5. Model Organisation

The previous chapters have described the various facilities of VHDL
somewhat in isolation. The purpose of this chapter is to show how they are
all tied together to form a complete VHDL description of a digital system.

5.1. Design Units and Libraries

When you write VHDL descriptions, you write them in a design file,
then invoke a compiler to analyse them and insert them into a design
library. A number of VHDL constructs may be separately analysed for
inclusion in a design library. These constructs are called library units.
The primary library units are entity declarations, package declarations and
configuration declarations (see Section 5.2). The secondary library units
are architecture bodies and package bodies. These library units depend on
the specification of their interface in a corresponding primary library unit,
so the primary unit must be analysed before any corresponding secondary
unit.

A design file may contain a number of library units. The structure of a
design file can be specified by the syntax:

design_file ::= design_unit { design_unit }
design_unit ::= context_clause library_unit
context_clause ::= { context_item }

context_item ::= library_clause | use_clause
library_clause ::= library logical_name_list ;
logical_name_list ::= logical_name { , logical_name }
library_unit ::= primary_unit | secondary_unit

primary_unit ::=
entity_declaration | configuration_declaration | package_declaration

secondary_unit ::= architecture_body | package_body

Libraries are referred to using identifiers called logical names. This
name must be translated by the host operating system into an
implementation dependent storage name. For example, design libraries
may be implemented as database files, and the logical name might be used
to determine the database file name. Library units in a given library can be
referred to by prefixing their name with the library logical name. So for
example, ttl_lib.ttl_10 would refer to the unit ttl_10 in library ttl_lib.

The context clause preceding each library unit specifies which other
libraries it references and which packages it uses. The scope of the names
made visible by the context clause extends until the end of the design unit.

There are two special libraries which are implicitly available to all
design units, and so do not need to be named in a library clause. The first of
these is called work, and refers to the working design library into which the

5-1

5-2 The VHDL Cookbook

current design units will be placed by the analyser. Hence in a design unit,
the previously analysed design units in a design file can be referred to
using the library name work.

The second special libary is called std, and contains the packages
standard and textio. Standard contains all of the predefined types and
functions. All of the items in this package are implicitly visible, so no use
clause is necessary to access them.

5.2. Configurations

In Sections 3.2.3 and 3.2.4 we showed how a structural description can
declare a component specification and create instances of components. We
mentioned that a component declared can be thought of as a template for a
design entity. The binding of an entity to this template is achieved through
a configuration declaration. This declaration can also be used to specify
actual generic constants for components and blocks. So the configuration
declaration plays a pivotal role in organising a design description in
preparation for simulation or other processing.

The syntax of a configuration declaration is:

configuration_declaration ::=
configuration identifier of entity_name is
configuration_declarative_part
block_configuration
end [configuration_simple_name] ;

configuration_declarative_part ::= { configuration_declarative_item }
configuration_declarative_item ::= use_clause

block_configuration ::=
for block_specification
{ use_clause }
{ configuration_item }

end for;
block_specification ::= architecture_name | block_statement_label
configuration_item ::= block_configuration | component_configuration

component_configuration ::=
for component_specification
[use binding_indication ;]
[block_configuration]
end for ;

component_specification ::= instantiation_list : component name
instantiation_list ::=
instantiation_label { , instantiation_label)

| others
I all
binding_indication ::=
entity_aspect
[generic_map_aspect]
[port_map_aspect]
entity_aspect ::=
entity entity_name [(architecture_identifier)]
| configuration configuration_name
| open
generic_map_aspect ::= generic map (generic_association_list)

5. Model Organisation 5-3

entity processor is
generic (max_clock_speed : frequency := 30 MHz);
port (port list);

end processor;

architecture block_structure of processor is
declarations
begin

control_unit : block

port (port list);

port map (association list);

declarations for control_unit
begin

statements for control_unit
end block control_unit;

data_path : block

port (port list);

port map (association list);

declarations for data_path
begin

statements for data_path
end block data_path;

end block_structure;

Figure 5-1. Example processor entity and architecture body.

port_map_aspect ::= port map (port_association_list)

The declarative part of the configuration declaration allows the
configuration to use items from libraries and packages. The outermost
block configuration in the configuration declaration defines the
configuration for an architecture of the named entity. For example, in
Chapter 3 we had an example of a processor entity and architecture,
outlined again in Figure 5-1. The overall structure of a configuration
declaration for this architecture might be:

configuration test_config of processor is
use work.processor_types.all

for block_structure
configuration items
end for;

end test_config;

In this example, the contents of a package called processor_types in the
current working library are made visible, and the block configuration
refers to the architecture block_structure of the entity processor.

Within the block configuration for the architecture, the submodules of
the architecture may be configured. These submodules include blocks and
component instances. A block is configured with a nested block
configuration. For example, the blocks in the above architecture can be
configured as shown in Figure 5-2.

Where a submodule is an instance of a component, a component
configuration is used to bind an entity to the component instance. To
illustrate, suppose the data_path block in the above example contained an

54 The VHDL Cookbook

configuration test_config of processor is
use work.processor_types.all

for block_structure
for control_unit
configuration items
end for;
for data_path
configuration items
end for;
end for;

end test_config;

Figure 5-2. Configuration of processor example.

data_path : block
port (port list);
port map (association list);
component alu
port (function : in alu_function;
opl, op2 :in bit_vector_32;
result : out bit_vector_32);
end component;
other declarations for data_path
begin
data_alu : alu
port map (function => alu_fn, opl => b1, op2 => b2, result => alu_r);
other statements for data_path
end block data_path;

Figure 5-3. Structure of processor data-path block.

instance of the component alu, declared as shown in Figure 5-3. Suppose
also that a library project_cells contains an entity called alu_cell defined as:
entity alu_cell is
generic (width : positive);
port (function_code : in alu_function;
operandl, operand2 : in bit_vector(width-1 downto 0);
result : out bit_vector(width-1 downto 0);
flags : out alu_flags);
end alu_cell;

with an architecture called behaviour. This entity matches the alu
component template, since its operand and result ports can be constrained
to match those of the component, and the flags port can be left unconnected.
A block configuration for data_path could be specified as shown in

Figure 5-4.

Alternatively, if the library also contained a configuration called
alu_struct for an architecture structure of the entity alu_cell, then the block
configuration could use this, as shown in Figure 5-5.

5. Model Organisation 5-5

for data_path
for data_alu : alu
use entity project_cells.alu_cell(behaviour)
generic map (width => 32)
port map (function_code => function, operandl => opl, operand2 => op2,
result => result, flags => open);
end for;
other configuration items
end for;

Figure 5-4. Block configuration using library entity.

for data_path
for data_alu : alu
use configuration project_cells.alu_struct
generic map (width => 32)
port map (function_code => function, operandl => opl, operand2 => op2,
result => result, flags => open);
end for;
other configuration items
end for;

Figure 5-5. Block configuration using another configuration.

5.3. Complete Design Example

To illustrate the overall structure of a design description, a complete
design file for the example in Section 1.4 is shown in Figure 5-6. The design
file contains a number of design units which are analysed in order. The
first design unit is the entity declaration of count2. Following it are two
secondary units, architectures of the count2 entity. These must follow the
entity declaration, as they are dependent on it. Next is another entity
declaration, this being a test bench for the counter. It is followed by a
secondary unit dependent on it, a structural description of the test bench.
Following this is a configuration declaration for the test bench. It refers to
the previously defined library units in the working library, so no library
clause is needed. Notice that the count2 entity is referred to in the
configuration as work.count2, using the library name. Lastly, there is a
configuration declaration for the test bench using the structural
architecture of count2. It uses two library units from a separate reference
library, misc. Hence a library clause is included before the configuration
declaration. The library units from this library are referred to in the
configuration as misc.t_flipflop and misc.inverter.

This design description includes all of the design units in one file. It is
equally possible to separate them into a number of files, with the opposite
extreme being one design unit per file. If multiple files are used, you need
to take care that you compile the files in the correct order, and re-compile
dependent files if changes are made to one design unit. Source code control
systems can be of use in automating this process.

5-6

The VHDL Cookbook

-- primary unit: entity declaration of count2

entity count2 is
generic (prop_delay : Time := 10 ns);
port (clock : in bit;
gl, g0 : out bit);
end count2;

-- secondary unit: a behavioural architecture body of count2
architecture behaviour of count2 is
begin
count_up: process (clock)
variable count_value : natural := 0;

begin
if clock ='1' then
count_value := (count_value + 1) mod 4;
g0 <= bit'val(count_value mod 2) after prop_delay;
gl <= bit'val(count_value / 2) after prop_delay;
end if;
end process count_up;

end behaviour;
-- secondary unit: a structural architecture body of count2
architecture structure of count2 is

component t_flipflop
port (ck :in bit; q: out bit);
end component;

component inverter
port (a :in bit; y: out bit);
end component;

signal ffO, ff1, inv_ffO : bit;

begin
bit 0 :t flipflop port map (ck => clock, q => ff0);
inv : inverter port map (a => ff0, y => inv_ff0);
bit_1 : t_flipflop port map (ck => inv_ff0, q => ff1);

g0 <= ff0;
gl <= ff1,

end structure;

Figure 5-6. Complete design file.

5. Model Organisation

-- primary unit: entity declaration of test bench

entity test_count2 is
end test_count2;

-- secondary unit: structural architecture body of test bench
architecture structure of test_count2 is
signal clock, g0, ql : bit;

component count2
port (clock : in bit;
gl, g0 : out bit);
end component;

begin

counter : count2
port map (clock => clock, g0 => g0, q1 => q1);

clock_driver : process

begin
clock <="0', '1' after 50 ns;
wait for 100 ns;

end process clock driver;

end structure;

-- primary unit: configuration using behavioural architecture
configuration test_count2_behaviour of test_count? is

for structure -- of test_count2
for counter : count2
use entity work.count2(behaviour);
end for;
end for;

end test _count2_behaviour;

-- primary unit: configuration using structural architecture
library misc;
configuration test_count2_structure of test_count2 is

for structure -- of test_count2
for counter : count2
use entity work.count2(structure);
for structure -- of count_2
for all : t_flipflop
use entity misc.t_flipflop(behaviour);
end for;
for all : inverter
use entity misc.inverter(behaviour);
end for;
end for;
end for;
end for;

end test_count2_structure;

Figure 5-6 (continued).

