3. VHDL Describes Structure

In Section 1.1 we introduced some terminology for describing the
structure of a digital system. In this chapter, we will look at how structure
is described in VHDL.

3.1. Entity Declarations

A digital system is usually designed as a hierarchical collection of
modules. Each module has a set of ports which constitute its interface to
the outside world. In VHDL, an entity is such a module which may be used
as a component in a design, or which may be the top level module of the
design.

The syntax for declaring an entity is:

entity_declaration ::=
entity identifier is
entity_header
entity_declarative_part
[begin
entity_statement_part]
end [entity_simple_name] ;
entity_header ::=
[formal_generic_clause]
[formal_port_clause]
generic_clause ::= generic (generic_list) ;
generic_list ::= generic_interface_list
port_clause ::= port (port_list) ;
port_list ::= port_interface_list
entity_declarative_part ::= { entity_declarative_item }

The entity declarative part may be used to declare items which are to be
used in the implementation of the entity. Usually such declarations will be
included in the implementation itself, so they are only mentioned here for
completeness. Also, the optional statements in the entity declaration may
be used to define some special behaviour for monitoring operation of the
entity. Discussion of these will be deferred until Section 6.5.

The entity header is the most important part of the entity declaration. It
may include specification of generic constants, which can be used to control
the structure and behaviour of the entity, and ports, which channel
information into and out of the entity.

The generic constants are specified using an interface list similar to
that of a subprogram declaration. All of the items must be of class
constant. As a reminder, the syntax of an interface constant declaration is:

interface_constant_declaration ::=
[constant | identifier_list : [in] subtype_indication [:= static_expression]

3-1

3-2 The VHDL Cookbook

The actual value for each generic constant is passed in when the entity is
used as a component in a design.

The entity ports are also specified using an interface list, but the items
in the list must all be of class signal. This is a new kind of interface item
not previously discussed. The syntax is:

interface_signal_declaration ::=
[signal] identifier_list : [mode] subtype_indication [bus]
[:= static_expression]
Since the class must be signal, the word signal can be omitted and is
assumed. The word bus may be used if the port is to be connected to more
than one output (see Sections 6.1 and 6.2). As with generic constants the
actual signals to be connected to the ports are specified when the entity is
used as a component in a design.

To clarify this discussion, here are some examples of entity
declarations:
entity processor is
generic (max_clock_freq : frequency := 30 MHz);
port (clock : in bit;
address : out integer;
data : inout word_32;
control : out proc_control;
ready : in bit);
end processor;
In this case, the generic constant max_clock_freq is used to specify the timing
behaviour of the entity. The code describing the entity's behaviour would
use this value to determine delays in changing signal values.

Next, an example showing how generic parameters can be used to
specify a class of entities with varying structure:
entity ROM is
generic (width, depth : positive);
port (enable : in bit;
address : in bit_vector(depth-1 downto 0);
data : out bit_vector(width—-1 downto 0));
end ROM;

Here, the two generic constants are used to specify the number of data bits
and address bits respectively for the read-only memory. Note that no
default value is given for either of these constants. This means that when
the entity is used as a component, actual values must be supplied for them.

Finally an example of an entity declaration with no generic constants or

TEST_BENCH
Y A A Y
2 1G4 g DUT

Figure 3-1. Test bench circuit.

3. VHDL Describes Structure 3-3

ports:

entity test _bench is
end test_bench;

Though this might at first seem to be a pointless example, in fact it
illustrates a common use of entities, shown in Figure 3-1. A top-level entity
for a design under test (DUT) is used as a component in a test bench circuit
with another entity (TG) whose purpose is to generate test values. The
values on signals can be traced using a simulation monitor, or checked
directly by the test generator. No external connections from the test bench
are needed, hence it has no ports.

3.2. Architecture Declarations

Once an entity has had its interface specified in an entity declaration,
one or more implementations of the entity can be described in architecture
bodies. Each architecture body can describe a different view of the entity.
For example, one architecture body may purely describe the behaviour
using the facilities covered in Chapters 2 and 4, whereas others may
describe the structure of the entity as a hierarchically composed collection
of components. In this section, we will only cover structural descriptions,
deferring behaviour descriptions until Chapter 4.

An architecture body is declared using the syntax:

architecture_body ::=
architecture identifier of entity_name is
architecture_declarative_part
begin
architecture_statement_part
end [architecture_simple_name] ;

architecture_declarative_part ::= { block_declarative_item }
architecture_statement_part ::= { concurrent_statement }

block_declarative_item ::=
subprogram_declaration
| subprogram_body

| type_declaration

| subtype_declaration

| constant_declaration

| signal_declaration

| alias_declaration

| component_declaration

| configuration_specification

| use_clause

concurrent_statement ::=
block statement
| component_instantiation_statement

The declarations in the architecture body define items that will be used to
construct the design description. In particular, signals and components
may be declared here and used to construct a structural description in
terms of component instances, as illustrated in Section 1.4. These are
discussed in more detail in the next sections.

3.2.1. Signal Declarations

Signals are used to connect submodules in a design. They are declared
using the syntax:

3-4 The VHDL Cookbook

signal_declaration ::=
signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register | bus

Use of the signal kind specification is covered in Section 6.2. Omitting the
signal kind results in an ordinary signal of the subtype specified. The
expression in the declaration is used to give the signal an initial value
during the initialization phase of simulation. If the expression is omitted,
a default initial value will be assigned.

One important point to note is that ports of an object are treated exactly
as signals within that object.

3.2.2. Blocks

The submodules in an architecture body can be described as blocks. A
block is a unit of module structure, with its own interface, connected to
other blocks or ports by signals. A block is specified using the syntax:

block_statement ::=
block_label :
block [(guard_expression)]
block_header
block_declarative_part
begin
block_statement_part
end block [block_label] ;
block_header ::=
[generic_clause
[generic_map_aspect ;] 1]
[port_clause
[port_map_aspect ;]]
generic_map_aspect ::= generic map (generic_association_list)
port_map_aspect ::= port map (port_association_list)
block_declarative_part ::= { block_declarative_item }
block_statement_part ::= { concurrent_statement }

The guard expression is not covered in this booklet, and may be omitted.
The block header defines the interface to the block in much the same way as
an entity header defines the interface to an entity. The generic association
list specifies values for the generic constants, evaluated in the context of the
enclosing block or architecture body. The port map association list specifies
which actual signals or ports from the enclosing block or architecture body
are connected to the block’s ports. Note that a block statement part may also
contain block statements, so a design can be composed of a hierarchy of
blocks, with behavioural descriptions at the bottom level of the hierarchy.

As an example, suppose we want to describe a structural architecture of
the processor entity example in Section 3.1. If we separate the processor
into a control unit and a data path section, we can write a description as a
pair of interconnected blocks, as shown in Figure 3-2.

The control unit block has ports clk, bus_control and bus_ready, which are
connected to the processor entity ports. It also has an output port for
controlling the data path, which is connected to a signal declared in the
architecture. That signal is also connected to a control port on the data
path block. The address and data ports of the data path block are connected
to the corresponding entity ports. The advantage of this modular
decomposition is that each of the blocks can then be developed

3. VHDL Describes Structure

3-5

architecture block_structure of processor is
type data_path_control is ... ;
signal internal_control : data_path_control;
begin

control_unit : block
port (clk : in bit;
bus_control : out proc_control,
bus_ready : in bit;
control : out data_path_control);
port map (clk => clock,
bus_control => control, bus_ready => ready;
control => internal_control);
declarations for control_unit
begin
statements for control_unit
end block control_unit;

data_path : block
port (address : out integer;
data : inout word_32;
control : in data_path_control);
port map (address => address, data => data,
control => internal_control);
declarations for data_path
begin
statements for data_path
end block data_path;

end block_structure;

Figure 3-2. Structural architecture of processor example.

independently, with the only effects on other blocks being well defined
through their interfaces.

3.2.3. Component Declarations

An architecture body can also make use of other entities described
separately and placed in design libraries. In order to do this, the
architecture must declare a component, which can be thought of as a
template defining a virtual design entity, to be instantiated within the
architecture. Later, a configuration specification (see Section 3.3) can be

used to specify a matching library entity to use. The syntax of a component

declaration is:

component_declaration ::=
component identifier
[local_generic_clause]
[local_port_clause]
end component ;

Some examples of component declarations:

component nand3
generic (Tpd : Time := 1 ns);
port (a, b, c : in logic_level;
y : out logic_level);
end component;

3-6 The VHDL Cookbook

component read_only _memory
generic (data_bits, addr_bits : positive);
port (en :in bit;
addr : in bit_vector(depth-1 downto 0);
data : out bit_vector(width—-1 downto 0));
end component;

The first example declares a three-input gate with a generic parameter
specifying its propagation delay. Different instances can later be used with
possibly different propagation delays. The second example declares a read-
only memory component with address depth and data width dependent on
generic constants. This component could act as a template for the ROM
entity described in Section 3.1.

3.2.4. Component Instantiation

A component defined in an architecture may be instantiated using the
syntax:
component_instantiation_statement ::=
instantiation_label :

component_name

[generic_map_aspect]

[port_map_aspect];
This indicates that the architecture contains an instance of the named
component, with actual values specified for generic constants, and with the
component ports connected to actual signals or entity ports.

The example components declared in the previous section might be
instantiated as:

enable_gate: nand3
port map (a =>enl, b =>en2, c =>int_req, y => interrupt);
parameter_rom: read_only_memory
generic map (data_bits => 16, addr_bits => 8);
port map (en =>rom_sel, data => param, addr => a(7 downto 0);
In the first instance, no generic map specification is given, so the default
value for the generic constant Tpd is used. In the second instance, values
are specified for the address and data port sizes. Note that the actual signal
associated with the port addr is a slice of an array signal. This illustrates
that a port which is an array can be connected to part of a signal which is a
larger array, a very common practice with bus signals.

