
XAPP799 (v1.1.1) June 4, 2008 www.xilinx.com 1

© 2005-2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Summary Today’s microcontrollers and microprocessors often limit the number of General Purpose I/O
(GPIO) ports in order to conserve pin count and to reduce package sizes. Unfortunately, for
many designs, the number of I/O ports required exceeds the number of available I/O ports on
a microprocessor. Hence, Complex Programmable Logic Devices (CPLDs) can often be found
in a system alongside a microcontroller functioning as a port expander. This Application Note
presents a design of a port expander that fits into a CoolRunner™-II XC2C32A device -- A port
expander that is SMBus and I2C compatible.

CoolRunner-II
Advantages

A key advantage of using any Xilinx CPLD as a port expander is the integration of logic
functions across the entire board. The flexibility of programmable fabric allows for a variety of
dissimilar functions to be implemented on one chip. A CPLD can be used as a port expander,
an LED driver, an address decoder and a memory controller, all at once.

CoolRunner-II devices add further value being the lowest cost and lowest power CPLDs on the
market. These CoolRunner-II parts also provide I/O Banking capability, allowing for level
translation between the microcontroller and its external peripherals. Both features are favorable
for an SMBus or I2C design, as these environments are typically multi-voltage environments
requiring low power.

Table 1 summarizes the level translation abilities of the CoolRunner-II family.

Using the
CoolRunner-II
SMBus/I2C Port
Expander
Design

The port expansion reference design shown in Figure 1 provides 8 output ports and 8 input
ports controlled through an I2C compatible serial interface. This design is scalable. The code
can be modified to increase or decrease the number of desired output ports and input ports.
This section describes the default code implementing 8 outputs and 8 inputs. The fully working

Application Note: CPLD

XAPP799 (v1.1.1) June 4, 2008

An SMBus/I2C-Compatible Port Expander
R

Table 1: I/O Standards for the CoolRunner-II XC2C32A

IOSTANDARD
Attribute

Output
VCCIO

Input VCCIO Input VREF

Board
Termination
Voltage VT

LVTTL 3.3 3.3 N/A N/A

LVCMOS33 3.3 3.3 N/A N/A

LVCMOS25 2.5 2.5 N/A N/A

LVCMOS18 1.8 1.8 N/A N/A

LVCMOS15(1) 1.5 1.5 N/A N/A

(1) LVCMOS15 requires the use of Schmitt Trigger

2 www.xilinx.com XAPP799 (v1.1.1) June 4, 2008

Using the CoolRunner-II SMBus/I2C Port Expander Design
R

project, with source code, is available for download at
https://secure.xilinx.com/webreg/clickthrough.do?cid=55692.

Figure 1: I2C Port Expander Block Diagram

Serial Interface

This port expander design uses a serial data line (SDA) and a serial clock line (SCL) to achieve
bidirectional communication with a master. The master, typically a microcontroller or
microprocessor, initiates all data transfers to and from the CPLD. The master is also
responsible for generating the SCL clock that synchronizes the data transfer.

Each transaction consists of a start condition sent by a master, followed by the CPLD’s
predefined 7-bit slave address plus an R/W bit, and one data byte that is either transmitted from
the master to the CPLD (for a write operation) or one data byte that is transmitted by the CPLD
to the master (for a read operation). An Acknowledge bit is used at the end of each data byte,
and data is transferred on every rising clock pulse.

GP10_INPUT
(2 BITS)

GP10_OUTPUT
(8 BITS)

INDEX
COUNTER

i2c
STATE

MACHINE

8-bit Shift Register

START
DECODE

LOGIC

Start

sda_out

sda_in

ack_out

out_en

pld_sda_out

i2c_module_mod.v

GPIO_OUTPUT_PINS[7:0] GPIO_INPUT_PINS[2:0]

reset goes
to all

blocks

i2c_rst

pld_i2c_scl

pld_i2c_rst

scl

la
tc

h_
da

ta
_i

n

la
tc

h_
da

ta
_o

ut

da
ta

_i
n[

7:
0]

gp
io

_i
np

ut
[1

:0
]

sh
ift

_d
at

a_
in

da
ta

_i
n[

7:
0]

28

8 2

external
pull_up

x799_01_071305

top.v
CoolRunner-II
 XC2C32A

Table 2: Pin Descriptions

Name Function

pld_i2c_scl Serial Clock Line

pld_i2c_sda Serial Data Line

pld_i2c_rst Active High Reset

GPIO_Output_Pins Port Expansion Outputs

GPIO_Input_Pins Port Expansion Inputs

Using the CoolRunner-II SMBus/I2C Port Expander Design

XAPP799 (v1.1.1) June 4, 2008 www.xilinx.com 3

R

Start Condition

Both SCL and SDA remain high when the interface is inactive. The master signals the start
condition by transitioning SDA from high to low while SCL is high (Figure 2). Once a start
condition is recognized by the CPLD, an internal ‘start’ pulse is generated, and the state
machine will begin.

Figure 2: Start Condition Initiated

Acknowledge

The acknowledge bit is sent every 9th bit, indicating receipt of each data byte. Each byte
transferred effectively requires 9 bits. The master generates the 9th clock pulse, and the
recipient pulls down SDA during the acknowledge pulse. This means that when the master is
transmitting to the CPLD, the CPLD generates the acknowledge bit. When the CPLD is
transmitting to the master, the master generates the acknowledge bit.

I2C Slave Address

The CPLD has a 7-bit long I2C slave address that can be preprogrammed into the device
through the source code. Edit the top level Verilog source file (top.v) and define your desired 7-
bit binary value for the “my_i2c_addr” parameter. The 8th bit following the 7-bit slave address is
the R/W bit. Set this bit low for a write command and high for a read command.

Performing a Write Command

After a slave address with a write command has been sent, one final data byte must be sent
from the master to complete the transaction. This data byte defines the state of each of the 8
I/O’s. The MSB of the data byte defines the value on ‘GPIO_OUTPUT_PINS[7]’ and the LSB of
the data byte defines the value on ‘GPIO_OUTPUT_PINS[0]’. The outputs assume their
defined values during the 9th clock cycle, together with the acknowledge pulse.

Figure 3 shows a full Write Command transaction. The master initiates a start command, then
sends a write request to the CPLD, located at slave address 0x56. The CPLD acknowledges
the write request on the 9th clock edge, and the master continues delivering data to the CPLD

4 www.xilinx.com XAPP799 (v1.1.1) June 4, 2008

Using the CoolRunner-II SMBus/I2C Port Expander Design
R

dictating the values on the GPIO output ports. On the 9th clock cycle, the CPLD acknowledges
this second data byte, and sets the GPIO output pins accordingly.

Figure 3: Write Command Transaction

Performing a Read Command

If a slave address with a read command has been sent, one final data byte is sent from the
CPLD to the master. The data byte relays the values present on the ‘GPIO_INPUT_PINS’ bus.

Figure 4 shows a full Read Command transaction. The master initiates a start command, then
sends a read request to the CPLD located at slave address 0x56. The CPLD acknowledges the
read request on the 9th clock edge. On the next data byte, the CPLD returns the value on the
GPIO input pins. In this example, since there are only 2 GPIO input pins in the design, only the
data on the 7th and 8th clock are valid. The first 6 data bits are high by default, and are ignored
by the master. On the 9th clock cycle, the master acknowledges this second data byte, and the
read transaction completes.

Figure 4: Read Command Transaction

Standby

The CoolRunner-II family of CPLDs automatically enters "standby" when all pins are set to Vcc
or GND. Standby current is specified in the individual device data sheets. This design fits into
an XC2C32A device, which has a typical standby number of 22 uA -- ideal for SMBus and I2C
applications.

Customizing the Design

XAPP799 (v1.1.1) June 4, 2008 www.xilinx.com 5

R

Utilization

The following are the utilization statistics:

Customizing
the Design

This reference design can be customized to fit any specific design target. If the design requires
more GPIOs, the state machine in the source code can be modified accordingly. Should
bidirectional I/O’s be required, the design can be modified to use the R/W bit as a signal to
decode whether the I/O pin should function as an input or output. There are many possibilities,
and the source code has been written for the most general case.

Conclusion This port expander design can be used as a complete turnkey design that fits readily into a
CoolRunner-II XC2C32A device. You can easily edit the port expansion module to fit your
needs, and additional functionality can be integrated into the CPLD. The CoolRunner-II family
of CPLDs is unique in that it is the only low cost, easy to use, low power device available today.

Revision
History

The following table shows the revision history for this document.

Table 3: Device Utilization

Macrocells
Used/Total

Product Terms
Used/Total

Function Block
Inputs Used/Total

Registers
Used/Total

Pins Used/Total

32/32 (100%) 71/112 (63%) 36/80 (45%) 32/32 (100%) 13/33 (39%)

Date Version Revision

07/19/05 1.0 Initial Xilinx release.

08/02/05 1.1 Fixed broken link to design files.

06/04/08 1.1.1 Changed link to design files for click-through license.

