (3)
define the overall methodology for creation and maintenance of the RASSP Reuse Design
Object Classification Hierarchy (RDOCH) for the RASSP program.

1.2 Scope

The Rapid Prototyping of Application-Specific Signal Processors (RASSP) is an Advanced
Research Projects Agency (ARPA)/Tri-Services program designed to advance the
technology and processes used in the design, manufacture, test, and procurement of digital
signal processors. The program, under the direction of Lockheed Martin Advanced
Technology Laboratories (LM-ATL), is explicitly designed to encourage
commercialization of the technology developed.

The overriding goal of the RASSP program is to achieve an improvement in productivity
(decrease the time to market) by at least a factor of four, with similar increases in quality
and decreases in overall product life cycle development costs. A key factor in
accomplishing this goal is the ability to find and reuse existing design technology and data
in new designs. Design elements designated as "reusable" will be referred to as Reuse
Elements (REs) throughout this document. Examples of reuse elements include signal
processing algorithms, VHDL simulation models, software modules, schematics, test

vectors, design specifications, product information, and so on. REs may be created and/or
used in all phases of the RASSP design process, including systems definition, architecture
definition, hardware design, and software design. The RASSP Reuse Data Manager
(RRDM) provides the mechanism for classifying, maintaining, finding, and retrieving REs
in the RASSP enterprise environment.

This document represents the composite of the Library Management Model for RASSP -
Version 2.0 [LM-ATL, 1995a], the RASSP Reuse Data Manager (RRDM) and Reuse
Strategy Requirements Specification (Draft) [Aspect, 1995a], the RASSP Reuse Library
Integration Strategy [Aspect, 1995b], the RASSP Reuse Data Manager (RRDM) and
Reuse Strategy Implementation Plan (Draft) [Aspect, 1995c], the reuse section of the
RASSP Interim Report [LM-ATL, 1995b], and subsequent research in design reuse.
Unlike the documents that preceded it, this methodology is intended to be library
management tool-independent. Although the requirements documented herein are focused
on the RASSP digital signal processor domain, it is hoped that the overall approach applies
to library management for a much broader spectrum of engineering design and test
environments.

1.3 Intended Audience

This document is intended primarily for RASSP enterprise team members, library
management systems developers, integration engineers, systems and database
administrators, and librarians, to define the basic requirements and methodology for
library management in the RASSP environment. Designers and test engineers may also
find it useful as background information.

1.4 Overview

The Rapid Prototyping of Application-Specific Signal Processors (RASSP) is an Advanced
Research Projects Agency (ARPA)/Tri-Service program aimed at dramatically improving
the process of design, manufacture, test, and procurement of digital signal processors. The
RASSP program will deliver an integrated system called the RASSP system, which
integrates the CAD tools used in the RASSP design process under a framework referred to
as the enterprise framework. An enterprise framework provides the facilities and services
necessary to integrate the automated processes of an enterprise. In the RASSP system the
enterprise framework provides support for workflow management, design data
management, library management, computer-supported collaborative work and remote
tool access. The workflow management subsystem of the RASSP enterprise system enables
a RASSP system administrator to model and enforce a particular design methodology for a
project. The data management subsystem of the enterprise framework provides facilities
for configuration management and control of access to design data files that may reside at

various sites in a computer network. Library management in the RASSP system involves
cataloging, releasing, and searching for reusable design objects. The library management
subsystem of the RASSP system is called the RASSP Reuse Data Manager (RRDM).

In today’s design environments, the ability of a design engineer to maximize reuse is
impaired by the fact that there is no efficient way to search for reusable design objects
across multiple sources, and that many sources of reusable data are uncoupled from the
design environment. Mechanisms and processes for organizing reusable design information
created within a design organization and for effectively sharing that data within the
organization as well as with other cooperating organizations are also lacking. The
requirements described in the sections to follow specify an approach for integrating the
various sources of reusable design objects to provide a single source for searching for
reusable design data and enable enterprise-wide sharing of reuse data. This approach
consists of (1) developing a Reuse Design Object Class Hierarchy (RDOCH) that classifies
the various types of design objects in the RASSP domain and models the descriptive data
associated with them, and (2) developing a commercial library management system which
will implement the design object class hierarchy, providing mechanisms for searching
across multiple libraries in a distributed, virtual corporation environment.

2. General Description

2.1. Enterprise System Definition

As stated in section 1.4, the RASSP Reuse Data Manager (RRDM) is a fully integrated
subsystem of the enterprise framework. This framework provides support for workflow
management, design data management, library management, computer-supported
collaborative work, and remote tool access. The Design Methodology Manager (DMM)
enables a RASSP system administrator to model and enforce a particular design
methodology for a project. The Enterprise Product Data Manager (EPDM) provides
facilities for configuration management and control of design files that may reside at
various sites in the network. Library management entails the identification, cataloging,
storage, retrieval, and maintenance of reusable design information in a wide area network
(WAN) distributed database environment. The RRDM provides the facilities and services
required for library management in the RASSP enterprise framework.

3. RRDM Functional Requirements

3.1. Data Model Creation and Maintenance

Reuse data management in the RRDM involves management of the descriptive data for
reusable design objects, the management of the physical design objects, and querying for

reusable design objects that are classified by the Reuse Design Object Classification
Hierarchy (RDOCH). As described in section 2.2, the ability to classify data in an
object-oriented hierarchical fashion is a requirement of the RRDM. Although a
pre-defined class hierarchy will be provided (i.e., the standard RDOCH, described in
section 5.1), the capability to modify and extend the classification scheme based on
corporate business rules and processes, or due to refinement of engineering design
methodology, and to facilitate incorporation of additional classes of reusable components
or additional descriptive data must be provided.

The RRDM shall provide the capability to classify data hierarchically, factor common
attributes into super-classes, and support inheritance of attributes at lower levels in the
hierarchy, including support for static multiple inheritance. New classes may be added to
the hierarchy, and existing classes may be moved within the hierarchy or deleted from it.
New attributes may be added to individual classes; existing attribute characteristics may be
modified and attributes may be deleted as part of the class definition process. Destructive
actions, such as deleting a class, may only be performed if no instances of the class or any
of its children exist, and if no other classes are related to it. Moving a class within the
hierarchy (i.e., changing its parent class or classes) will be permitted only in cases where
the existing parent class and new parent class are empty classes. Modifying the data type
for a given attribute or deleting an attribute altogether may only be done if no instance of
the class has assigned a value to that particular attribute. In order to maintain consistency
with the standard RDOCH, data model maintenance privileges will be limited to authorized
users.

The RRDM will provide facilities for creating instances of a class in the RDOCH,
modifying the values of the individual attributes of these instances, relating classes and
instances of classes to one another, and associating the physical reusable components with
particular instances of classes that model the related descriptive data. These facilities shall
be available through the graphical user interface, through API calls, and via a batch
mechanism for loading data in bulk.

Facilities to define custom data types, and to define class attributes based on these custom
data types is required. These include the following, at a minimum:

strings of varying length
integers
floating point numbers, including precision and rounding algorithms
dates
boolean values
structures
collections of structures
lists

The capability to define units of measure, associate units with class attributes, define
functions for unit conversion (e.g., volt to millivolt, degrees Celsius to degrees

Fahrenheit, etc.), and to provide default units based on the IEC 1360-1 standard [IEC,
1994] is also required. Support for conditional and grouped attributes, valid values
checking (range and enumerated values, depending on the data type), and conditional valid
values shall also be provided. These facilities are necessary in order to accurately describe
the rich variety of design data available in the RASSP environment.

A mechanism for specification of a complete reusable design object, and for associating
that specification with a particular class in the RDOCH is also needed. Prior to release of a
reusable element, given that the data has been integrated in the RRDM as a level 2 or
level 3 integration (see section 4.2), the set of files and design objects to be released will
be automatically checked against the specification to verify completeness. This specification
may include:

rules for determining whether or not the descriptive data and physical design object
is complete for each class of reusable design objects
maintenance of "state" information (e.g., released, in development, obsolete)
support for persistent collections of design objects (e.g., a set, bag, ordered set)
tool-specific encapsulation related rules

The capability to create and manage indexing information for individual class attributes
shall be provided by the RRDM. Tuning mechanisms, default indexing capabilities, and
related database analysis and maintenance tools shall be available to support the RRDM
DBA.

Visual aids, such as a graphical representation of the classification hierarchy, shall be
provided whenever feasible to assist the RRDM DBA or librarian in the class definition
process. These aids will also be provided for reference to general users as they traverse the
hierarchy in search of individual REs.

3.2. Query Capabilities

In order to promote the reuse of existing design information, sophisticated search,
retrieval, and viewing features must be provided by the library management system.
Descriptive data for REs will be maintained in the RRDM descriptive data repository,
while the physical design objects may be stored in a variety of locations and formats on the
enterprise network.

Physical design objects may include documents, specifications, software modules, logic
symbols, VHDL simulation models, PGM graphs, schematics, netlists, advanced bills of
materials, and so on. These objects may be stored in a variety of native formats (e.g.,
Interleaf, FrameMaker, Microsoft, Word, ASCII text, TIFF Group 4, Facsimile Group 3,
Postscript, or other tool-specific or standard format for documents) specific to the tool
that created them, or may be in standard interchange formats. They may be maintained as

physical files in a directory on the UNIX network, as text or other large objects within the
descriptive data or enterprise reuse design data repository, as design objects in the product
data manager, or in their native domain-specific tool environment(s).

Descriptive data (also called meta-data) for an individual RE must include all information
required to locate, view, recreate, modify, and reuse the element itself in a new design.
The search, retrieval, and viewing features of the RRDM shall provide the mechanisms
necessary to enable a user to find, view, and export REs of interest, regardless of the type,
physical location, or format of those particular REs. A methodology for defining the
descriptive data to facilitate this process is given in section 5.1.

As stated in section 3.1, the ability to classify the data in a hierarchical classification
scheme, factor common attributes into super-classes, and support inheritance of attributes
and operations at lower levels in the hierarchy are requirements of the RRDM. The search
and retrieval functions of the RRDM shall support this object-oriented classification
methodology. RRDM users shall specify a class in the hierarchy, and have the capability to
either limit the search to the specified class (i.e., perform a shallow search), or to search
the entire sub-hierarchy rooted at that class (i.e., perform a deep search). Queries may
be constructed using logical operators, such not, and, or, and xor ; as well as
comparison operators such as less-than, greater-than, and equal-to, depending on the
data type(s) of the attributes being queried. Support for wild cards within string-valued
attributes will also be provided.

In addition to the standard search capabilities, for those attributes that are defined with a
set or range of valid values, queries will be checked for correctness prior to execution.
Users will be given the option of selecting enumerated valid values from a list (or in the
case of a valid range of values, be given the appropriate range), rather than entering the
data manually. Where relationships to other classes of the RDOCH have been defined, the
option to qualify a search based on attributes of the related class(es) will also be provided.

The RRDM shall provide the capability to encapsulate third-party viewing tools, (e.g.,
word processors, spreadsheet programs, etc.), including viewers within the
domain-specific tool environment from which the query was launched (depending on the
level of integration- see section 4.2). Intelligent pattern matching, keyword searching,
SGML and HTML searching, and general comparison capabilities for documents, image
data, and other physical design objects are design goals, though not required. The RRDM
shall also provide the capability to export the physical design objects for reuse by the tools
that created them, or to other tools given that the data representation is compatible.

3.3. Methods

Support for three-tiered fully distributed methods on classes is required, enabling users to

run analysis functions on a spreadsheet containing search results
modify units of measure
execute formulas and custom reports

in the desktop client environment (UNIX workstation, PC, Mac) rather than executing all
external functions on the RRDM server. Additionally, support for distributed methods on
objects is necessary to support rules-driven meta-data normalization across manufacturers.
A mechanism for creating, integrating, and releasing new methods (including methods that
access external databases and tools in the RASSP environment), and for handling conflicts
between them (e.g ., when conflicting methods are released at different sites a tightly
coupled federation of RRDMs - see section 3.5) will be provided.

3.4. Reuse Design Data Management

As described in section 3.1, reuse elements may consist of a virtually unlimited number of
file types or objects, ranging from ASCII text to complex image information. They may be
stored in a variety of formats, including those that are native to the design tools, native to
specific work processing programs, or in standard formats that may be processed by
several tools, such as CFI-DR [CFI, 1994] and STEP [ISO, 1993]. They may be maintained
as physical files in a directory on the network, as physical objects in the either the
descriptive data or enterprise reuse design data repository, as part of a version tree
managed by DM 2.0, or as design objects maintained in the domain-specific tool
environment.

Given that the descriptive data for an individual RE includes sufficient detail necessary to
locate, view, and enable modification and reuse of the element itself, the RRDM must also
manage descriptive data related to multiple versions of these design objects. Additionally,
for the REs that are maintained as text or large objects by the RRDM, version management
and access control are also the responsibility of the RRDM. Version management
requirements are addressed in section 3.6. Authorization and user authentication
requirements are given in section 3.7.

In cases where the physical design objects are maintained (1) as physical files in the
network, (2) by the product data manager, or (3) in the domain-specific tool environment,
the RRDM is responsible for storage of descriptive data and for providing access to that
data only. The RRDM will not be held accountable for maintaining the integrity of the
design files themselves, in other words.

For those cases where the physical design files are managed (1) as text objects in the
descriptive data repository, (2) as binary large objects in the descriptive data repository,
or (3) by the enterprise reuse design data repository, several additional issues must be
addressed. These include:

WAN client/server access to the enterprise reuse design data repository for storage
and retrieval of the design objects
the capability to maintain multiple enterprise reuse design data repository servers at
one or more nodes anywhere in the WAN environment, (i.e., not necessarily
collocated with the descriptive data repository)
compression/decompression of physical design data, as needed for increased
network throughput

The mechanisms necessary for version management of the files maintained in the
enterprise reuse design data repository and/or descriptive data repository will be provided,
including basic check-in/check-out capabilities for creation and modification of those
design objects. Users will also have the ability to ‘undo’ a given check-out action. The
RRDM will provide a mechanism for maintaining consistency between the physical design
objects and related descriptive data. Complete change history for all physical design objects
will be maintained as a part of this process. For physical design data to be managed within
RRDM, the import/export features of the GUI, APIs, and batch data management utilities
must support text and binary large objects.

Within the RRDM classification hierarchy and descriptive data repository, mechanisms for
relating the descriptive data objects to the REs are required. Individual instances of classes
in the RDOCH may have multiple physical design objects of various formats associated
with them. A single physical design object may be applicable to multiple instances of the
classes of the RDOCH (e.g., an individual VHDL network architecture model for a
daughter card that is also described as a subset of the performance model for a particular
architecture). The capability to maintain physical design objects in a folder hierarchy is
required, where the related descriptive data may point to either a node (or nodes) in the
hierarchy or to a specific design object(s). Multiple instances of classes in the RDOCH may
point to the same node in the folder hierarchy, and a given instance may have one or more
nodes in that hierarchy associated with it.

Finally, the back-up and recovery processes and procedures for the RRDM must ensure
that there is no loss of data in case of an outage under reasonable operation conditions, and
support standard practices for transaction logging and accounting in all cases.

3.5. Distributed Architecture

The RASSP system supports a virtual enterprise, where the different organizations within
the enterprise may be distributed across multiple sites in a wide-area network,
heterogeneous environment. As a result, the RRDM architecture must support multiple
descriptive data and enterprise reuse design data stores across the WAN, enabling users to
query in a directory services fashion.

Individual sites may or may not have a complete instantiation of the RASSP system,

including a suite of CAD tools, the RRDM, and the product data manager. At a minimum,
the REs generated at a given site will be cataloged in the RRDM at that site.

The RASSP system will support two paradigms for interaction between RRDMs at the
various sites in a wide-area network -- a tightly-coupled federation of RRDMs and a
loosely-coupled federation of RRDMs. All RRDMs in a tightly-coupled federation must
maintain the same class hierarchy and class definitions. Any updates done to the class
hierarchy at one site will be propagated to the other sites in the federation. The reusable
design objects maintained in the RRDM at a given site s 1 may or may not be replicated at
the other sites, as determined by the site librarian(s), database administrator, and corporate
business processes. If a particular RE residing at a site s 1 (and not currently replicated at
site s 2) is required for use in a design at s 2 , it may be copied to s 2 , as needed. In this
case, the descriptive data associated with the reusable design object is made part of the
RRDM at site s 2 as well. Queries of the descriptive data across RRDMs within a
tightly-coupled federation shall be transparent to the user.

The RRDMs in a loosely-coupled federation do not share a common class hierarchy or
common class definitions. A designer at site s n will not be able to query across all of the
RRDMs in the federation at once in this case, though the facility to query them individually
will be provided. Any RE resident at site s 2 that is required for use in a design at s 1
will be replicated at s 1 . Descriptive data associated with the reusable design object will
necessarily be modified by the librarian at site s 1 prior to insertion to resolve any
differences in the descriptive schemas between the two sites, by executing the workflow
shown in Figure 2-2.

3.6. Release Management

Release Management in the RRDM involves two distinct areas of functionality: (1) the
generation and maintenance of new versions of a reusable design object, including
maintenance of the descriptive data about that RE, and (2) notification of the users
(subscribers) of the design object about the new version.

3.6.1. Usage Lists

When identifying an existing RE for potential use in a new design, the question, "Where
has this been used previously, and how was it used in that case?" must be answered. in the
same context, it is important to note when and for what purpose a particular modification
was made: was a bug fixed, or was the functionality modified to meet new requirements?
In the case of the former, the modification should be propagated to any and all other

designs that have incorporated the same RE (in a user controlled manner); in the latter
situation, that judgment must be made on a case by case basis.

In response to these issues, individual REs will have one or more "usage lists" associated
with them, storing information about each instance where the design object has been used.
These usage lists contain information such as the site identifier, the project, contact person,
an identifier for the design, the relevant date, and so on, for each design in which a
particular RE is used. An expiration date or obsolescence code, indicating when a
particular reference may be removed from the list, may also be added by the designer. The
RASSP librarian may optionally specify upper and lower bounds for the expected life
cycle of a particular usage list element which overrides the entries made by individual
design engineers. Full query capabilities against the usage lists will be provided by the
RRDM.

When a particular RE is modified and a new version is created, a report indicating that the
RE has been changed will be sent to any designer whose name appears in the subscription
list for that element, as well as to the librarian. The individual designers may then
determine whether or not that same change is required in their own designs.

3.6.2. Version Management

Configuration Management (CM) in the RASSP environment is defined as management of
the versioning of design objects (REs). It involves the creation, approval, and release of a
particular version of a design object, as well as organizing those versions and assembling
compatible versions of design objects to form a complete release of a given product. In
order to minimize the incompatibilities between different CM mechanisms across the
various tools that comprise the RASSP environment, a common model for configuration
management has been proposed [LM-ATL, 1994b].

The majority of the features of this common model do not apply to version management of
REs, as the RRDM is intended to manage released versions only. The mechanisms
implemented for managing multiple versions of design objects in the RRDM must be
compatible with those defined in this model, however. In particular, mechanisms for
transferring version information between the RRDM and product data manager, and
between the RRDM and domain-specific tools must be clearly defined, and consistent with
this common model where possible. In other words, the RRDM should be capable of
accepting version information that is modeled as per the CM conformance class of the
STEP (Standard for the Exchange of Product Model Data) standard AP203 [ISO, 1993],
and of producing it when exporting CM information to the product data manager or
domain-specific tools, given that it is feasible to do so.

Design engineers and librarians may submit new versions of a reusable design object for
inclusion in an RRDM, as needed. These new versions may correct problems that exist in

older releases of the same element, or may be different implementations of or upgrades to
existing versions of a particular RE. In the RRDM, multiple releases of a given RE will be
assigned the same object identifier with unique revision (version) ids. The notions of
global , shared , and private workspaces , and of released , working , and transient
versions of individual design objects, as defined in [LM-ATL, 1994b], do not apply to the
RRDM per se. All of the physical design objects managed by the RRDM will be released
versions, by definition. For REs identified prior to release, whose physical design objects
are maintained by the product data manager or domain-specific tool, CM status
information may be included in the descriptive data for reference purposes.

A particular version of a reusable design object may be deleted from an RRDM with the
following constraint: if the usage list for that RE is non-empty, then it is marked for
deletion but will not actually be deleted until the usage list becomes empty. If a particular
RE has been marked for deletion, it shall not appear in the list of results returned by any
query unless that query is performed by the RRDM DBA.

3.7. Authorizations and User Authentication

As stated in [LM-ATL, 1994a], the various CAD and enterprise tools that make up the
RASSP environment use diverse and incompatible models and mechanisms for handling
authorization information. In order to facilitate the transfer of authorization information
between tools and limit the overhead involved in maintaining this information, a common,
generic approach to the authorization problem has been proposed for RASSP. This
approach provides a logically consistent framework for handling authorizations in an
object-oriented environment.

Given that many of the tools that will be integrated into the RASSP enterprise framework
are not object-oriented, however, the following capabilities, at a minimum, must be
supported:

common authorization type definitions
a common user mapping paradigm
a common approach for applying authorizations to managed elements

In addition to the problem of consistent handling and interchange of authorization
information, the problem of user authentications must also be addressed. Common
authentication problems include password synchronization, multiple logins across tools,
maintenance of multiple authentication databases, and so on. In order to address the user
authentication issue for the RASSP program, the following capabilities are desirable:

a single point of entry / maintenance point
a single, initial authentication
password and general authentication synchronization

a common user description
a project orientation capability in support of tools such as the product data manager

The approach defined in the paragraphs to follow for handling authorizations and user
authentications in the RRDM are consistent with the Lockheed Martin ATL proposal, meet
the design goals listed above for authorizations, and suggest a mechanism for a third-party
integration tool to manage RRDM user authentications for RASSP.

3.7.1. Authorizations

As per the authorization model proposed by Lockheed Martin ATL [LM-ATL, 1994a],
authorization information for the RRDM may be defined as ordered triplets {o i , r j ,
t k }, where o i is an authorization object hierarchy, r j is an authorization role in an
authorization role hierarchy, and t k is an authorization type in an authorization type
hierarchy. Authorization objects are organized as per the RASSP Reuse Design Object
Classification Hierarchy (RDOCH) for the RRDM. An authorization role is a collection of
users that have the same set of authorizations on the same set of objects. Authorization
roles may by organized as a directed, acyclic graph, as described in the ATL model. In
other words, one authorization role must be capable of inheriting privileges from another
(i.e., can manage another). An authorization type defines the type of operation that may
performed on a design object. Figure 3-1 defines the authorization type hierarchy that has
been adopted for the RRDM.

"Grant" authorizations, as shown in the figure, are privileges to grant an authorization to
another role in the role hierarchy. The directed links between any two nodes (e.g., Grant
Destroy/Delete, Destroy/Delete) represent an implicit relationship between the nodes. For
example, authorization for a librarian to update Assembly information implies the
authorization to update Module and Substrate data, and so on, as lower levels in the
hierarchy are traversed. This authorization implies the same authorization for the RRDM
DBA, who is a member of the authorization role parent class. Also, update authorization
implies that the librarian has read and execute privileges, as per Figure 3-1.

The RRDM will support both positive and negative authorizations. An implicitly or
explicitly positive authorization {o i , r j , t k } must exist for an operation of type t k
to be performed by a user belonging to role r j on a data object belonging to the
authorization object o i . A positive or negative authorization specified on a node n i in
an authorization hierarchy may be overridden by an authorization on node n j , occurring

at a lower level in the hierarchy. Authorization objects may be defined at the class level,
object level, or on a per class attribute basis in the RRDM.

The authorization object hierarchy and authorization role hierarchy may be customized by
the RASSP system administrator or DBA. The authorization type hierarchy is static,
however.

Authorization data exchanged between the RRDM and other tools will be modeled using
the Configuration Management conformance class of the STEP standard AP203 [ISO,
1993], to the extent possible.

3.7.2. User Authentication

Two approaches to user authentication must be supported by the RRDM in order to meet
the goals stated above: (1) to permit third-party tools such as the enterprise tools or
domain-specific tools to launch the RRDM, uniquely identify the user and user role, and
bring up a default configuration for that user without requiring a separate login, and (2) to
support the use of the RRDM in a stand-alone mode, where an external login, including
username and password, is explicitly required. Special applications that may run outside
the standard RRDM GUI, (e.g., API-based programs, batch data synchronization
processes that are part of the product data manager to RRDM integration), must also use a
well-defined mechanism for communicating authentication information.

For all users and user roles, authentication information for the RRDM will be maintained
in the descriptive data repository. This guarantees that regardless of the authorizations
granted to a particular user, role, or application globally, and regardless of the node in the
WAN at which this user or application is running, access to the descriptive data and REs
for a particular RRDM is controlled by the RRDM server. For a tightly-coupled federation
of RRDMs, as described in section 3.5, authorization information must be shared across
the federation.

Ideally, authentication information should be maintained centrally by an authentication
server. This server should check a user’s password once, on initial login to the RASSP
enterprise desktop environment, and provide an encrypted "ticket" to the desktop
environment that can then be used to authenticate the user to any other RASSP tool.
Specification of the requirements for this authentication server is beyond the scope of this
document.

A command line launch facility, allowing an external process to automatically invoke the
RRDM with the required user authentication and role information shall be provided by the
RRDM. By default, user authentication will be taken from the user’s environment for
command line launch purposes. If the username matches user authentication data contained
in the RRDM, an automatic login for that user and user role shall be performed. User

identification provided on the command line will take precedence over information
available in the environment. If the username given differs from that available in the
environment, however, explicit password verification will be required. This feature will
allow the DMM to launch the RRDM so that the user interface will be automatically
configured for that user and user role combination, giving the appearance of a "single
point of entry" (i.e., eliminating multiple logins from the users’ perspective). It will also
appear that password verification and general authentication was performed by DMM (or
the desktop environment). It does not support a single entry/maintenance point for
authentications data, however, which requires integration with an authentication server as
proposed above.

3.7.3. Access Control Lists

All physical design objects maintained in the RRDM shall have access control lists (ACLs)
associated with them. These lists shall specify what actions can be performed on the design
objects themselves by which users. Authorization information shall be consistent with the
model described in section 3.7.1, above.

3.8. Tool Interoperability and External Process Integration

Two kinds of problems must be addressed by the RRDM in order to provide a complete
solution for integration between the RRDM and other external tools: data integration and
control integration . Each of these areas will be discussed in the paragraphs that follow.

3.8.1. Data Integration

Data integration is the most obvious problem to solve for the RRDM, and includes batch
data import and export capabilities, programmatic access (read/write) through application
programming interfaces (APIs), and on-line data import and export through the graphical
user interface. Batch data management facilities are required primarily for moving large
numbers of objects between applications, loading new libraries, or supporting incremental
updates of existing design data. These facilities must also support data model modifications,
as defined in section 3.1. API access supports the same (or similar) functionality available
through the user interface, programmatically, enabling integrators to incorporate
additional capabilities for data translation and manipulation, as needed. API programs may
run concurrently with other programs that perform additional operations on the data, but
require the use of a license, and performance issues and/or resource limitations must be

considered for large transactions. On-line import and export functions facilitate "copy and
paste" and "drag and drop" operations from the RRDM GUI environment to windows in
which another tool is running, but the volume of data that can be exchanged in this manner
is limited. These three mechanisms, provided together, can support all of the RRDM data
integration requirements identified to date.

3.8.2. Control Integration

The problem of sophisticated control integration, where an external process can "drive"
the RRDM user interface, or through which the RRDM can command another application
to take action, is much more difficult to address. Among other things, as suggested by
Julienne and Holtz [Julienne and Holtz, 1994], facilities for control integration must:

eliminate the necessity for NxN bilateral integrations between the RRDM and
external tools
allow other applications to be coded, compiled, linked, and installed independently
allow RRDM client applications to be replaced or rewritten without requiring
modification of the other applications with which they interact
operate in the enterprise network environment or in single user mode transparently
to the user
be standardized to the extent that other third-party developers can use them without
requiring in-depth knowledge of the underlying RRDM source code

Clearly, given the integration goals for the library management system in the RASSP
environment, inherent support for tool interoperability must be provided. Given the
requirements listed above, a SunSoft, ToolTalk, Object Management Group (OMG)
Common Object Request Broker Architecture (CORBA), and/or SunSoft, Distributed
Object Management Facility (DOMF) based interprocess communications protocol (IPC)
for UNIX applications, including a standardized interface definition language (IDL)
compiler for language-binding elements is required. An additional OLE -compatible IPC
for Windows applications is also desirable, though not required to support the current
enterprise environment.

4. External Interface Requirements

4.1. User Interface Design

As stated in section 2.3, due to the diversity in roles and level of computer literacy that
RRDM users may have in a given corporate or enterprise environment, the graphical user
interface (GUI) of the RRDM must be highly configurable on a per user and user role
basis. Each individual user must be able to use the library management system at their own

level of understanding, with minimal additional training. This implies not only ease of use
from a GUI standpoint, including ease in transitioning from one client platform to another
(e.g., UNIX/X11/Motif to Microsoft, Windows) from a user perspective, but that the
implementation of the RASSP Reuse Design Object Classification Hierarchy (RDOCH)
must be intuitive and limit the amount of "thrashing" a user is required to do in order to
find a reusable design object.

The following set of requirements addresses the GUI style and development methodology
requirements for this task. An implementation approach for the RDOCH is given in section
5.1. Note that one of the LM-ATL goals is for all enterprise and domain-specific tools
developed on the program to be Common Open Software Environment (COSE) compliant.
For the RRDM, meeting the OSF/Motif, Level One Certification criteria is equivalent to
compliance with COSE guidelines. Development of custom widgets, such as spreadsheet
widgets for comparison of class attributes or instances of specific RDOCH classes is
discouraged, and use of standardized, commercial widgets is preferred when feasible.

From a behavioral standpoint, all RRDM UNIX-based client GUI applications shall
comply with the OSF/Motif, Style Guide , and in particular, shall meet OSF/Motif,
Level One Certification criteria.
Client applications’ GUI behavior shall be consistent across UNIX platforms,
including SunOS 4.1.4, Solaris 2.4, and HP-UX 9.1, at a minimum.
Cross platform behavior (e.g., Motif to Microsoft, Windows) shall be consistent
to the extent possible.
Context-sensitive help shall be provided for all RRDM GUI applications, for each
unique window, menu option, and dialog box, at a minimum.
All primary search, results, browser, editor, and data model maintenance windows
shall be configurable (and saved if desired) on a per user basis for all classes in the
RDOCH.
Precedence for automatic loading/display of class configurations shall be (1 by user,
(2) by user role for the session, and (3) the default system-generated configurations.
Default configurations shall be automatically generated for each class, and modified
appropriately as class attributes, relationships, and general display-related
characteristics are updated.
Graphical representations of the RDOCH and folder hierarchies of reusable design
objects, with visual cues indicating the current class, shall be provided whenever
possible.

4.2. Levels of Data and Tool Integration

As described in section 2.2, one of the key requirements for library management in the
RASSP environment is to integrate the multiple libraries and sources of reuse data to
provide a single source for searching. Once a reusable design object is identified by
searching the RRDM, that RE may be inserted into a particular CAD tool’s design data
space using either a manual or automated insertion process. A manual insertion process

implies that the RRDM will provide information regarding the location and the format of
the design object, and the design engineer will need to retrieve that RE, perform any
necessary data translations, and insert it into the CAD tool’s design data space. An
automated insertion process implies that the RRDM will communicate with a particular
CAD tool through an inter-process communication (IPC) mechanism to insert the RE into
the CAD tool’s design object space. Any necessary data translation will also be
automatically performed.

Data translations may be required when reuse data created in a CAD tool CT-A need to be
used in another CAD tool CT-B, and the two tools use incompatible data representations.
Data translations are performed using standard data representations as intermediate
representations. For example, a data flow from CT-A to CT-B is supported by translating
the design data produced by CT-A, from the native data representation of CT-A to a
representation consistent with a Standard-X, and CT-B reading data represented in
Standard-X, and translating it to the native representation of CT-B. A data flow from
CT-B to CT-A is made possible using the reverse process. Examples of standards that may
be used for data translation include the Electronic Data Interchange Format (EDIF) [EIA,
1993], the Initial Graphics Exchange Specification (IGES) [US PRO, 1993], and the CAD
Framework Initiative Design Representation (CFI-DR) [CFI, 1994].

The individual CAD tools and their associated libraries may be integrated with the RRDM
in one of the three levels described below:

Level 1 Integration - maintenance of descriptive data only in the library itself,
with references to the physical design objects within the native tool environment
Level 2 Integration - maintenance of both the descriptive data and physical design
objects in the library, with the capability to view the design objects in native form
(Level 1 Integration plus design data integration)
Level 3 Integration - automated design data exchange and meta-data
synchronization between the library and enterprise/design tools (Level 2
Integration plus tool integration)

A CAD Tool CT-A is said to have a level 1 integration with the RRDM if the descriptive
data repository of the RRDM is populated with the descriptive data associated with the
reusable design objects in the CT-A library, with references to the location and
composition of the reusable design objects. This level of integration enables searching of
multiple vendor libraries from the RRDM. Once the appropriate design object is
identified, the design object is inserted into CT-A’s environment using a manual process.
Given the requisite tool encapsulation information, some design objects may also be viewed
using CAD-tool-specific viewers or viewers for graphical REs maintained in standard
representations, such as Postscript〉 and Graphical Interchange Format (GIF).

Level 2 integration of a CAD tool CT-A to the RRDM subsumes level 1 integration;
additionally, the reuse data repository of the RRDM is populated with the reuse data
objects in CT-A’s library. This enables viewing as well as semi-automated transfer of the

design objects to the CAD tool environment.

A level 3 integration of a CAD Tool CT-A to the RRDM subsumes level 2 integration,
and provides for automated insertion of reusable design objects from the RRDM to the
CAD tool, bi-directional meta-data synchronization, and customized data exchange through
the user interfaces of the CAD tool and RRDM, as required.

4.3. Standalone Libraries

Standalone libraries consist of reusable design objects sourced from outside vendors,
government and commercial libraries available in the public domain, libraries available
through various research organizations, design data available within the virtual
corporation, and program-specific libraries. They may be tool-specific proprietary data
formats, or they may consist of standards-based formats that can be accessed by a number
of different tools, such as VHDL simulation model and C++ software libraries. The RRDM
must provide the facilities for classifying, cataloging, and maintaining the rich set of
reusable libraries and design data identified to date, as well as other libraries that may be
identified over the course of the program.

Examples of standalone libraries of reusable design data purchased for RASSP benchmark
team use from an outside vendor include the Logic Modeling〉 SmartModel〉 Library of
full-functional VHDL simulation models and the MentorGraphics〉 Board Process Library
(licensed separately from Falcon Framework). Public domain RE libraries may include
web-based software libraries, such as the ARPA ASSET (Asset Source for Software
Engineering Technology) libraries, USAF ESD CARDS (Central Archive for Reusable
Defense Software) libraries, and NASA COSMIC (Software Technology Transfer Center)
libraries, for example. Libraries sourced from the research community may include
RASSP-funded VHDL simulation model libraries from the University of Cincinnati and
the University of Virginia, MIT design libraries for the Benchmark 2 SAR Processor, and
so on. Additional Lockheed Martin corporate libraries currently in use on the RASSP
program include EPI-team MentorGraphics〉 LMS libraries of released component data
(logic symbol, geometry, and catalog entry information), supplier management
information from the existing GE Consolidated Purchasing System (CPS), software
libraries available from other Lockheed Martin companies and divisions, etc.
Program-specific libraries may include architecture models and LMS component libraries
currently under development for Benchmark 3.

Several questions must be answered prior to integration of any standalone library. Some of
these are implied in the workflow given in Figure 2-2. Reliability of the reusable design
objects must be verified. They must be classified in the RDOCH, and new classes and/or
attributes must be created, as needed. Sizing, network location, composition, and RDOCH
class-specific meta-data must also be determined. Although most of the example libraries
consist of data in standard formats, there are a few, including the MentorGraphics〉 LMS

data (Board Process and EPI-team libraries) that are CAD tool specific. These must be
loaded into the Mentor Graphics Falcon Framework environment and maintained as level
1 data, rather than being maintained in the Enterprise Reuse Data Repository as level 2
data. Standalone libraries do not qualify for level 3 integration, by definition. A complete
description for classification of REs for incorporation in the RRDM is given in section 5.1.

4.4. Enterprise System Integration

As indicated in section 2.1, the enterprise framework provides the facilities required for
workflow management, design data management, library management,
computer-supported collaborative work, and remote tool access for RASSP. In support of
these tasks, several interfaces for batch data synchronization and real-time data exchange
between the library management system and other enterprise tools are required. The
following sections describe the minimal set of functional requirements for these interfaces.

4.4.1. Design Methodology Manager Integration

The Design Methodology Manager (DMM) and related project maintenance tools form the
basis for the enterprise framework from an RRDM perspective. RASSP users may launch
any tool in the environment from DMM (given that they have proper authorizations), or a
tool may be launched by DMM during execution of a specific workflow step. This
interface may be described as a relatively straightforward tool encapsulation. Users who
are logged in to the DMM and require access to the RRDM may select the appropriate icon
from the available choices, automatically invoking the RRDM with the requisite
authentication and user role information. Appropriate user identification and role
information may be supplied to the RRDM on the command line for this purpose.

Underlying network and security features required by the RRDM for this interface are
provided by the RASSP enterprise environment. These features will interact at an implicit
level, through the standard operating system environment, and will be essentially
transparent to the operations of the RRDM and related interfaces. The primary areas of
interaction will be in the network TCP/IP named services area, required by the RRDM
daemon servers and clients to connect to one another in either the LAN or WAN
environment, and license management.

In addition to the command line launch feature set, the interprocess communications (IPC)
mechanism described in section 3.7 will support:

alerting the RRDM that a current task was initiated as a part of a workflow step
(e.g., creation of a new RE)
notifying DMM that a specific task has been completed

The RRDM IPC shall include generic message types that provide a mechanism for
exchange of alert/notification information between the RRDM and DMM. A mechanism
shall also be provided to manage the status of current tasks initiated through the DMM on a
per user basis, to facilitate task management across multiple sessions/logins.

4.4.2. Product Data Manager Integration

The Enterprise Product Data Manager (EPDM) provides the facilities necessary to support
configuration management and control of design data that may reside at various sites in the
enterprise network while these designs are considered active. For the purposes of this
document, as stated in section 2.4, the EPDM is implemented in the RASSP enterprise
framework in the Intergraph Data Manager (DM 2.0) tool. The information managed by
the EPDM may include all product (or project) related descriptive and physical design data
-- "data that is part of, or directly tied to, the development of a signal processor"
[Intergraph, 1994]. The EPDM is responsible for controlling access to, maintaining
version control of, vaulting, and archiving the product-related descriptive and physical
design data developed in the RASSP enterprise environment.

Data managed by the EPDM may include any and all design objects that are required for
execution of a given process step at any point in the life cycle of the product. Although
product data management (PDM) systems have traditionally limited data management to
the information required to reproduce/rebuild a particular product, this definition reflects
a more comprehensive approach. As such, there has been some confusion on the program
to date regarding where the line is drawn between library management and design data
management. Distinguishing characteristics may include:

released design data vs. work in progress
design objects that are complete entities but would normally be considered a subset
of the overall product, and would not typically be "sold separately" (e.g., a
released requirements specification, daughter card, processor module, algorithm
library, network architecture model, etc.)
supporting data vs. design objects required for use in a process step (e.g.,
supporting libraries for the MentorGraphics〉 Falcon Framework tools may
include logic symbols, geometries, simulation models, and so on, that are not called
out in the workflow but are required for successful operation of the tools)

Design data maintained by DM 2.0 is characterized by the project/product in which it is
used. Reusable design objects are described in the RRDM by their characteristics. For
example, attributes for a VHDL model managed by the RRDM include external and
internal timing and value resolution, model type, modeling language, etc., as per the
RASSP taxonomy for VHDL models [LM-ATL, 1995c]. In the product data manager, it
may be described at a very high level as a performance model for a particular architecture

on a specific project, with attributes and references that may or may not be migrated to the
RRDM.

In addition to the characteristics listed above, additional information that may be described
by the RRDM and viewable on-line (but would not be considered product information)
includes:

product information (vendor data sheets, application notes, engineering alert
notices, etc.)
specifications, standards, and other traditional references
standalone reference data (e.g., the Logic Modeling〉 SmartModel〉 library,
government software libraries, etc.)
supplier information

Given this distinction, the exchange of data between the RRDM and DM 2.0 is limited to
descriptive data and related design objects at the level at which they are managed by DM
2.0 unless there is manual intervention by the RRDM librarian. If , for instance, the
schematic for a particular design is identified as reusable, and it is managed in DM 2.0 as a
single compressed binary large object (BLOB) rather than as a distinct set of "intelligent"
design objects (i.e., net list, native Design Architect schematic, user documentation files,
specification, etc.), it will be managed in the RRDM as a BLOB unless the RRDM librarian
intervenes and executes a set of well-defined steps to convert it to an "intelligent" reusable
design object.

Three usage scenarios have been defined by the enterprise team to describe the interaction
between the RRDM and DM 2.0. The first of these is fairly straightforward, and reflects
the requirement for designers to be able to reuse existing design data in a new design. At
any point during the design process, when a designer sees the need to incorporate a new
element (e.g., function, module, algorithm, etc.), they will be provided with the
capability to search for similar REs in the RRDM, find one or more that fit their needs (if
they exist), and copy the descriptive data and physical design objects into the DM 2.0 (or
CAD tool) environment for incorporation in their design.

The other two scenarios are related to creation of REs from design information that is
currently active in the DM 2.0 environment. On completion of a design, if the designer has
identified one or more elements of that design as candidates for reuse, once the proper
approvals have been obtained and data migration processes (if any) have been completed,
the capability to copy the descriptive data and physical design objects from DM 2.0 to the
RRDM is required. Secondly, at any time during the design process, prior to release of the
entire project, the designer may identify an element as reusable. In this case, the
descriptive data may be copied to the RRDM, but management of the physical design
objects is retained by DM 2.0. As a result, to make this information available to other
designers in the enterprise network, references to the physical design data must be created
in the RRDM, with the notation that this RE is considered to be work in progress rather
than a fully released element (unless this portion of the design has actually been released).

On completion of the design (i.e., release to production), the actual physical data will be
copied from DM 2.0 to the RRDM, and DM 2.0 references will be removed.

In summary, the following functions are required for integration between the EPDM (DM
2.0) and RRDM:

enable creation of new/updated REs in the RRDM from descriptive data maintained
in the EPDM at any phase of the design process

1. For an active design, descriptive data for a new reuse element will be
inserted in the RRDM, including references to the various design objects,
documentation, test data, and so on, but the physical design objects will
remain under DM 2.0 control.

2. On completion of a design, both the descriptive data and physical design
objects will be copied to the RRDM.

enable transfer of existing design information from the RRDM to DM 2.0 for use in
new and/or modified designs, including descriptive data and related design files
provide for the maintenance of consistent access controls and version information
between the two tools

Due to the fact that a high degree of user interaction will be required in order to complete
the process of creating an individual reuse element and of incorporating reuse elements
into current designs, the following minimal capabilities must be provided by the
integration (both through the GUI and via API calls):

the capability to launch the RRDM from within DM 2.0 and search for REs based
on available descriptive data (RDOCH class and configuration selection, and search
window population shall be automatic wherever possible)
the capability to select one or more descriptive data objects from within the RRDM
and drag and drop (export) them into the DM 2.0 environment, causing both the
descriptive data and related physical design objects to be made available to DM 2.0
for incorporation in the user’s workspace
the capability within DM 2.0 to import descriptive data and physical design objects
from the RRDM, resolve attribute discrepancies and complete required descriptive
information through interaction with the user, and incorporate the RE into the
current workspace
the capability to identify selected physical design information in DM 2.0, determine
(or solicit from the user) the RDOCH target class, create baseline RRDM
descriptive data for that RE based on information available in DM 2.0, and drag
and drop both the template descriptive data and physical design object(s) into the
RRDM environment
the capability to automatically invoke the RRDM editor from DM 2.0 (if it is not
currently displayed), and display the partial instance of the RDOCH class to the user
for completion and insertion, copying all reference information for the physical
design data and/or the actual data objects to the enterprise reuse design data

repository, as required
the capability to maintain mapping information within the RRDM to indicate which
RRDM attributes correspond to which DM 2.0 attributes on a per class basis
(including an indication of "ownership" and mechanisms for conflict resolution
encountered during automated data synchronization)

The interprocess communications mechanisms necessary to fulfill these requirements (for
the RRDM) are described in section 3.7.

4.5. Domain-Specific Tool Integration

4.5.1 Candidate Tools

Of the tools that have been encapsulated in the enterprise framework for Build 3, several
have been identified as potential candidates for domain-specific (level 3) integration. These
include:

MentorGraphics〉 Library Management System (LMS) and Design Architect
JRS Research’s NetSyn
Alta Group of Cadence Design Systems’ Signal Processing WorkSystem (SPW)

Additional Mentor Graphics Corporation (MGC) tools, MATLAB〉 from The Math Works,
Inc., MCCI’s autocode generation tools, Savantage’s SavanSys , the LogicVision DFT
tools, and others are also under consideration. Additional tool integrations may be
identified over the course of the program.

To date, the requirements for these tool integrations, with the exception of
MentorGraphics〉 LMS and Design Architect , remain to be defined.

4.5.2 Mentor Graphics Library Management System and Design Architect

There are a number of overriding design goals for this integration, specific to the job
function being performed (namely, the CAE/CAD/CAM librarian and hardware designer).
From the librarian’s perspective, the integration should provide the facilities needed to
locate and maximize reuse of existing component and library data (logic symbols,
geometries, simulation models, catalog entries, etc.), sourcing the information from
anywhere in the enterprise network. It should also minimize the necessity for manual
intervention, which can introduce error when generating library data. The capability to
create and modify REs identified by the librarian must be supported. Finally, this
integration should provide as much automation as possible in synchronizing the RRDM
descriptive data repository with the LMS catalog and libraries across the enterprise. For

the hardware designer, the ability to search for and easily incorporate REs in a new design
is the primary objective. The designer should also be provided with the facilities necessary
to create new REs and maintain existing library data, as needed.

The primary functions required for this integration include:

bi-directional data exchange, enabling (1) creation of new and/or updated LMS
catalog files during development of a part within lms_libr , either on-line through
the RRDM graphical user interface or nightly, in a batch mode if the descriptive
data repository has been updated, based on the descriptive data contents, and (2)
maintenance of hardware design view descriptive data and related physical design
objects (or references to them) in the RRDM based on LMS catalog files on release
of a part from lms_libr
the capability to launch the RRDM from within da_lms and search for REs based
on (1) the part instance (logic symbol selected in the schematic) and (2) the
lms_user Part Selector menu item
the capability to place part instances in da_lms based on descriptive data and REs
maintained in the RRDM
the capability to launch the RRDM from within lms_libr and search for applicable
REs using the LMS library selector mechanism
the capability to create/modify LMS catalog files based on data contained in the
RRDM, and automatically open the appropriate catalog file within lms_libr for
edit
the capability within the RRDM to maintain mapping information indicating which
RRDM attributes correspond to which LMS catalog file properties on a per class
basis, including identification of "ownership" to resolve conflicts in data
synchronization
the capability to maintain additional mapping information indicating which da_lms
properties correspond to which RRDM attributes for the purposes of launching a
search in the RRDM based on an instance in a da_lms sheet
the capability to create and modify a shopping list of parts in the RRDM and
transfer the catalog references to lms_user (creating the shopping list in da_lms)
from which parts may be selected during the design process

The use of standard OSF/Motif features, such as drag and drop, for ease of use is
recommended whenever feasible. Additional requirements may be defined based on user
feedback.

5. Reuse Design Object Classification Hierarchy
 Development

5.1. Methodology

Program goals related to development of the RASSP Reuse Design Object Classification
Hierarchy (RDOCH) include:

creation of a model that is general enough such that it fits most corporate
environments or can be easily adapted to do so
ensuring that the data model, data dictionaries, and related specifications for
reusable design object sets provide complete, consistent, and correct classification of
data regardless of the source or format
creation of a model based on a methodology and data dictionaries for individual
classes that can become the basis for an industry standard

An important criterion for the RDOCH is that it should be general enough to be adopted as
an industry standard. As a standard hierarchy, it should lend itself to extensions without
requiring destructive changes. Destructive changes include deletion of classes in the
hierarchy, deletion of attributes in the hierarchy, and moving classes within the hierarchy.
Adding new classes to the hierarchy and adding attributes to the existing classes will be
allowed. These restrictions are necessary so that future releases of the RDOCH will be
upwardly compatible with previous releases (i.e., previous integrations of CAD tool
libraries with the RDOCH will continue to be valid). The model must be generic, or
integration of additional classes over time will require numerous modifications, and it will
not be acceptable to the corporate community that may benefit from its development.
Consistent, standardized classification of data is a necessity, or search results may be
unpredictable.

Specific goals for the RDOCH itself are:

to provide a framework for classifying design objects in the RASSP domain
to capture all descriptive data relevant for design objects in the RASSP domain
using an object-oriented paradigm
to provide a framework for searching for reusable design objects using an
object-oriented paradigm

The user may execute a search based on the descriptive data, locate the appropriate design
object, and then access that design object for incorporation in a new or revised design. The
design data associated with a design object may include a data sheet, a simulation model, a
schematic, etc.

Additionally, the descriptive data repository developed under the RASSP program must be
populated sufficiently to demonstrate its utility. Ideally, the resultant library demonstration
should also show how any implementation of the classification hierarchy can be customized
to fit a variety of corporate environments that may use a different mix of tools and COTS
source data, or that may produce a wider variety of products.

To achieve these goals we have extended the methodology described in International
Electrotechnical Commission Draft International Standard 1360-1 for classifying electric
components [IEC, 1994]. The salient features of this methodology can be summarized, as
follows:

select the type of reuse data to model
source data from applicable tool vendors, government and commercially available
libraries, RASSP enterprise and demonstration/beta site team members, and so on
determine the set of potential descriptive data attributes to be managed (based on
RASSP requirements, user input, analysis of products output by the tools, analysis
of the library data required to feed the workflows and tools, etc.)
for each potential attribute, specify the semantics and valid values
determine where this descriptive data fits in the RDOCH, creating new classes only
in cases where there are either a high number of unique attributes or several
significant, unique attributes
create a complete specification for both the descriptive data dictionary and reuse
design objects

Specifications for each class of reusable design data consist of:

preliminary and final classification trees
a list of standards and/or references used to design the class attributes
source data dictionaries (attribute lists and definitions available from vendors,
government organizations, benchmark team members, etc.)
spreadsheet comparison of potential attributes and valid values
final, standardized attribute list and definitions, with rationale
legal/valid enumerated values or valid range for each attribute, appropriate unit of
measure, and sort order
source data object list across suppliers/sources, and set of target vendors and
libraries
classification rules, vendor-specific data normalization rules
definition of a complete design object (e.g., VHDL models may have related
documentation, test vectors, etc.)
location and management methodology (including level of integration) for the
physical design objects
the set of tools to be encapsulated in order to view the design objects, and
encapsulation information (location, invocation syntax, and so on)
sizing projections for both the physical design objects and descriptive data
modification frequency, methodology, and access limitations and/or restrictions

A complete RASSP Reuse Design Object Classification Hierarchy (RDOCH), data
dictionaries defining the descriptive data for each class, and specifications for the reusable
design objects described by each class will be developed over the course of the program
and published for review. A preliminary high-level version of the RDOCH is given in
Figure 5-1.

5.2. Data Views and Relationships

The implementation model for the RDOCH will support multiple views of the data
managed by the RRDM. These may include (but not be limited to):

Descriptive Data View
Design Data Views (i.e., views that are applicable to multiple high-level RDOCH
classes, such as Simulation Model, Design For Test, and Documentation views)
Hardware Design Data Views (e.g., BSDL File, Geometry, LMS Catalog, Logic
Symbol, Package, Pin Property, and Schematic)
Supplier/Manufacturer Views (e.g., corporate aliases, addresses, certification
information, commodity tracking, and so on)

The Descriptive Data View of the RRDM is provided by the RDOCH . It models the
descriptive data about the design objects that may be created/used within a RASSP design
environment. The interior nodes of the hierarchy are abstract classes, and the leaf nodes
are concrete classes that may be populated with real design objects. Examples of concrete
classes include "Microprocessor", "Demodulation Primitive", "FIR Filter",

 Figure 5-1. The RASSP Reuse Design Object Classification Hierarchy
(Preliminary)

"Instrumentation Interface Module", etc. Relationships between classes may include
references from the Simulation Model class to the Author (Contact/Employee) of the
model, Component Supplier, and Design Tool and configuration used to generate the
model, for example, or from the Component to the Supplier/Manufacturer, Package, and
Product Information available. The hierarchy and specification of these relationships will
be further refined and developed by analyzing system use and user feedback over the
course of the program.

Views provide an alternate way of accessing design data in the RRDM. For example, a user
may go to an on-line data book and use the table of contents to locate an appropriate data
sheet. The RRDM will also maintain limited descriptive data to locate the design objects
within each individual view.

5.3. Domain-Specific Libraries

Numerous standalone and tool-specific libraries of reusable design data have been
identified for use on the program. These are grouped by high-level classification area,
below. Note that many of the libraries include data that is considered to be design view

specific, such as the Logic Symbol information available in the Mentor Graphics Board
Process Library, providing supporting information required for the design process.

Reusable Hardware Design elements may be identified at many levels in the design
process, from low level component package dimension information to the schematic for an
entire rack of equipment designed to fulfill program requirements. At the top level, the
Hardware Design class contains the following subclasses:

Assembly - for Module and Substrate information
Component - containing descriptive data for Electrical Component,
Electro-Mechanical Component, and Mechanical Component
System - for higher-level design information, such as card cage wiring

Additionally, there are Design View (Simulation Model, DFT, and Documentation) and
Hardware Design View (BSDL File, Geometry, LMS Catalog, Logic Symbol, Package, Pin
Property, and Schematic) classes related to the Hardware Design class (see Figure 5-1). To
date, the descriptive data for the Component classes has been sourced from Aspect
Development, Inc. This information includes high-level descriptions of the components as
well as low-level timing information and package dimensions for a variety of
manufacturers. Manufacturer information, package information (including HPGL
drawings), and product documentation (TIFF images of data book and data sheet
information, by manufacturer), are provided as a part of this library. Simulation model
libraries related to the Hardware Design classes are available through a number of sources.
These include the following standalone libraries:

Logic Modeling SmartModel Library
University of Cincinnati
University of Virginia
LM-ATL Benchmark Team library

The Simulation Model class of the RDOCH is designed based on the RASSP VHDL
Modeling Taxonomy and Terminology [RASSP, 1995] paper given at the Second Annual
RASSP Conference. Additional examples of libraries of reusable hardware design view
and reusable design object data identified for use on the program include:

Mentor Graphics Board Process Library - logic symbol, geometry, LMS catalog,
and simulation model data for use with the Mentor Graphics tools
Mentor Graphics Falcon Framework internal libraries
LM-ATL EPI team library of released parts (logic symbol and geometry classes,
primarily)
LM-ATL RASSP team library of released designs (from prior benchmark efforts)

Architecture Design classes are modeled based on the RASSP Model Year Architecture
(MYA) methodology developed by the LM-ATL team [LM-ATL, 1994d]. The primary
external library identified to date for integration in this class is the JRS Research
Laboratories, Inc. architecture selection library.

Algorithm Design classes are modeled based on a convergence of the MCCI specification
[MCCI, 1995], Q003 Specification [AT&T, 1993], discussions with members of the Alta
Group RASSP team and their library reference documentation, discussions with members
of the JRS RASSP team, and internal LM-ATL RASSP team analysis. Primary sources for
algorithm design data include:

Alta Group of Cadence Design Systems, Inc. Signal Processing WorkSystem
libraries of reusable function blocks for DSP design
JRS NetSyn libraries of signal processing primitives
MCCI libraries of application graphs, partition graphs, and primitives
The Math Works, Inc. (MATLAB) libraries of reusable algorithms
LM-ATL internal algorithm libraries

Software Design classes are modeled after information published by the Reuse Library
Interoperability Group (RIG), Lockheed Martin internal software development libraries,
and information provided by various government organizations. This area, targeted for
development in early 1996, is the least stable at this time, and will be explored in depth as
the program continues.

Other areas that are currently under development include the Design For Test classes
(which may include libraries from LogicVision, Savantage, and others), supplier
management classes (currently based on the GE Consolidated Purchasing System and EPI
and ATL practices), and Specification and Standard classes.

Appendix A

Definitions, Acronyms, and Abbreviations

A/D Analog to Digital

ABBET A Broad Based Environment for Test

ACL Access Control List

ADP Automatic Document Processing

AFAL Air Force Avionics Laboratory

AIM Application Interpreted Model

AIRST Advanced Infrared Search and Track

ALC Ascent Logic Corporation

AMPLE Advanced Multi-Purpose Language

ANSI American National Standards Institute

AP Application Protocol

API Application Programming Interface

ARL Army Research Laboratory

ARM Application Reference Model

ARPA Advanced Research Projects Agency

ASCII American Standard Code for Information Interchange

ASEM Application-Specific Electronic Module

ASIC Application-Specific Integrated Circuit

ASSET Asset Source for Software Engineering Technology

AST Architecture Selection Toolset

ASW Anti-Submarine Warfare

AT&T American Telephone & Telegraph

ATAG ABBET Technical Advisory Group

ATD Advanced Technology Demonstration

ATE Automatic Test Equipment

ATL Advanced Technology Laboratories

ATM Automatic Test Methods

ATPG Automatic Test Pattern Generation

ATR Automatic Target Recognition

ATS Automatic Test Sets

BAA Broad Agency Announcement

BDE Block Diagram Editor

BDT Berkeley Design Technology, Inc.

BFM Bus Functional Model

BIST Built-In Self Test

BIT Built-In Test

BITE Built-In Test Equipment

BLOB Binary Large Object

BONeS〉 Block-Oriented Network Simulator

BSDL Boundary Scan Definition Language

BTD Benchmark Technical Description

CAD Computer-Aided Design

CAE Computer-Aided Engineering

CALS Computer-Aided Logistics Support

CAM Computer-Aided Manufacturing

CAPE Computer-Aided Parametric Estimating

CARDS USAF ESD Central Archive for Reusable Defense Software

CASE Computer-Aided Software Engineering

CAT Computer-Aided Test

CDEM Customizable Debugging Environment for Multiprocessors

CDMS Computer-Aided Design Data Management System

CDR Critical Design Review

CE Concurrent Engineering

CECOM Communication-Electronic Command

CEENSS Continuous Electronics Enhancement Using Simulatable
Specifications

CFAR Constant False Alarm Rate

CFG Control Flow Graph

CFI CAD Framework Initiative

CFPI Catalog File Procedural Interface

CGS Code Generation Tool

CHPC Center for High-Performance Computing

CIS Component Information System

CLMS Component and Library Management System

CM Configuration Management

CMU Carnegie Mellon University

CND Cannot Duplicate

CNI Communication, Navigation, Identification

CORBA Common Object Request Broker Architecture

COSE Common Open Software Environment

COSMIC NASA’s Software Technology Transfer Center

COTS Commercial Off-The-Shelf

CP Command Program

CPS Consolidated Purchasing System

CPU Central Processing Unit

CSCI Computer Software Configuration Items

CT CAD Tool

DB Database

DBA Database Administrator

DCE OSF Distributed Computing Environment

DDMS Design Data Management System

DEMVAL Demonstration/Validation

DFD Data Flow Diagram

DFG Data Flow Graph

DFT Design For Testability

DICE DARPA Initiative in Concurrent Engineering

DM Data Management

DMA Defense Mapping Agency

DMA Direct Memory Access

DMM Design Methodology Manager

DoD Department of Defense

DOE Distributed Object Environment

DOM CFI Standard for Design Object Management

DOMF Distributed Object Management Facility

DR CFI Standard for Design Representation

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DT&E Development Test and Evaluation

ECM Electronic Countermeasures

EDA Electronic Design Automation

EDB Electronic Data Book

EDIF Electronic Data Interchange Format

EDM Enterprise Desktop Manager

EIA Electronic Industry Association

EIF Enterprise Integration Framework

EINet Enterprise Integration Network

EPDM Enterprise Product Data Manager

EPI Engineering Process Improvement

ER Entity-Relationship

ESS Environmental Stress Screening

EW Electronic Warfare

Express-G Information Modeling Language - Graphical Representation

FDDI Fiber Distributed Data Interface

FLIR Forward-Looking Infrared

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes and Effects Criticality Analysis

FPGA Field Programmable Gate Array

FSED Full-Scale Engineering Development

GBR Ground Based Radar

GDB GNU Debugger

GE General Electric

GEDAE Graphical Entry Distributed Application Environment

GES Government Electronic Systems

GFE Government-Furnished Equipment

GFI Government-Furnished Information

GFLOPS Billion Floating-Point Operations per Second

GIF Graphical Interchange Format

GIP Graph Instantiation Parameter

GOTS Government Off-The-Shelf

GRAIL Graph Translator

GRED Graphical Editor

GrTT Graph Translation Tool

GUI Graphical User Interface

GW Gateway

HCI Human-Computer Interface

HDI High-Density Interconnect

HDL Hardware Description Language

HI-TEA High-Level Test Strategy and Economics Advisor

HOL High-Order Language

HSIM Heterogeneous Simulation Interoperability

HTML Hyper Text Markup Language

HW Hardware

I/O Inputs/Outputs

IC Integrated Circuit

ICAM Integrated Computer-Aided Manufacturing

ICD Interface Control Document

ICNI Integrated Communication, Navigation, Identification

IDAS Integrated Design and Assessment

IDDq Quiescent Source to Drain Current Test

IDEF0 ICAM Definition Methodology for Functional Modeling

IDEF1x ICAM Definition Methodology for Data Modeling

IDEF3 ICAM Definition Methodology for Process Description
Modeling (standard workflow graphical representation format)

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

IGES Initial Graphics Exchange Specification

ILS Integrated Logistics Support

IPC Inter-Process Communications

IPDT Integrated Product Development Team

IPPD Integrated Product/Process Development

IR Infrared

IRST Infrared Search and Track

ISA Instruction Set Architecture

ISO International Standards Organization

ITC CFI Standard for Intertool Communication

JCALS Joint Computer-Aided Logistics Support

JIAWD Joint Integrated Avionics Working Group

JRS JRS Research Laboratories, Inc.

JTAG Joint Test Action Group (IEEE-1149)

JTIDS Joint Tactical Information Distribution System

LAN Local Area Network

LCC Life Cycle Cost

LM Lockheed Martin Corporation

LM-ATL Lockheed Martin Advanced Technology Laboratories

LMG Logic Modeling Group, Synopsis, Inc.

LMS Library Management System

LOCST LSSD On-Chip Self Test

LRM Line Replacement Module

LRU Line Replacement Unit

LSA Logistics Support Analysis

LV LogicVision Software, Inc.

MANTEC Manufacturing Technology

MATLAB〉 Matrix Laboratory (software tools for matrix computation)

MCC Microelectronics and Computer Technology Corporation

MCCI Management Communications and Control, Inc.

MCM Multi-Chip Assembly

MCM Multi-Chip Module

MFBIT Multi-Feature Bayesian Intelligent Tracker

MFLOPS Million Floating-Point Operations per Second

MGC Mentor Graphics Corporation

MIMD Multiple Instruction, Multiple Data

MIT Massachusetts Institute of Technology

MMIC Monolithic Microwave Integrated Circuit

MOE Measure of Effectiveness

MOS Messaging Object Service

MOU Memorandum of Understanding

MPID MIMD Primitive Interface Description

MPIDGen MIMD Primitive Interface Description (MPID) Generator

MSDA Multi-Chip Systems Design Advisor

MSI Management Services, Inc.

MTBF Mean Time Between Failures

MTI Moving Target Indicator

MYA Model Year Architecture

NASA National Aeronautics and Space Administration

NEP Node Execution Parameter

NFS Network File System

NGCR Next-Generation Computing Resources

NIIIP National Industrial Information Infrastructure Protocols

NIS Network Information Service

NIST National Institute of Standards and Technology

NRL Naval Research Laboratory

NSS Network Synthesis System

OCR Optical Character Recognition

ODBC Open Database Connectivity

OLE〉 Object Linking and Embedding

OMG Object Management Group

ONR Office of Naval Research

OO Object-Oriented

OOA Object-Oriented Analysis

OR Object-Relational

OS Operating System

OSF Open Software Foundation, Inc.

OSI Open Systems Interconnect

PC Personal Computer

PCA Printed Circuit Assembly

PCB Printed Circuit Board

PDCM Product Data Control Module

PDES Product Data Exchange using STEP

PDM Product Data Manager

PDR Preliminary Design Review

PDP Product Data Package

PDT Product Development Team

PE Processing Element

PGM/DFL Parallel Graph Method / Data Flow Language

PGSE Programming Graph Simulation Environment

PI Procedural Interface

PIDGen Primitive Interface Description Generation

PLD Programmable Logic Device

PMB Performance Measurement Baseline

PML Process Modeling Language

PMO Program Management Office

POSIX Portable Operating System Interface

PreAMP Pre-Competitive Advanced Manufacturing Process

PRICE Parametric Review of Information for Costing and Evaluation

PRR Program Readiness Review

PWA Printed Wiring Assembly

PWB Printed Wiring Board

QA Quality Assurance

R&M Reliability and Maintainability

RAM Random Access Memory

RAM/ILS Reliability, Availability, Maintainability / Integrated Logistics
Support

RASSP Rapid Prototyping of Application-Specific Signal Processors

RCS Revision Control System

RDBMS Relational Database Management System

RDD-100 System Design CAD Tool - Ascent Logic

RDOCH RASSP Reuse Design Object Classification Hierarchy

RE Reuse Element

RI Rockwell International

RIG Reuse Library Interoperability Group

RL Rome Laboratory

RMWG RASSP Methodology Working Group

RPC Remote Procedure Call

RRDM RASSP Reuse Data Manager

RSS Reusable Software System

RTL Register Transfer Level

RTM Requirements Traceability Matrix

RTOK Retest OK

SA Systems Administrator

SAL Signal Processing Algorithm Library

SCRA South Carolina Research Authority

SDR System Design Review

SE Switching Element

SEM Standard Electronic Module

SEMP Systems Engineering Management Plan

SEMS Systems Engineering Management Schedule

SES Systems Engineering Station

SGML Standard Generalized Markup Language (ISO 8879)

SIMD Single Instruction, Multiple Data

SMT Surface Mount Technology

SNR Signal to Noise Ratio

SOW Statement of Work

SP Signal Processor

SPGN Signal Processing Graph Notation

SPW Signal Processing WorkSystem〉

SQL Software Query Language

SRAM Static Random Access Memory

SRR System Requirements Review

SRS System Requirements Specification

STA Science and Technology Associates

STEP Standard for The Exchange of Product Data

STS Self Test Services

STUMPS Self Test Using MISR and Parallel SRSG

SVI Standard Virtual Interface

SW Software

SWAP Size, Weight, and Power

T&E Test and Evaluation

T&M Bus Test and Maintenance Bus

T/R Transmit/Receive

TAP Test Access Port

TBD To Be Determined

TBR To Be Resolved

TCL/TK Tool Command Language / Tool Kit

TCP/IP Transmission Control Protocol / Internet Protocol

TES CFI Standard for Tool Encapsulation

TI Texas Instruments

TIGER Testability Insertion and Guidance Experts for RASSP

TK Toolkit for X11 Window System

TPM Target Primitive Map

TPS Test Program Set

TRD Test Requirements Document

TRP Technology Reinvestment Program

TRSL Test Requirements Specification Language

TSD Test Strategy Diagram

USAF United States Air Force

UUT Unit Under Test

VHDL VHSIC Hardware Description Language

VHF Very High Frequency

VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

VPS Virtual Prototyping System

VTEST Virtual Test

WAN Wide Area Network

WAVES IEEE Standard for Waveform & Vector Exchange

WBS Work Breakdown Structure

WEC Westinghouse Electric Corporation

WL Wright-Patterson Laboratory

Appendix B

References

[AL, 1992] Armstrong Laboratory, IDEF3 Process Description Capture
Method Report, AL-TR-1992-0057, Wright Patterson Air Force Base,
Ohio, 1992.

[Alta, 1995a] Alta Group of Cadence Design Systems, Inc.〉 , Signal
Processing WorkSystem 〉 Communications Library Reference , Foster
City, California, 1995.

[Alta, 1995b] Alta Group of Cadence Design Systems, Inc.〉 , Signal
Processing WorkSystem 〉 DSP Library Reference , Foster City,
California, 1995.

[Alta, 1995c] Alta Group of Cadence Design Systems, Inc.〉 , Signal
Processing WorkSystem 〉 Radar Library Reference , Foster City,
California, 1995.

[Alta, 1995d] Alta Group of Cadence Design Systems, Inc.〉 , Signal
Processing WorkSystem 〉 Interactive Simulation Library  Reference ,
Foster City, California, 1995.

[Aspect, 1994] Aspect Development, Inc., CIS 2.0 Users Guide , Mountain
View, California, 1994.

[Aspect, 1995a] Aspect Development, Inc., RASSP Reuse Data Manager
(RRDM) and Reuse Strategy Requirements Specification (Draft), Mountain
View, California, 1995.

[Aspect, 1995b] Aspect Development, Inc., "RASSP Reuse Library
Integration Strategy" (Presentation given 3/9/95 at LM-ATL), Mountain
View, California, 1995.

[Aspect, 1995c] Aspect Development, Inc., RASSP Reuse Data Manager
(RRDM) and Reuse Strategy Implementation Plan (Draft), Mountain View,

California, 1995.

[AT&T, 1993] AT&T Federal Systems Advanced Technology, AN/UYS-2
SEM E Graph Primitives Specification Library - Floating Point, Revision
3.0 , Greensboro, North Carolina, 1993.

[CFI, 1994] CAD Framework Initiative, Inc., Design Representation
Programming Interface , Austin, Texas, 1994.

[Connell and Shafer, 1995] John Connell and Linda Shafer, Object-Oriented
Rapid Prototyping , Prentice Hall PTR, Englewood Cliffs, New Jersey,
1995.

[EIA, 1993] Electronics Industries Association, Electronic Design
Interchange Format Version 3 0 0, Washington D.C., 1993.

[IEC, 1994] International Electrotechnical Commission, Standard Data
Element Types with Associated Classification Scheme for Electric
Components -- Part I: Definitions, Principles and Methods , Draft
International Standard 1360-1, Netherlands, September 1994.

[Intergraph, 1993] Intergraph Corporation, Design Methodology Manager
-- Users Guide, Huntsville, Alabama, 1993.

[Intergraph, 1994] Intergraph Corporation, System Requirements
Specification for the Enterprise Product Data Manager of the Rapid
Prototyping of Application-Specific Signal Processors Project ,
SED-IO632/94, Huntsville, Alabama, 1994.

[Intergraph, 1995] Intergraph Corporation, DM/Manager -- Users Guide ,
Huntsville, Alabama, 1995.

[ISO, 1993] International Standards Organization, Product Data
Representation and Exchange: Overview and Fundamental Principles , ISO
10303-1, Fairfax, Virginia: U.S. Product Data Association, 1993.

[Julienne and Holtz, 1994] Astrid M. Julienne and Brian Holtz, ToolTalk 〉
& Open Protocols - Inter-Application Communication , SunSoft Press,
Prentice Hall PTR, Englewood Cliffs, New Jersey, 1994.

[LM-ATL, 1993] Martin Marietta Advanced Technology Laboratories,
Rapid Prototyping of Application-Specific Signal Processors (RASSP) CAD
System Description - Version 1.0 (CDRL A007), Moorestown, New Jersey,

1993.

[LM-ATL, 1994a] Martin Marietta Advanced Technology Laboratories,
"The Authorization Model for the RASSP System", Moorestown, New
Jersey, 1994.

[LM-ATL, 1994b] Martin Marietta Advanced Technology Laboratories,
"The Configuration Management Model for the RASSP System",
Moorestown, New Jersey, 1994.

[LM-ATL, 1994c] Martin Marietta Advanced Technology Laboratories,
Rapid Prototyping of Application-Specific Signal Processors (RASSP)
Methodology Overview - Version 1.0, Moorestown, New Jersey, 1994.

[LM-ATL, 1994d] Martin Marietta Advanced Technology Laboratories,
Rapid Prototyping of Application-Specific Signal Processors (RASSP)
Model Year Architecture Working Document - Version 1.0, Moorestown,
New Jersey, 1994.

[LM-ATL, 1995a] Lockheed Martin Advanced Technology Laboratories,
"The Library Management Model for the RASSP System, Version 2",
Camden, New Jersey, 1995.

[LM-ATL, 1995b] Lockheed Martin Advanced Technology Laboratories,
RASSP Second Annual Interim Technical Report (CDRL A002), Camden,
New Jersey, 1995.

[MCCI, 1995] Management Communications and Control, Inc., RASSP
Domain Primitive Library Specification (Preliminary), Arlington,
Virginia, 1995.

[Martin and Odell, 1995] James Martin and James J. Odell, Object-Oriented
Methods: A Foundation , PTR Prentice Hall, Englewood Cliffs, New Jersey,
1995.

[Mentor Graphics, 1992a] Mentor Graphics, AMPLE Users Manual,
Version 8.2, Wilsonville, Oregon, 1992.

[Mentor Graphics, 1992b] Mentor Graphics, AMPLE Reference Manual,
Version 8.2, Wilsonville, Oregon, 1992.

[Mentor Graphics, 1993a] Mentor Graphics, Common User Interface Users
Manual, Version 8.2, Wilsonville, Oregon, 1993.

[Mentor Graphics, 1993a] Mentor Graphics, Common User Interface
Reference Manual, Version 8.2, Wilsonville, Oregon, 1993.

[Mentor Graphics, 1994a] Mentor Graphics, Design Architect Reference
Manual, Wilsonville, Oregon, 1994.

[Mentor Graphics, 1994b] Mentor Graphics, Library Management System
-- Users and Reference Manual for Designers, Wilsonville, Oregon, 1994.

[Mentor Graphics, 1994c] Mentor Graphics, Library Management System
-- Users and Reference Manual for Librarians, Wilsonville, Oregon, 1994.

[Mentor Graphics, 1994d] Mentor Graphics, Catalog File Procedural
Interface Manual, Version 8.4, Wilsonville, Oregon, 1994.

[Mentor Graphics, 1995] Mentor Graphics, Board Process Library
Specification, Release A.3 (Final Review Draft), Wilsonville, Oregon,
1995.

[OSF , 1993] Open Software Foundation, OSF/Motif  Style Guide,
Revision 1.2 , Prentice Hall PTR, Englewood Cliffs, New Jersey, 1993.

[RASSP, 1995] C. Hein, T. Carpenter, P. Kalutiewicz, and V. Madisetti,
"RASSP VHDL Modeling Terminology and Taxonomy - Revision 1.0", in
Proceedings, 2nd Annual RASSP Conference , Arlington, Virginia, 1995.

[Rosenberry et al, 1992] Ward Rosenberry, David Kenney, and Gerry
Fisher, Understanding DCE , O’Reilly & Associates, Inc., Sebastopol,
California, 1992.

[Rumbaugh et al, 1991] James Rumbaugh, Michael Blaha, William
Premerlani, Frederick Eddy, and William Lorensen, Object-Oriented
Modeling and Design , Prentice Hall PTR, Englewood Cliffs, New Jersey,
1991.

[SCRA, 1994] South Carolina Research Authority, RASSP PCA
Manufacturing Interface Definition , North Charleston, South Carolina,
1994.

[Synopsys, 1994] Logic Modeling Group, Synopsys, Inc., IC Manufacturer
to MCM Designer Die Information Exchange (DIE) Format Reference
Manual , Version 1.0, Milpitas, California, 1994.

