Seqguential Statements

RTL Hardware Design Chapter 5
by P. Chu

Outline

VHDL process

Sequential sighal assignment statement
Variable assignment statement

If statement

Case statement

Simple for loop statement

o 0k W

RTL Hardware Design Chapter 5
by P. Chu

1. VHDL Process

Contains a set of sequential statements to
be executed sequentially

The whole process Is a concurrent statement

Can be interpreted as a circuit part enclosed
iInside of a black box

May or may not be able to be mapped to
physical hardware

RTL Hardware Design Chapter 5 3
by P. Chu

e Two types of process
— A process with a sensitivity list
— A process with wait statement

RTL Hardware Design Chapter 5
by P. Chu

A process with a sensitivity list

e Syntax
process(sensitivity list)
declarations;
begin
sequential statement;
sequential statement;

end process;

RTL Hardware Design Chapter 5
by P. Chu

e A process is like a circuit part, which can be
— active (known activated)
— Inactive (known as suspended).

e A process is activated when a signal in the
sensitivity list changes its value

e Its statements will be executed sequentially
until the end of the process

RTL Hardware Design Chapter 5 6
by P. Chu

e E.g, 3-Input and circult
signal a,b,c,y: std_logic;
process(a,b,c)
begin

y <= aand b and c;
end process;

 How to Interpret this:
process(a)
begin
y <= aand b and c;
end process;

* For a combinational circuit, all input should
be included in the sensitivity list

RTL Hardware Design Chapter 5 7
by P. Chu

A process with wait statement

* Process has no sensitivity list

e Process continues the execution until a
walit statement Is reached and then
suspended

e Forms of walit statement:
—wait on signals;

— wait until boolean_expression;
—wait for time_expression;

RTL Hardware Design Chapter 5
by P. Chu

e E.g, 3-Input and circult
process
begin
y <= aand b and c;

wait on a, b, c;
end process;

e A process can has multiple wait statements

* Process with sensitivity list is preferred for
synthesis

RTL Hardware Design Chapter 5 9
by P. Chu

2. Sequential signal assignment
statement

e Syntax
signal_name <= value_expression;

e Syntax Is identical to the simple concurrent
signal assignment

e Caution:

— Inside a process, a signal can be assigned
multiple times, but only the last assignment
takes effect

RTL Hardware Design Chapter 5 10
by P. Chu

e E.Q.,
process(a,b,c,d)
begin

y <= a or C;

y <= aand b;

y <=c and d;
end process;

e |tis same as
process(a,b,c,d)
begin

y <=c and d;
end process;

 What happens if the 3 statements are concurrent

statements?

RTL Hardware Design
by P. Chu

T yentry =Yy

- Yeyit = & OF C;
- VYouit -— @ and b;
- Yerit -= C and d;
-y <= yexit

Chapter 5

3. Varible assignment statement

e Syntax

variable _name := value expression,;
e Assignment takes effect immmediately
* No time dimension (i.e., no delay)
 Behave like variables in C

 Difficult to map to hardware (depending on
context)

RTL Hardware Design Chapter 5 12
by P. Chu

e E.0.,

process(a,b,c)
variable tmp: std_logic;

begin
tmp = "0";
tmp :=tmp or a;
tmp :=tmp or b;
y <= tmp;

end process;

RTL Hardware Design Chapter 5

by P. Chu

13

e Interpretation:
process(a,b,c)

variable tmpo, tmp1, tmp2: std_logic;

begin
tmpO0 = "0

tmpl ;= tmpO0 Or a;
tmp2 ;= tmpl Or b;

tmp2

y <=tmp2;

end process;

tmp0
IOI

tmp1
a
b
RTL Hardware Design Chapter 5

by P. Chu

14

 \What happens if signal is used?
process(a,b,c,tmp)
begin - IMPgpyy = tMP
tmp <="0; -- tMp,,;; 1= 07
tmp <=tmp or a; -- tMPg,; = tMPgpyy, OF 3
tmp <=1tmp or b; -- tmpg,; = tMpg,, OF b;
end process; -- tmp <= tmp,,;
e Same as:
process(a,b,c,tmp)
begin
tmp <=tmp or b;
end process;

RTL Hardware Design Chapter 5
by P. Chu

15

4. |F statement

e Syntax
 Examples

e Comparison to conditional signal
assignment

* Incomplete branch and incomplete signal
assignment

* Conceptual Implementation

RTL Hardware Design Chapter 5
by P. Chu

16

Syntax

If boolean_expr_1 then
seguential_statements;
elsif boolean _expr 2 then
seguential_statements;
elsif boolean _expr 3 then
seguential statements;

else
sequential_statements;
end If;

RTL Hardware Design Chapter 5
by P. Chu

17

E.g., 4-10-1 mux

architecture if _arch of mux4 1is

begin
process (a,b,c,d,s)
begin
if (s="00") then
X <= a;
elsif (s="01")then input output
x <= b; S X
elsif (s="10") then
X <= c; 00 a
else 01 b
x <= d; 10 C
end if; 11 d
end process;
end if_arch;
RTL Hardware Design Chapter 5 18

by P. Chu

E.qg., 2-to-22 binary decoder

architecture if_arch of decoder4d 1is
begin
process (s)
begin
if (s="00") then
x <= "0001";

input output

elsif (s="01")then S ¥
x <= "0010";

elsif (s="10") then 00 0001
x <= "0100"; 01 0010

DLEIC 10 0100
x <= "1000"; | |

end if: 11 1000

end process;
end if_arch;

RTL Hardware Design Chapter 5 19
by P. Chu

E.q., 4-t0-2 priority encoder

architecture if_arch of prio_encoder42 is

begin
process (r)
begin input output
if (r(3)=’1’) then r code active
code <= "11"; | 11)
elsif (r(2)=’1’)then | | |
01 —-— 10 1
code <= "10"; 001 — 01 1
elsif (r(1)=’1’)then 0001 00 1
code <= "01";
0000 00 0
else
code <= "00";
end if;

end process;
active <= r(3) or r(2) or r(1) or r (0);
end if_arch;

RTL Hardware Design Chapter 5 20
by P. Chu

Comparison to conditional signal
assignment

e Two statements are the same If there Is
only one output signal in If statement

e |f statement is more flexible

e Sequential statements can be used In
then, elsif and else branches:

— Multiple statements
— Nested If statements

RTL Hardware Design Chapter 5
by P. Chu

21

sig <= value_expr_1 when boolean_expr_1 else
value_expr_2 when boolean_expr_2 else
value_expr_3 when boolean_expr_3 else

value_expr_n;
It can be written as

process (...)
if boolean_expr_1 then
sig <= value_expr_1;
elsif boolean_expr_2 then
sig <= value_expr_2;
elsif boolean_expr_3 then
sig <= value_expr_3;

else
sig <= value_expr_n;
end if;
end process

RTL Hardware Design Chapter 5
by P. Chu

22

e.g., find the max of a, b, c

if (a > b) then
if (a > c) then

max <= a; — a>b and a>c
else
max <= c¢c; — a>b and c>=a
end 1if;
else
if (b > ¢) then
max <= b; — b>=a and b>c
else
max <= c¢c; — b>=a and c>=b
end if;
end if;
RTL Hardware Design Chapter 5

by P. Chu

23

e.g., 2 conditional sig assignment codes

signal
ac_max

bc_max
max <=

max <=

ac_max, bc_max: std_logic;

<= a when (a > c) else c;
<= b when (b > c¢) else c;
ac_max when (a > b) else bc_max;

a when ((a > b) and (a > c)) else
c when (a > b) else

b when (b > c) else

C,

RTL Hardware Design Chapter 5 24

by P. Chu

e 2 conditional sig assign implementations

signal ac_max, bc_max: std_logic;

ac_max <= a when (a > c) else c;
bc_max <= b when (b > c) else c;
max <= ac_max when (a > b) else bc_max;

max <= a when ((a > b) and (a > c)) else
c when (a > b) else
b when (b > c) else
C;

RTL Hardware Design Chapter 5 25
by P. Chu

e.g., “sharing” boolean condition

if (a > b and op="00") then
y <= a - b;
z <= a - 1;
status <= ’'07;
else
y <= b - a
z <= b - 1;
status <= ’1°7;
end 1if;

-
)

RTL Hardware Design Chapter 5
by P. Chu

26

y <= a-b when (a > b and op="00") else

b-a;

z <= a-1 when (a > b and op="00") else

b-1;
status <=

RTL Hardware Design
by P. Chu

0’ when (a > b and op="00")
1'1};

Chapter 5

else

27

Incomplete branch and incomplete
sighal assignment

e According to VHDL definition:

— Only the “then” branch is required; “elsif’” and
“else” branches are optional

— Signals do not need to be assigned in all
branch

— When a signal is unassigned due to omission,
it keeps the “previous value” (implying
“memory”)

RTL Hardware Design Chapter 5 28
by P. Chu

Incomplete branch

e E.qQ., o It implies
process (a,b) process (a,b)
begin begin
if (a=b) then if (a=b) then
eq <= .1'1?; eq <= .1'1?;
end if ; else
end process; eq <= eq;
end if ;

end process

RTL Hardware Design Chapter 5 29
by P. Chu

e fIX

process (a,b)
begin
if (a=b) then
eq <= ’17;
else
eq <= ’07;
end if ;

end process

RTL Hardware Design Chapter 5
by P. Chu

30

Incomplete signal assignment

process (a,b)
begin
if (a>b) then
gt <= 217
elsif (a=b) then
eq <= ’17;
else
1t <= 17,
end if;
end process;

e £.0.,

RTL Hardware Design Chapter 5
by P. Chu

e Fix #1:

process (a,b)

e FIX #2

process (a,b)

begin begin

if (a>b) then gt <= 07;
gt <= ’17; eq <={fr?’0};
eq <= 07, 1t <= ’07;
D if (a>b) then

elsif (a=b) then gt <= 17}
gt <= 07 elsif (a=b) then
eq <= Jlj; eq <= 31?;
1t <= 707 else

else 1t <= 117

_] -]

i’; e end if;
1t <= 217 end process;

end if;

end process;

RTL Hardware Design
by P. Chu

Chapter 5

Conceptual Iimplementation

e Same as conditional signal assignment
statement If the If statement consists of
— One output signal

— One sequential signal assignment in each
branch

 Multiple sequential statements can be
constructed recursively

RTL Hardware Design Chapter 5
by P. Chu

33

e.g.

if boolean_expr then

sig_a <= value_expr_a_1;
sig_b <= value_expr_b_1
else P T sig a
sig_a <= value_expr_a_2; = F -
sig_b <= value_expr_b_2;
end if;
value_
expr_b_1
! sig_b
| = g_
value_
-f
boolean_
RTL Hardware Design Chapter 5 34

by P. Chu

€.9. if boolean_expr_1 then

if boolean_expr_2 then
signal_a <= value_expr_1;

else
signal_a <= value_expr_2;

end i1f;

else

if boolean_expr_3 then

signal_a <= value_expr_3;

else
signal_a <= value_expr_4,;
end if;
end if;
RTL Hardware Design Chapter 5

by P. Chu

35

then branch
expression

else branch

expression

sig

boolean_
exp_1

RTL Hardware Design
by P. Chu

value
expr_1

value
expr_2

boolean

exp_2

value_
expr_3

value
expr_4

boolean_

exp_3

boolean

exp_1

S e

Chapter 5

sig

36

5. Case statement

e Syntax
 Examples

e Comparison to selected signal assignment
statement

* Incomplete signal assignment
* Conceptual Implementation

RTL Hardware Design Chapter 5 37
by P. Chu

Syntax

case case_expression is
when choice 1 =>
sequential statements;
when choice 2 =>
sequential statements;

when choice n =>
sequential statements;
end case;

RTL Hardware Design Chapter 5
by P. Chu

38

E.g., 4-10-1 mux

architecture case_arch of mux4

begin
process (a,b,c,d,s)
begin
case s 1is
when "00" =>
X <= a;
when "01" =>
x <= b;
when "10" =>
X <= cC;
when others =>
x <= d;
end case;
end process;
end case_arch;

RTL Hardware Design Chapter 5
by P. Chu

input output
S X
00 a
01 b
10 C
11 d

39

E.g., 2-to-22 binary decoder

architecture case_arch of decoder4 is

begin
procl:
process (s)
begin input output
case s 1§ g x
when "00" =>
x <= "0001"; 00 0001
when "01" => 01 0010
x <= "0010"; 10 0100
when "10" => 11 1000
x <= "0100";
when others =>
x <= "1000";
end case;

end process;
END case_arch;

RTL Hardware Design Chapter 5
by P. Chu

E.g., 4-t0-2 priority encoder

architecture case_arch of prio_encoder42 is

begin
process (r)
begin
case r 1is
when "1000"[|"1001"(["1010"|"1011"|
"1100"|"1101"["1110" " 1111 " =>
code <= "11";
when "0100"["0101"["0110"["0111" =>
code <= "10"; .
input output
when "0010"["0011" => N code active
code <= "01",; — _
]l ——-— 11 1
when others => 01— 10 1
code <= "00"; 00]— 01 1
end case; 0001 00 1
end process; 0000 00 0
active <= r(3) or r(2) or r(1) or r(0);
end case_arch;
RTL Hardware Design Chapter 5 41

by P. Chu

Comparison to selected signal
assignment

e Two statements are the same If there Is
only one output signal in case statement

e Case statement is more flexible

e Sequential statements can be used In
choice branches

RTL Hardware Design Chapter 5
by P. Chu

42

with sel_exp select
sig <= value_expr_1
value_expr_2
value_expr_3

value_expr_n
It can be rewritten as:

case sel_exp 1is
when choice_1 =>

when
when
when

when

sig <= value_expr_1;
when choice_2 =>

sig <= value_expr_2;
when choice_ 3 =>

sig <= value_expr_3;

when choice_n =>
sig <= value_expr_n;
end case;

RTL Hardware Design Chapter 5
by P. Chu

choice_1,
choice_2,
choice_3,

choice_n;

43

Incomplete signal assignment

e According to VHDL definition:

— Signals do not need to be assigned in all
choice branch

— When a signal is unassigned, it keeps the
“previous value” (implying “memory”)

RTL Hardware Design Chapter 5
by P. Chu

44

Incomplete signal assignment
e £.0.,

process (a)
case a 18
when "100"|"101"|["110"|"111" =>
high <= ’17;
when "010"|"O011" =>
middle <= ’1°7;
when others =>
low <=’17;
end case;
end process;

RTL Hardware Design Chapter 5
by P. Chu

e Fix #1:

process (a)
case a is

when "100"|"101"|"110"|"111"

high <= ’17;
middle <= ’0’;
low <= ’07;
when "010"|"O011"
high <= ’0’;
middle <= ’17;
low <= ’07’;
when others =>
high <= ’07;
middle <= ’0’;
low <= ’17;
end case;
end process;

RTL Hardware Design Chapter 5
by P. Chu

46

e Fix #2:

process (a)
high <= ’07;
middle <= ’07;
low <= ’07;
case a 1S
when "100"|"™101"|"110"["111" =>
high <= ’17;
when "010"|"O011" =>
middle <= ’17;
when others =>
low <=717;
end case;
end process;

RTL Hardware Design Chapter 5
by P. Chu

Conceptual Iimplementation

e Same as selected signal assignment
statement If the case statement consists of
— One output signal

— One sequential signal assignment in each
branch

 Multiple sequential statements can be
constructed recursively

RTL Hardware Design Chapter 5 48
by P. Chu

e.g.
case case_exp
when c0 =>

sig_a <=
sig_b <=
when cl1 =>
sig_a <=
sig_b <=
when others
sig_a <=
sig_b <=

end case;

RTL Hardware Design
by P. Chu

is

value_expr_a_0;
value_expr_b_0O;

value_expr_a_1;
value_expr_b_1;
=>

value_expr_a_n;
value_expr_b_n;

Chapter 5

49

value_ ‘

expr_a_1

c3
c2
ci

cd
t ,
c2
ci
>
caes_exp *
RTL Hardware Design Chapter 5

by P. Chu

sig_a

sig_b

50

6. Simple for loop statement

e Syntax
 Examples
e Conceptual Implementation

RTL Hardware Design Chapter 5
by P. Chu

51

 VHDL provides a variety of loop constructs

* Only a restricted form of loop can be
synthesized
e Syntax of simple for loop:
for index in loop_range loop
sequential statements;
end loop;

e loop range must be static

e Index assumes value of loop range from
eft to right

RTL Hardware Design Chapter 5 52
by P. Chu

e E.g., bit-wide xor

library ieee;
use ieee.std_logic_1164. all;

entity wide_xor 1is
port (
a, b: in std_logic_vector (3 downto 0);
y: out std_logic_vector (3 downto O)
);

end wide_xor;

architecture demo_arch of wide_xor is
constant WIDTH: integer := 4;

begin
process (a, b)
begin

for i in (WIDTH-1) downto O loop
y(i) <= a(i) xor b(i);
end loop;
end process;
end demo_arch;

RTL Hardware Design Chapter 5
by P. Chu

 E.g., reduced-xor

library ieee;
use ieee.std_logic_1164. all;

entity reduced_xor_demo 1is
port (
a: in std_logic_vector (3 downto 0);
y: out std_logic
)

end reduced_xor_demo;

architecture demo_arch of reduced_xor_demo is

constant WIDTH: integer := 4;
signal tmp: std_logic_vector (WIDTH-1 downto O0);
begin
process (a, tmp)
begin
tmp (0) <= a(0); — boundary bit

for i in 1 to (WIDTH-1) loop
tmp(i) <= a(i) xor tmp(i-1);
end loop;
end process;
y <= tmp(WIDTH-1);
end demo_arch;

RTL Hardware Design Chapter 5
by P. Chu

54

Conceptual Iimplementation

e “Unroll” the loop

* For loop should be treated as “shorthand”
for repetitive statements

e E.g., bit-wise xor

y (3)
y (2)
y (1)
y (0)

RTL Hardware Design
by P. Chu

<=
<=
<=
<=

a(3)
a(2)
a(l)
a(0)

Chapter 5

X0r
X0r
X0r
X0r

b(3);
b(2);
b(1);
b (0);

55

* E.g., reduced-xor

tmp (0) <= a(0);

tmp (1) <= a(l) xor tmp(0);
tmp (2) <= a(2) xor tmp(1);
tmp (3) <= a(3) xor tmp(2);
y <= tmp (3);

RTL Hardware Design Chapter 5
by P. Chu

56

Synthesis of sequential statements

e Concurrent statements
— Modeled after hardware

— Have clear, direct mapping to physical
structures

e Seguential statements
— Intended to describe “behavior”
— Flexible and versatile
— Can be difficult to be realized in hardware
— Can be easily abused

RTL Hardware Design Chapter 5 57
by P. Chu

e Think hardware

e Designing hardware is not
converting a C program to a
VHDL program

RTL Hardware Design Chapter 5
by P. Chu

58

