
Summary This introduction covers the fundamentals of VHDL as applied to Complex Programmable
Logic Devices (CPLDs). Specifically included are those design practices that translate soundly
to CPLDs, permitting designers to use the best features of this powerful language to extract
optimum performance for CPLD designs.

Introduction VHDL, an extremely versatile tool developed to aid in many aspects of IC design, allows a user
to structure circuits in many levels of detail. This versatility also makes the job of the VHDL
synthesis tool a lot more complex, and there is latitude for interpretation depending on the
VHDL coding style. One synthesis tool may implement the same code very differently from
another. In order to achieve the best results using VHDL, the designer should work at the
Register Transfer Level (RTL).

Although working at the RTL for designs may be more time-consuming, all major synthesis
tools on the market are capable of generating a clear cut implementation of designs for CPLDs
at this level. Using higher levels of abstraction may give adequate results, but tend to be less
efficient. Additionally, by expressing designs in this manner, the designer also gains the ability
to port VHDL designs from one synthesis tool to another with minimal effort. The following
examples will show designers the best design practices when targeting Xilinx XC9500XL,
XC9500XV and CoolRunnerTM XPLA3 families.

This application note covers the following topics:

• Multiplexers

• Encoders

• Decoders

• Comparators

• Adders

• Modeling Synchronous Logic Circuits

• Asynchronous Counters

• Finite State Machines

• Coding Techniques

Multiplexers Multiplexers can be modeled in various ways. The four common methods are to:

1. Use an if statement followed by multiple elsif statements.

2. Usage of a case statement.

3. Conditional signal assignment.

4. Selected signal assignment

The example below shows the coding for a 1-bit wide 4:1 multiplexer.

Application Note: CPLD

XAPP105 (v2.0) August 30, 2001

A CPLD VHDL Introduction
R

XAPP105 (v2.0) August 30, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

A CPLD VHDL Introduction
R

There is no incorrect method of modeling a multiplexer. However, case statements require less
code than if statements. The conditional and selected signal assignments have to reside
outside a process. Therefore, they will always be active and will take longer to simulate.

One-bit Wide 4:1 Mux
library ieee;
use ieee.std_logic_1164.all;
--Comments are denoted by two - signs.
entity MUX4_1 is
port
(
Sel : in std_logic_vector(1 downto 0);
A, B, C, D : in std_logic;
Y : outstd_logic
);

end MUX4_1;

architecture behavior of MUX4_1 is
begin

--INSERT 1, 2, 3 or 4 here

--1 : If statements
process (Sel, A, B, C, D)
begin
if (Sel = “00”) then
Y<= A;

 Elsif (Sel = “01”) then
 Y<= B;
 Elsif (Sel = “10”) then
 Y<= C;
 Else
 Y<= D;
 end if;
end process;

end behavior;

--2: case statements
process (Sel, A, B, C, D)
begin

 case Sel is
 when “00” => Y<=A;
 when “01” => Y<=B;
 when “10” => Y<=C;
 when “11” => Y<=D;
 when others => Y<=A;
 end case;
 end process;
 end behavior;

--3: Conditional signal assignment
-- equivalent to if but is concurrent and so outside of a process.
Y <= A when Sel = “00” else
 B when Sel = “01” else
 C when Sel = “10” else
 D; -- when Sel = “11”;
End behavior;

--4 Selected signal assignment
-- Multiplexer selection is very clear. Again it is a concurrent statement.
-- Equivalent to a case statement but outside of a process
2 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

with Sel select
 Y<= A when “00”,
 B when “01”,
 C when “10”,
 D when “11”,
 A when others;
End behavior;

When compiled onto an XC9536XL, the resulting usage is as follows:

Design name: Multi
Device used: XC9536XL –5-PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

As shown above, a 4:1 multiplexer can be implemented in a single XC9500 macrocell.

Seven pins are used in the design – A, B, C, D, Sel<0>, and Sel<1> are inputs and Y is an
output. The design is purely combinatorial, as there are no registers used. Four product terms
are used. A closer look at the "Implemented Equations" section of the Fitter report will explain
what these four product terms are:

; Implemented Equations.

Y = A * /"Sel<0>" * /"Sel<1>"
 + "Sel<0>" * B * /"Sel<1>"
 + "Sel<0>" * D * "Sel<1>"
 + /"Sel<0>" * C * "Sel<1>"

Two-bit Wide 8:1 Mux
library IEEE;
use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all;
entity MUX2X8_1_CASE is
port (Sel: in integer range 0 to 7;
 A0, A1, A2, A3, A4, A5, A6, A7: in std_logic_vector(1 downto 0);
 Y: out std_logic_vector(1 downto 0));
End entity MUX2X8_1_CASE;
Architecture behavior of MUX2X8_1_CASE is
Begin

 --INSERT 1 or 2

-- 1: case statements
 process (Sel, A0, A1, A2, A3, A4, A5, A6, A7)
 begin
 case Sel is
 when 0 => Y <= A0;
 when 1 => Y <= A1;
 when 2 => Y <= A2;
 when 3 => Y <= A3;

 when 4 => Y <= A4;
 when 5 => Y <= A5;

 when 6 => Y <= A6;
 when 7 => Y <= A7;

 end case;
 end process;
 end architecture behavior;

Macrocells
Used

Product
Terms Used

Registers
Used

Pins used Function Block
Inputs Used

1 /36 (2%) 4 /180 (2%) 0 /36 (0%) 7 /34 (20%) 6 /108 (5%)
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 3
1-800-255-7778

A CPLD VHDL Introduction
R

-- 2: selected signal assignment
 with Sel select
 Y <= A0 when 0,

 A1 when 1,
 A2 when 2,
 A3 when 3,
 A4 when 4,
 A5 when 5,
 A6 when 6,
 A7 when 7;

 End architecture behavior;

In the example above, a 2-bit wide 8:1 multiplexer is implemented using case statements and
selected signal assignments. The resulting code gives the following usage summary:

Design Name: multi2
Device Used: XC9536XL –5 –PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

This 8:1 multiplexer uses a total of 2 macrocells, 16 product terms and 21 pins. The two
macrocells used in this design are for Y<0> and Y<1>, which reside in FB1_4 (Function Block
1, Macrocell 4) and FB2_4 respectively. Both Y<0> and Y<1> use eight product terms as
shown in the "Implemented Equations" section below. The architecture of the XC9500 family
has five local product terms available to it. When more than five P-terms are necessary, they
may be borrowed from the neighboring macrocells above and/or below the macrocell. In this
case, Y<0> and Y<1> borrow P-terms from macrocells above and below. For example, Y<0>,
which is in FB1_4, borrows two product terms from its neighbor above, FB1_3, and also
borrows one product term from its neighbor below, FB1_5.

; Implemented Equations.

 "Y<1>" = "Sel<2>" * "Sel<0>" * "A7<1>" * "Sel<1>"
+ "Sel<2>" * /"Sel<0>" * "A6<1>" * "Sel<1>"
+ /"Sel<2>" * "Sel<0>" * "A3<1>" * "Sel<1>"
+ /"Sel<2>" * /"Sel<0>" * "A2<1>" * "Sel<1>"
+ /"Sel<2>" * /"Sel<0>" * "A0<1>" * /"Sel<1>"

;Imported pterms FB1_3
+ "Sel<2>" * /"Sel<0>" * "A4<1>" * /"Sel<1>"
+ /"Sel<2>" * "Sel<0>" * "A1<1>" * /"Sel<1>"

;Imported pterms FB1_5
+ "Sel<2>" * "Sel<0>" * "A5<1>" * /"Sel<1>"

 "Y<0>" = "Sel<2>" * "Sel<0>" * "A7<0>" * "Sel<1>"
+ "Sel<2>" * /"Sel<0>" * "A6<0>" * "Sel<1>"
+ /"Sel<2>" * "Sel<0>" * "A3<0>" * "Sel<1>"
+ /"Sel<2>" * /"Sel<0>" * "A2<0>" * "Sel<1>"
+ /"Sel<2>" * /"Sel<0>" * "A0<0>" * /"Sel<1>"

;Imported pterms FB2_3
+ "Sel<2>" * "Sel<0>" * "A5<0>" * /"Sel<1>"
+ /"Sel<2>" * "Sel<0>" * "A1<0>" * /"Sel<1>"

;Imported pterms FB2_5
+ "Sel<2>" * /"Sel<0>" * "A4<0>" * /"Sel<1>"

Macrocells
Used

Product Terms
Used

Registers
Used

Pins used Function Block
Inputs Used

2 /36 (5%) 16 /180 (8%) 0 /36 (0%) 21 /34 (61%) 22 /108 (20%)
4 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

Encoders An encoder creates a data output set that is more compact than the input data. A decoder
reverses the encoding process. The truth table for an 8:3 encoder is shown below. We must
assume that only one input may have a value of "1" at any given time. Otherwise the circuit is
undefined. Note that the binary value of the output matches the subscript of the asserted
inputs.

Table 1: Truth Table, 8:3 Encoder

The encoder described by the truth table may be modeled by using the if, case statements, or
selected signal assignments. Once again, case statements are more concise and clear than if
statements, and this becomes increasingly obvious when the number of inputs to the encoder
increase. Selected signal assignment is also very clear. It is the concurrent equivalent of case
statement. The for loop is better for modeling a larger or more generic encoder. The if
statement and the for loop encoder are not depicted in this example.

An 8:3 Binary Encoder
Library IEEE;
Use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all;

entity ENCODER8 is
 port (A: in std_logic_vector (7 downto 0);
 Y: out std_logic_vector (2 downto 0));
end entity ENCODER8;

architecture ARCH of ENCODER8 is
begin

-- 1: case statement
 process (A)
 begin
 case A is
 when "00000001" => Y <= "000";
 when "00000010" => Y <= "001";
 when "00000100" => Y <= "010";
 when "00001000" => Y <= "011";
 when "00010000" => Y <= "100";
 when "00100000" => Y <= "101";
 when "01000000" => Y <= "110";

Inputs Outputs

A
7

A6 A5 A4 A3 A2 A1 A0 Y2 Y1 Y0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 5
1-800-255-7778

A CPLD VHDL Introduction
R

 when "10000000" => Y <= "111";
 when others => Y <= "XXX";
 end case;
 end process;
end architecture ARCH;

-- 2: selected signal assignment
with A select
 Y <= "000" when "00000001",
 "001" when "00000010",
 "010" when "00000100",
 "011" when "00001000",
 "100" when "00010000",
 "101" when "00100000",
 "110" when "01000000",
 "111" when "10000000",
 "XXX" when others;
 end architecture ARCH;

In both cases, three macrocells (one each for Y<1>, Y<2>, and Y<0>), twelve product terms,
and eleven pins are used:

Design Name: encoder8
Device Used: XC9536XL –5 –PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

; Implemented Equations.

 "y<1>" = /"a<0>" * /"a<1>" * "a<2>" * /"a<3>" * /"a<4>" *
/"a<5>" * /"a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * "a<3>" * /"a<4>" *
/"a<5>" * /"a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * /"a<3>" * /"a<4>" *
/"a<5>" * "a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * /"a<3>" * /"a<4>" *
/"a<5>" * /"a<6>" * "a<7>"

 "y<2>" = /"a<0>" * /"a<1>" * /"a<2>" * /"a<3>" * "a<4>" *
/"a<5>" * /"a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * /"a<3>" * /"a<4>" *
"a<5>" * /"a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * /"a<3>" * /"a<4>" *
/"a<5>" * "a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * /"a<3>" * /"a<4>" *
/"a<5>" * /"a<6>" * "a<7>"

 "y<0>" = /"a<0>" * "a<1>" * /"a<2>" * /"a<3>" * /"a<4>" *
/"a<5>" * /"a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * "a<3>" * /"a<4>" *
/"a<5>" * /"a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * /"a<3>" * /"a<4>" *
"a<5>" * /"a<6>" * /"a<7>"
+ /"a<0>" * /"a<1>" * /"a<2>" * /"a<3>" * /"a<4>" *
/"a<5>" * /"a<6>" * "a<7>"

Macrocells
Used

Product Terms
Used

Registers
Used

Pins used Function Block
Inputs Used

3 /36 (8%) 12 /180 (6%) 0 /36 (0%) 11 /34 (32%) 16 /108 (14%)
6 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

An additional standard encoder is the “priority encoder” which permits multiple asserted inputs.
VHDL code for priority encoders is not presented but the operation is such that if two or more
single bit inputs are at a logic "1", then the input with the highest priority will take precedence,
and its particular coded value will be output.

Decoders The truth table for a 3:8 decoder is shown in Table 2. Note the reverse relationship to Table 1.

Table 2: Truth Table, 3:8 decoder

Like the encoder, this decoder can be modeled by an if, case statements along with selected
signal assignment. When inputs and outputs become wide, for statements should be used for
code efficiency. However, all the models synthesize to the same circuit.

3:8 Decoder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL, IEEE.NUMERIC_STD.all;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Decoder3_8 is
 Port (A : in integer range 0 to 7;
 Y : out std_logic_vector(7 downto 0));
end Decoder3_8;

architecture behavioral of Decoder3_8 is
begin

--1: Case statement
process (A)
begin
 case A is
 when 0 => Y <= "00000001";
when 1 => Y <= "00000010";
when 2 => Y <= "00000100";
when 3 => Y <= "00001000";
when 4 => Y <= "00010000";
when 5 => Y <= "00100000";
when 6 => Y <= "01000000";
when 7 => Y <= "10000000";

Inputs Outputs

A2 A1 A0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 7
1-800-255-7778

A CPLD VHDL Introduction
R

end case;
end process;
end behavioral;

--2: Select Signal Assignment
with A select
 Y <= "00000001" when 0,
 "00000010" when 1,
 "00000100" when 2,
 "00001000" when 3,
 "00010000" when 4,
 "00100000" when 5,
 "01000000" when 6,
 "10000000" when 7,
 "00000000" when others;

end behavioral;

-- 3: for statement
process (A)
begin
 for N in 0 to 7 loop
 if (A = N) then
 Y(N) <= ’1’;

 else
 Y(N) <= ’0’;

 end if;
 end loop;
end process;

end behavioral;

Again, the corresponding result summary follows:

Design Name: encoder8
Device Used: XC9536XL –5 –PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

Eight macrocells are used, one for each of the individual bits of Y, and the design is
combinational. The implemented equations are:

; Implemented Equations.

 "y<0>" = /"a<0>" * /"a<1>" * /"a<2>"
 "y<1>" = "a<0>" * /"a<1>" * /"a<2>"
 "y<2>" = /"a<0>" * "a<1>" * /"a<2>"
 "y<3>" = "a<0>" * "a<1>" * /"a<2>"
 "y<4>" = /"a<0>" * /"a<1>" * "a<2>"
 "y<5>" = "a<0>" * /"a<1>" * "a<2>"
 "y<6>" = /"a<0>" * "a<1>" * "a<2>"
 "y<7>" = "a<0>" * "a<1>" * "a<2>"

Four Bit Address Decoder
The following is an example of a 4-Bit Address Decoder. It provides enable signals for
segments of memory. The address map for this example is shown in the figure below.

Macrocells
Used

Product
Terms Used

Registers
Used

Pins used Function
Block Inputs
Used

8 /36 (22%) 8 /180 (4%) 0 /36 (0%) 11 /34 (32%) 6 /108 (5%)
8 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

Figure 1: 4-bit Address Decoder Address Map

The address map is divided into quarters. The second quarter is further divided into four
segments. Thus, seven enable outputs (one for each memory segment) are provided. Two
examples are provided below – one that uses the for loop enclosing an if statement, and the
other uses a case statement. Both model the same circuit, but in general, it is much more
efficient to use a for loop when a large number of consecutively decoded outputs are required.
A case statement requires a separate branch for every output, thus increasing the lines of
code.

Four Bit Address Decoder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL, IEEE.NUMERIC_STD.all;

entity decoder_4_bit is
 Port (Address : in integer range 0 to 15;
 AddDec_0to3 : out std_logic;
 AddDec_8to11 : out st66d_logic;
 AddDec_12to15 : out std_logic;
 AddDec_4to7 : out std_logic_vector(3 downto 0));
end decoder_4_bit;

architecture behavioral of decoder_4_bit is
begin

-- 1: for loop
 process (Address)
 begin
 -- First quarter

if (Address >= 0 and Address <=3) then
 AddDec_0to3 <= ’1’;
else
 AddDec_0to3 <= ’0’;
end if;

-- Third quarter
if (Address >= 8 and Address <= 11) then

Fourth Quarter

12-15

Third Quarter

8-11

Second Quarter

7

6

5

4

First Quarter

0-3
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 9
1-800-255-7778

A CPLD VHDL Introduction
R

 AddDec_8to11 <= ’1’;
else
 AddDec_8to11 <= ’0’;
end if;

--Fourth Quarter
if (Address >= 12 and Address <= 15) then
 AddDec_12to15 <= ’1’;
else
 AddDec_12to15 <= ’0’;
end if;

-- Second Quarter
for N in AddDec_4to7’range loop
 if (Address = N+4) then
 AddDec_4to7(N) <= ’1’;
else
 AddDec_4to7(N) <= ’0’;
end if;

end loop;
end process;

end behavioral;

--2: case statements
process (Address)
begin
 AddDec_0to3 <= ’0’;
AddDec_4to7 <= (others => ’0’);
AddDec_8to11 <= ’0’;
AddDec_12to15 <= ’0’;

case Address is
--First quarter
 when 0 to 3 =>
 AddDec_0to3 <= ’1’;

--second quarter
when 4 => AddDec_4to7(0) <= ’1’;
when 5 => AddDec_4to7(1) <= ’1’;
when 6 => AddDec_4to7(2) <= ’1’;
when 7 => AddDec_4to7(3) <= ’1’;

--Third quarter
 when 8 to 11 =>
 AddDec_8to11 <= ’1’;

--Fourth quarter
 when 12 to 15 =>
 AddDec_12to15 <= ’1’;

end case;
end process;
end behavioral;
10 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

Here is the summary of the compiled results:

Design Name: Fb_decoder
Device Used: XC9536XL –5 –PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

A total of seven equations have been mapped into two function blocks. Each of these seven
equations occupies one macrocell. The six product terms used in this design can be seen in the
Implemented equations:

; Implemented Equations.
 adddec_12to15 = "address<2>" * "address<3>"
 "adddec_4to7<0>" = /"address<0>" * /"address<1>" * "address<2>" *
/"address<3>"

 "adddec_4to7<1>" = "address<0>" * /"address<1>" * "address<2>" *
/"address<3>"

 "adddec_4to7<2>" = /"address<0>" * "address<1>" * "address<2>" *
/"address<3>"

 "adddec_4to7<3>" = "address<0>" * "address<1>" * "address<2>" *
/"address<3>"

 adddec_8to11 = /"address<2>" * "address<3>"
 adddec_0to3 = /"address<2>" * /"address<3>"

Comparators The code for a simple 6-bit equality comparator is shown in the example below. Comparators
are modeled using the if statement with an else clause. A conditional signal assignment can
also be used, but is less common as a sensitivity list cannot be specified to improve simulation.

The equality and relational operators in VHDL are:

=
!=
<
<=
>
>=

The logical operators are:

not
and
or

It is important to note that only two data objects can be compared at once. Thus, a statement
like if(A=B=C) may not be used. Logical operators can, however, be used to test the result of
multiple comparisons, such as if((A=B) and (A=C)).

Six-Bit Equality Comparator
library IEEE;
use IEEE.STD_LOGIC_1164.ALL, IEEE.Numeric_STD.all;

entity Comparator6 is
 Port (A1, B1, A2, B2, A3, B3 : in std_logic_vector(5 downto 0);
 Y1, Y2, Y3 : out std_logic);
end Comparator6;

Macrocells
Used

Product
Terms Used

Registers
Used

Pins used Function
Block Inputs
Used

7 /36 (19%) 7 /180 (3%) 0 /36 (0%) 11 /34 (32%) 8 /108 (7%)
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 11
1-800-255-7778

A CPLD VHDL Introduction
R

architecture behavioral of Comparator6 is
begin
 COMPARE: process (A1, B1, A2, B2, A3, B3)
 begin
 Y1 <= ’1’;
 -- each bit is compared in a for loop
 for N in 0 to 5 loop

 if (A1(N) /= B1(N)) then
 Y1 <= ’0’;
 else
 null;
 end if;

 end loop;
 Y2 <= ’0’;
 if (A2 = B2) then
 Y2 <= ’1’;
 end if;
 if (A3 =B3) then
 Y3 <= ’1’;
 else
 Y3 <= ’0’;
 end if;

 end process;
end behavioral;

The corresponding resource summary is as follows when fit into a XC9572XL –TQ100 device:

Design Name: Comparator6
Device Used: XC9572XL –5 –TQ100
Fitting Status: Successful
**************************** Resource Summary ****************************

Three macrocells are used for this design although product terms are imported from the
neighboring macrocells.

; Implemented Equations.

/y1 = "a1<3>" * /"b1<3>"
+ /"a1<3>" * "b1<3>"
+ "a1<4>" * /"b1<4>"
+ "a1<2>" * /"b1<2>"
+ /"a1<2>" * "b1<2>"

;Imported pterms FB1_2
+ /"a1<4>" * "b1<4>"
+ "a1<5>" * /"b1<5>"
+ /"a1<5>" * "b1<5>"
+ /"a1<0>" * "b1<0>"

;Imported pterms FB1_4
+ "a1<0>" * /"b1<0>"
+ "a1<1>" * /"b1<1>"
+ /"a1<1>" * "b1<1>"

/y2 = "a2<3>" * /"b2<3>"
+ /"a2<3>" * "b2<3>"
+ /"a2<2>" * "b2<2>"
+ "a2<4>" * /"b2<4>"
+ /"a2<4>" * "b2<4>"

Macrocells
Used

Product Terms
Used

Registers
Used

Pins used Function Block
Inputs Used

3 /72 (4%) 36 /360 (10%) 0 /72 (0%) 39 /72 (54%) 36 /216 (16%)
12 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

;Imported pterms FB2_2
+ "a2<2>" * /"b2<2>"
+ "a2<0>" * /"b2<0>"
+ /"a2<0>" * "b2<0>"
+ /"a2<5>" * "b2<5>"

;Imported pterms FB2_4
+ "a2<1>" * /"b2<1>"
+ /"a2<1>" * "b2<1>"
+ "a2<5>" * /"b2<5>"

/y3 = "a3<3>" * /"b3<3>"
+ /"a3<3>" * "b3<3>"
+ /"a3<2>" * "b3<2>"
+ "a3<4>" * /"b3<4>"
+ /"a3<4>" * "b3<4>"

;Imported pterms FB3_2
+ "a3<2>" * /"b3<2>"
+ "a3<0>" * /"b3<0>"
+ /"a3<0>" * "b3<0>"
+ /"a3<5>" * "b3<5>"

;Imported pterms FB3_4
+ "a3<1>" * /"b3<1>"
+ /"a3<1>" * "b3<1>"
+ "a3<5>" * /"b3<5>"

Adders A dataflow model of a full adder is shown below. This is a single bit adder which can be easily
extended using a parametric declaration.

Single Bit Half Adder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity half_adder is
 Port (A, B : in std_logic;
 Sum, Cout : out std_logic);
end half_adder;

architecture behavioral of half_adder is
begin
 Sum <= A xor B;
 Cout <= A and B;
end behavioral;

Full Adder
Library IEEE;
Use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;

entity Fulladder is
 Port (A, B, Cin : in std_logic;
 Cout, Sum : out std_logic);
end Fulladder;

architecture behavioral of Fulladder is
 component HALF_ADDER
 port (A, B: in std_logic;
 Sum, Cout: out std_logic);

 end component;
 signal AplusB, CoutHA1, CoutHA2: std_logic;
 begin
 HA1: HALF_ADDER port map (A=> A, B=> B, Sum => AplusB,
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 13
1-800-255-7778

A CPLD VHDL Introduction
R

 Cout => CoutHA1);
 HA2: HALF_ADDER port map (A => AplusB, B=> Cin,
 Sum => Sum, Cout => CoutHA2);

 Cout <= CoutHA1 or CoutHA2;
end behavioral;

The corresponding resource summary is as follows when fit into an XC9572XL -TQ100 device:

Design Name: FULLADDER
Device Used: XC9572XL –5 –TQ100
Fitting Status: Successful
**************************** Resource Summary ****************************

Here is the corresponding implemented equations:

; Implemented Equations.

 cout = b * a
+ b * cin
+ a * cin

/sum = cin
Xor b * a
+ /b * /a

Larger Adders can be defined behaviorally. The declaration statements are provided below.

Larger Adder Defined Behaviorally
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Fulladder is
 generic (parameter: integer := 10);
 Port (A, B: in std_logic_vector (parameter downto 0)
 Cin : in std_logic;
 Cout: out std_logic;
 Sum : out std_logic_vector (parameter downto 0));
end Fulladder;

Modeling
Synchronous
Logic Circuits

The following example shows how to implement a 16-bit counter.

Sixteen Bit Counter
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL; -- Two very useful
use IEEE.STD_LOGIC_UNSIGNED.ALL; -- IEEE libraries

entity sixteen is
 Port (rst : in std_logic;
 clk : in std_logic;
 count: out std_logic_vector(15 downto 0));
end sixteen;

architecture behavioral of sixteen is

Macrocells
Used

Product
Terms Used

Registers
Used

Pins used Function
Block Inputs
Used

2 /72 (2%) 6 /360 (1%) 0 /72 (0%) 5 /72 (6%) 6 /216 (2%)
14 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

signal temp: std_logic_vector(15 downto 0);
begin
process (clk, rst)
 begin
 if (rst = ’1’) then
 temp <= "0000000000000000";
elsif (clk’event and clk=’1’) then
 temp <= temp + 1;
end if;

 end process;
count <= temp;

end behavioral;

In this implementation 16 registers are used, namely Count0 through Count15. The
corresponding resource summary is as shown below:

Design Name: Sixteen
Device Used: XC9536XL –5 –PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

The ‘Implemented equations’ section of the fitter report, is given below. The equations were
implemented with D-Type flops:

; Implemented Equations.

 "count<0>" := /"count<0>"
 "count<0>".CLKF = clk;FCLK/GCK
 "count<0>".RSTF = rst;GSR
 "count<0>".PRLD = GND

 "count<1>".T = "count<0>"
 "count<1>".CLKF = clk;FCLK/GCK
 "count<1>".RSTF = rst;GSR
 "count<1>".PRLD = GND

 "count<10>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>" *
"count<7>" * "count<8>" * "count<9>"

 "count<10>".CLKF = clk;FCLK/GCK
 "count<10>".RSTF = rst;GSR
 "count<10>".PRLD = GND

 "count<11>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>" *
"count<7>" * "count<8>" * "count<9>" * "count<10>"

 "count<11>".CLKF = clk;FCLK/GCK
 "count<11>".RSTF = rst;GSR
 "count<11>".PRLD = GND

 "count<12>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>" *
"count<7>" * "count<8>" * "count<9>" * "count<10>" *
"count<11>"

 "count<12>".CLKF = clk;FCLK/GCK
 "count<12>".RSTF = rst;GSR
 "count<12>".PRLD = GND

Macrocells
Used

Product Terms
Used

Registers
Used

Pins used Function Block
Inputs Used

16 /36 (44%) 16 /180 (8%) 16 /36 (44%) 18 /34 (52%) 22 /108 (20%)
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 15
1-800-255-7778

A CPLD VHDL Introduction
R

 "count<13>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>" *
"count<7>" * "count<8>" * "count<9>" * "count<10>" *
"count<11>" * "count<12>"

 "count<13>".CLKF = clk;FCLK/GCK
 "count<13>".RSTF = rst;GSR
 "count<13>".PRLD = GND

 "count<14>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>" *
"count<7>" * "count<8>" * "count<9>" * "count<10>" *
"count<11>" * "count<12>" * "count<13>"

 "count<14>".CLKF = clk;FCLK/GCK
 "count<14>".RSTF = rst;GSR
 "count<14>".PRLD = GND

 "count<15>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>" *
"count<7>" * "count<8>" * "count<9>" * "count<10>" *
"count<11>" * "count<12>" * "count<13>" * "count<14>"

 "count<15>".CLKF = clk;FCLK/GCK
 "count<15>".RSTF = rst;GSR
 "count<15>".PRLD = GND

 "count<2>".T = "count<0>" * "count<1>"
 "count<2>".CLKF = clk;FCLK/GCK
 "count<2>".RSTF = rst;GSR
 "count<2>".PRLD = GND

 "count<3>".T = "count<0>" * "count<1>" * "count<2>"
 "count<3>".CLKF = clk;FCLK/GCK
 "count<3>".RSTF = rst;GSR
 "count<3>".PRLD = GND

 "count<4>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>"

 "count<4>".CLKF = clk;FCLK/GCK
 "count<4>".RSTF = rst;GSR
 "count<4>".PRLD = GND

 "count<5>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>"

 "count<5>".CLKF = clk;FCLK/GCK
 "count<5>".RSTF = rst;GSR
 "count<5>".PRLD = GND

 "count<6>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>"

 "count<6>".CLKF = clk;FCLK/GCK
 "count<6>".RSTF = rst;GSR
 "count<6>".PRLD = GND

 "count<7>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>"

 "count<7>".CLKF = clk;FCLK/GCK
 "count<7>".RSTF = rst;GSR
 "count<7>".PRLD = GND

 "count<8>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>" *
"count<7>"
16 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

 "count<8>".CLKF = clk;FCLK/GCK
 "count<8>".RSTF = rst;GSR
 "count<8>".PRLD = GND

 "count<9>".T = "count<0>" * "count<1>" * "count<2>" *
"count<3>" * "count<4>" * "count<5>" * "count<6>" *
"count<7>" * "count<8>"

 "count<9>".CLKF = clk;FCLK/GCK
 "count<9>".RSTF = rst;GSR
 "count<9>".PRLD = GND

The next example illustrates how to implement a 5-bit up by 1 down by 2 counter. This circuit
counts up by 1 when the signal Up is a logic "1" and counts down by 2 when the signal down is
logic "1". A case statement of the concatenation of Up and Down makes the model easy to
read.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity CNT_UP1_DOWN2 is
 Port (Clock, reset, Up, Down : in std_logic;
 Count : out std_logic_vector(4 downto 0));
end CNT_UP1_DOWN2;

architecture behavioral of CNT_UP1_DOWN2 is
begin
 process (Clock)
 variable UpDown: std_logic_vector (1 downto 0);
variable Count_V: std_logic_vector (4 downto 0);

begin
 UpDown := Up & Down;
if (clock’event and clock = ’1’)then
 if (Reset = ’1’) then
 Count_V := "00000";
else
 case UpDown is
 when "00" => Count_V := Count_V;
 when "10" => Count_V := Count_V +1;
 when "01" => Count_V := Count_V -2;
 when others => Count_V := Count_V;

 end case;
end if;

end if;
 Count <= Count_V;
end process;

end behavioral;

Note the utilization is three P-terms per bit.

Design Name: UPONEDOWNTWO
Device Used: XC9536XL –5 -PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

All bits of the “count” signal have been automatically converted to T-type registers.

Macrocells
Used

Product Terms
Used

Registers
Used

Pins used Function Block
Inputs Used

5 /36 (13%) 15 /180 (8%) 5 /36 (13%) 9 /34 (26%) 14 /108 (12%)
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 17
1-800-255-7778

A CPLD VHDL Introduction
R

; Implemented Equations.

"count<0>".T = reset * "count<0>"
+ /reset * /down * up

 "count<0>".CLKF = clock;FCLK/GCK
 "count<0>".PRLD = GND

/"count<1>".T = reset * /"count<1>"
+ /reset * /"count<0>" * /down
+ /reset * down * up
+ /reset * /down * /up

 "count<1>".CLKF = clock;FCLK/GCK
 "count<1>".PRLD = GND

 "count<2>".T = reset * "count<2>"
+ /reset * /"count<1>" * down * /up
+ /reset * "count<0>" * "count<1>" * /down * up

 "count<2>".CLKF = clock;FCLK/GCK
 "count<2>".PRLD = GND

 "count<3>".T = reset * "count<3>"
+ /reset * /"count<2>" * /"count<1>" * down * /up
+ /reset * "count<0>" * "count<2>" * "count<1>" *
/down * up

 "count<3>".CLKF = clock;FCLK/GCK
 "count<3>".PRLD = GND

 "count<4>".T = reset * "count<4>"
+ /reset * /"count<2>" * /"count<3>" * /"count<1>" *
down * /up
+ /reset * "count<0>" * "count<2>" * "count<3>" *
"count<1>" * /down * up

 "count<4>".CLKF = clock;FCLK/GCK
 "count<4>".PRLD = GND

Asynchronous
Counters

Asynchronous Counters are sometimes referred to as Ripple Counters. Each single flip-flop
phase divides the input signal by two. The example below is of a Divide by 16 Clock divider
using an asynchronous (ripple) approach. It has four ripple stages each consisting of a D-type
flip-flop. Each of the flip-flops’ Q-bar outputs is connected back to its D input. A fifth flip-flop is
needed to synchronize the divided by 16 clock (Div16) to the source clock (Clock).

Divide by 16 Clock Divider Using an Asynchronous (ripple) Counter
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Async_counter is
 Port (Clk, Reset : in std_logic;
 Y : out std_logic);
end Async_counter;

architecture behavioral of Async_counter is
signal Div2, Div4, Div8, Div16: std_logic;
begin
 process (Clk, Reset, Div2, Div4, Div8)
begin
 if (Reset = ’0’) then
 Div2 <= ’0’;
elsif rising_edge(Clk) then
18 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

 Div2 <= not Div2;
end if;

if (Reset = ’0’) then
 Div4 <= ’0’;

elsif rising_edge (Div2) then
 Div4 <= not Div4;
end if;

if (Reset = ’0’) then
 Div8 <= ’0’;
elsif rising_edge (Div4) then
 Div8 <= not Div8;
end if;

if (Reset = ’0’) then
 Div16 <= ’0’;
elsif rising_edge (Div8) then
 Div16 <= not Div16;
end if;
-- resynchronize back to clock
if (Reset = ’0’) then
 Y <= ’0’;
elsif rising_edge(clk) then
 Y <= Div16;
end if;

end process;
end behavioral;

Design Name: Asynch_adder
Device used: XC9536XL –5 –PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

It uses only two macrocells and six product terms, and the implemented equations are as
follows:

; Implemented Equations.

 y := div16
 y.CLKF = clk;FCLK/GCK
 y.RSTF = /reset;GSR
 y.PRLD = GND

 div16 := /div16
 div16.CLKF = div8
 div16.RSTF = /reset;GSR
 div16.PRLD = GND

 div2 := /div2
 div2.CLKF = clk;FCLK/GCK
 div2.RSTF = /reset;GSR
 div2.PRLD = GND

 div4 := /div4

Macrocells
Used

Product
Terms Used

Registers
Used

Pins used Function
Block Inputs
Used

5 /36 (13%) 8 /180 (4%) 5 /36 (13%) 3 /34 (8%) 4 /108 (3%)
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 19
1-800-255-7778

A CPLD VHDL Introduction
R

 div4.CLKF = div2
 div4.RSTF = /reset;GSR
 div4.PRLD = GND

 div8 := /div8
 div8.CLKF = div4
 div8.RSTF = /reset;GSR
 div8.PRLD = GND

Finite State
Machines

A Finite State Machine is a circuit specifically designed to cycle through a chosen sequence of
operations (states) in a well defined manner. FSMs are an important aspect of hardware
design. A well written model will function correctly and meet requirements in an optimal
manner; a poorly written model may not. Therefore, a designer should fully understand and be
familiar with different HDL modeling basics.

FSM Design and Modeling Issues
FSM issues to consider are:

• HDL coding style

• Resets and fail safe behavior

• State encoding

• Mealy or Moore type outputs

HDL coding style

There are many ways of modeling the same state machine. HDL code may be partitioned into
three different portions to represent the three parts of a state machine (next state logic, current
state logic, and output logic). It may also be structured so that the three different portions are
combined in the model. For example, current state and next state logic may be combined with
separate output logic, as shown in example FSM1; or next state and output logic may be
combined with a separate current state logic, as shown in example FSM2. However, in VHDL,
it is impossible to synthesize a combined current state, next state, and output logic in a single
always statement.

A FSM with n state flip-flops may have 2n binary numbers that can represent states. Often, all
of the 2n states are not needed. Unused states should be managed by specifying a fall back
state during normal operation. For example, a state machine with six states requires a
minimum of three flip-flops. Since 23 = 8 possible states, there are two unused states.
Therefore, Next-state logic is best modeled using the case statement even though this means
the FSM can not be modeled in one process. The default clause used in a case statement
avoids having to define these unused states.

Resets and fail safe behavior

Depending on the application, different types of resets may or may not be available. There may
be a synchronous and an asynchronous reset, there may only be one, or there may be none.
In any case, to ensure fail safe behavior, one of two things must be done, depending on the
type of reset:

Use an asynchronous reset. This ensures the FSM is always initialized to a known state
before the first clock transition and before normal operation commences. This has the
advantage of minimizing the next state logic by not having to decode any unused current state
values.

With no reset or a synchronous reset. When an asynchronous reset is unavailable, there is
no way of predicting the initial value of the state register flip-flops when the IC is powered up.
In the worst case scenario, it could power up and become stuck in an uncoded state. Therefore,
all 2n binary values must be decoded in the next state logic, whether they form part of the state
machine or not.
20 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

In VHDL an asynchronous reset can only be modeled using the if statement, while a
synchronous reset can be modeled using either a wait or if statement; the disadvantage of
using the wait statement is that the whole process is synchronous so other if statements
cannot be used to model purely combinational logic.

Table 3: Asynchronous and Synchronous Reset

State Encoding

The way in which states are assigned binary values is referred to as state encoding. Some
different state encoding schemes commonly used are:

• Binary

• Gray

• Johnson

• One-hot

Table 4: State Encoding Format Values

CPLDs, unlike FPGAs, have fewer flip-flops available to the designer. While one-hot encoding
is sometimes preferred because it is easy, a large state machine will require a large number of
flip-flops (n states will require n flops). Therefore, when implementing finite state machines on
CPLDs, in order to conserve available resources, it is recommended that binary or gray
encoding be used. Doing so enables the largest number of states to be represented by as few
flip-flops as possible.

Asynchronous Reset Example

Process (Clock, Reset)
Begin
If (Reset = ‘1’) then
State <= ST0;
Elsif rising_edge (Clock) then
Case (State) is
…..
end case;
end if;
end process;

Synchronous Reset Example

Process (Clock, Reset)
Begin
If (rising_edge (clock) then
If (Reset = ‘1’) then
State <= ST0;
Else
Case (State) is
……
end case;
end if;
end process;

No. Binary Gray Johnson One-hot

0 000 000 000 001

1 001 001 001 010

2 010 011 011 100

3 011 010 111 1000

4 100 110

5 101 111

6 110 101

7 111 100
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 21
1-800-255-7778

A CPLD VHDL Introduction
R

Mealy or Moore type outputs

There are generally two ways to describe a state machine – Mealy and Moore. A Mealy state
machine has outputs that are a function of the current state and primary inputs. A Moore state
machine has outputs that are a function of the current state only, and so includes outputs direct
from the state register. If outputs come direct from the state register only, there is no output
logic.

The examples below show the same state machine modeled with a Mealy or Moore type
output. A state diagram is also associated with each of the two examples.

FSM Example 1 – FSM modeled with “NewColor” as a Mealy type output

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FSMEX_1 is
 Port (clock : in std_logic;
 reset : in std_logic;
 red, green, blue : in std_logic;
 NewColor : out std_logic);
end FSMEX_1;

architecture behavioral of FSMEX_1 is
type Color is (Redstate, GreenState, BlueState, WhiteState);
signal CurrentState, NextState: Color;
begin
 FSM_COMB: process (Red, Green, Blue, CurrentState)
begin
 case CurrentState is
 when Redstate =>
 if (Red = ’1’) then
 NewColor <= ’0’;
 NextState <= RedState;

 else
 if (Green = ’1’ or Blue = ’1’) then
 NewColor <= ’1’;

 else
 NewColor <= ’0’;

Figure 2: State Machines
22 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

 end if;
 NextState <= WhiteState;

 end if;

 when GreenState =>
 if (Green = ’1’) then
 NewColor <= ’0’;
 NextState <= GreenState;

 else
 if (Red = ’1’ or Blue = ’1’) then
 NewColor <= ’1’;

 else
 NewColor <= ’0’;

 end if;
 NextState <= WhiteState;

 end if;

 when BlueState =>
 if (Blue = ’1’) then
 NewColor <= ’0’;
NextState <= BlueState;

else
 if (Red = ’1’ or Green = ’1’) then
 NewColor <= ’1’;

 else
 NewColor <= ’0’;
end if;

 NextState <= WhiteState;
 end if;

 when WhiteState =>
 if (Red = ’1’) then
 NewColor <= ’1’;
 NextState <= RedState;
elsif (Green = ’1’) then
 NewColor <= ’1’;
 NextState <= GreenState;
elsif (Blue = ’1’) then
 NewColor <= ’1’;
 NextState <= BlueState;
else
 NewColor <= ’0’;
 NextState <= WhiteState;
end if;

 when others =>
 NewColor <= ’0’;
NextState <= WhiteState;

 end case;
 end process FSM_COMB;

 FSM_SEQ: process (clock, reset)
 begin
 if (Reset = ’0’) then
 CurrentState <= WhiteState;
elsif rising_edge (Clock) then
 CurrentState <= NextState;
end if;

 end process FSM_SEQ;

end behavioral;

When fit into a XC9536XL device, here is the resource summary:
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 23
1-800-255-7778

A CPLD VHDL Introduction
R

Design Name: FSM_EX1
Device used: XC9536XL –5 –PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

FSM Example 2– FSM modeled with “NewColor” as a Moore type output

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FSM_EX_Moore is
 Port (Clock, Reset : in std_logic;
 Red, Green, Blue : in std_logic;
 NewColor : out std_logic);
end FSM_EX_Moore;

architecture behavioral of FSM_EX_Moore is
type Color is (Redstate, GreenState, BlueState, WhiteState);
signal CurrentState, NextState: Color;
begin

 FSM_COMB: process (Red, Green, Blue, CurrentState)
begin

 case CurrentState is
 when RedState =>
 NewColor <= ’1’; -- Moore Output independent of Red, Green or

Blue
 if (Red = ’1’) then
 NextState <= RedState;
else
 NextState <= WhiteState;
end if;

 when GreenState =>
 NewColor <= ’1’;

 if (Green = ’1’) then
 NextState <= GreenState;

 else
 NextState <= WhiteState;

 end if;
 when BlueState =>
 NewColor <= ’1’;
 if (Blue = ’1’) then
 NextState <= BlueState;

 else
 NextState <= WhiteState;

 end if;
 when WhiteState =>
 NewColor <= ’0’;
 if (Red = ’1’) then
 NextState <= RedState;

 elsif (Green = ’1’) then

Macrocells
Used

Product
Terms Used

Registers
Used

Pins used Function
Block Inputs
Used

3 /36 (8%) 8 /180 (4%) 2 /36 (5%) 6 /34 (17%) 5 /108 (4%)
24 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

 NextState <= GreenState;
 elsif (Blue = ’1’) then
 NextState <= BlueState;

 else
 NextState <= WhiteState;

 end if;
 when others =>
 NewColor <= ’0’;
 NextState <= WhiteState;

 end case;
 end process FSM_COMB;

FSM_SEQ: process (clock, reset)
 begin
 if (Reset = ’0’) then
 CurrentState <= WhiteState;
 elsif rising_edge (Clock) then
 CurrentState <= NextState;
 end if;

 end process FSM_SEQ;

end behavioral;

When fit into a 9536XL device, here is the resource summary:
Design Name: FSM_EX2
Device used: XC9536XL –5 –PC44
Fitting Status: Successful
**************************** Resource Summary ****************************

Coding
Techniques

Efficient synthesis of VHDL often depends on how the design was coded. As distinct synthesis
engines produce different results, leaving as little as possible to chance will increase the speed
and regulate the density of your design. This, however, often trades off some of the advantages
of using higher level constructs and libraries.

Compare Functions
Address decodes often require a decode of a range of address locations. It is inevitable to use
the greater than or less than test. Wait state generation, however, often waits a known number
of clock cycles. Consider this VHDL code.

when wait_state =>
if wait_counter < wait_time then
wait_counter <= wait_counter + 1;
my_state <= wait_state;

else
my_state <= next_state;

end if;

This generates extensive logic to implement the compare. A more efficient implementation
would be to branch on the equality condition.

when wait_state =>
if wait_counter = wait_time then

Macrocells
Used

Product Terms
Used

Registers
Used

Pins used Function
Block Inputs
Used

3 /36 (8%) 11 /180 (6%) 2 /36 (5%) 6 /34 (17%) 5 /108 (4%)
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 25
1-800-255-7778

A CPLD VHDL Introduction
R

my_state <= next_state;
else
wait_counter <= wait_counter + 1;
my_state <= wait_state;

end if;

Don’t Care Conditions
When writing VHDL, it is quite easy to forget about signals that are of no concern in the specific
piece of code handling a certain function. For example, you may be generating a memory
address for a memory controller that is important when your address strobes are active,
however, these outputs are essentially don’t care conditions otherwise. Do not forget to assign
them as such; otherwise, the VHDL synthesizer will assume that it should hold the output of the
last known value.

when RAS_ADDRESS =>
memory_address <= bus_address[31 downto 16];
RAS <= ’0’;
CAS <= ’1’;
my_state <= CAS_ADDRESS;

when CAS_ADDRESS =>
memory_address <= bus_address[15 downto 0];
RAS <= ’0’;
CAS <= ’0’;
wait_count <= zero;
my_state <= WAIT_1;

when WAIT_1 =>
RAS <= ’0’;
CAS <= ’1’;

if wait_count = wait_length then
my_state <= NEXT_ADDRESS;

else
wait_count <= wait_count + 1;

end if;

This design can be implemented much more efficiently if it is coded as:

when RAS_ADDRESS =>
memory_address <= bus_address[31 downto 16];
RAS <= ’0’;
CAS <= ’1’;
wait_count <= "XXXX";
my_state <= CAS_ADDRESS;

when CAS_ADDRESS =>
memory_address <= bus_address[15 downto 0];
RAS <= ’0’;
CAS <= ’0’;
wait_count <= "0000";
my_state <= WAIT_1;

when WAIT_1 =>
memory_address <= "XXXXXXXXXXXXXXXX";
RAS <= ’0’;
CAS <= ’1’;

if wait_count = wait_length then
my_state <= NEXT_ADDRESS;

else
wait_count <= wait_count + 1;

end if;
26 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

A CPLD VHDL Introduction
R

Note that we add "don’t care" for the wait_count register in the RAS_ADDRESS state as well as
adding a "don’t care" assignment for the memory address register in the WAIT_1 state. By
specifying these don’t cares, the final optimized implementation will be improved.

Using Specific Assignments
There is a temptation with VHDL to use language tricks to compact code. For example, using
a counter to increment a state variable. While this allows you to write prompter and visually
appealing code, it results in the synthesis tool generating more complex logic to implement the
adder and trying to optimize the logic that is unused later. It is generally better to simply assign
your desired bit pattern directly. This generates logic that is quicker to collapse during the
subsequent fitter process.

Modularity

A designer can “rubber stamp” a design by instantiating multiple instances of an existing design
entity. Component instantiation is basically the same as applying schematic macros. First,
apply the COMPONENT declaration to define what the input and output ports are. The
component declaration must match the actual entity declaration of the component. For
example, if we want to reuse the flip-flop from our previous example in another design, we can
declare it with:

The component DFLOP can than be instantiated with the signals necessary to connect the
component to the rest of the design. The signals can be mapped positionally or explicitly.
Positional mapping is quicker to enter, but forbids omitting unnecessary logic. For example, if
you had an 8-bit loadable counter that was never reloaded, explicit mapping allows you to omit
signal assignment to the input ports and still use the same 8-bit counter definition.

To instantiate the component requires a unique label. Then we state the component name
being instantiated followed by the positional signal assignments we are attaching to the
component. An example of position signal mapping would be:

my_flop: DFF port map(clk, my_input, my_output);

The same flop mapped explicitly is shown below. Note that the order can be altered when
mapping explicitly.

my_second_flop: DFLOP port map (my_clk => clk,
Q_output => my_other_output,
D_input => my_other_input);

Bidirectional Ports

To implement bidirectional ports, we must first define the port to be of type inout. Then, we must
define when the port is driving, and when it is in a high-Z mode. This example implements this
structure.

library ieee;
use ieee.std_logic_1164.all;
entity bidi is
port
(
Data:inout std_logic_vector (7 downto 0);

component DFLOP port

(

my_clk :in std_logic;

D_input :in std_logic;

Q_output :out std_logic

);
XAPP105 (v2.0) August 30, 2001 www.xilinx.com 27
1-800-255-7778

A CPLD VHDL Introduction
R

direction: in std_logic;
clk:in std_logic
);

end bidi;

architecture behavior of bidi is

signal my_register: std_logic_vector (7 downto 0);

begin
process (direction, my_register)
begin
if (direction = ’1’) then
Data <= "ZZZZZZZZ";
else
Data <= my_register;
end if;

end process;

process (clk)
begin
if (clk’event and clk = ’1’) then
my_register <= Data;
end if;

end process;
end behavior;

Summary The basic structure of a VHDL design has been illustrated, along with numerous examples of
basic building blocks. The examples provided are implemented using Xilinx Webpack ISE
software. WebPACK ISE software is a free package that provides everything needed to
implement a XC9500/XL/XV or CoolRunner design. Webpack not only supports VHDL, but also
Verilog, ABEL, and EDIF netlist designs completely free of charge.

Webpack can be downloaded at http://www.support.xilinx.com/sxpresso/webpack.htm

Alternatively, the Xilinx WebFITTER, a web-based design evaluation tool that may also be
used. WebFITTER accepts VHDL, Verilog, ABEL, EDIF, and XNF files and returns to the
designer a fitter report and a JEDEC file to program the device.

WebFITTER may be accessed at http://www.support.xilinx.com/sxpresso/webfitter.htm

Should any problems arise, Xilinx support is available at http://support.xilinx.com

Revision
History

The following table shows the revision history for this document

Date Version Revision

1/12/98 1.0 Initial Xilinx Release

8/30/01 2.0 Update
28 www.xilinx.com XAPP105 (v2.0) August 30, 2001
1-800-255-7778

http://www.support.xilinx.com/sxpresso/webpack.htm
http://www.support.xilinx.com/sxpresso/webfitter.htm
http://support.xilinx.com

	Summary
	Introduction
	Multiplexers
	One-bit Wide 4:1 Mux
	Two-bit Wide 8:1 Mux

	Encoders
	An 8:3 Binary Encoder

	Decoders
	3:8 Decoder
	Four Bit Address Decoder
	Four Bit Address Decoder

	Comparators
	Six-Bit Equality Comparator

	Adders
	Single Bit Half Adder
	Full Adder
	Larger Adder Defined Behaviorally

	Modeling Synchronous Logic Circuits
	Sixteen Bit Counter

	Asynchronous Counters
	Divide by 16 Clock Divider Using an Asynchronous (ripple) Counter

	Finite State Machines
	FSM Design and Modeling Issues
	HDL coding style
	Resets and fail safe behavior
	State Encoding
	Mealy or Moore type outputs
	FSM Example 1 – FSM modeled with “NewColor” as a Mealy type output
	FSM Example 2– FSM modeled with “NewColor” as a Moore type output

	Coding Techniques
	Compare Functions
	Don't Care Conditions
	Using Specific Assignments
	Modularity
	Bidirectional Ports

	Summary
	Revision History

