

TABLE OF CONTENTS

1.0	GENERAL	4
2.0	WSYNC	6
3.0	VERTICAL LINE COUNTER	6
4.0	ObjeCT DMA (Direct Memory Access)	7
5.0	PLAYER-MISSILE BASE ADDRESS	11
6.0	PLAYFIELD	12
	6.1 DISPLAY LIST	12
	6.2 DISPLAY INSTRUCTION FORMAT	
• * * • • •	6.3 MEMORY SCAN COUNTER	16
	'6.4 MEMORY MAP DISPLAY INSTRUCTIONS	17
	6.5 CHARACTER DISTLAY INSTRUCTIONS	19
7.0	VERTICAL AND HORIZONTAL FINE SCROLLING	24
	7. 1 HORIZONTAL SCRC-	25
	7.2 VERTICAL SCROLLING	25
'8.0	SIMPLE DISTLAY LIST EXAMPLE	27
9.0	CYCLE COUNTING	28
10.0	CYCLE COUNTING EXAMPLE	30
11.0	LIGHT PEN	3 1
12.0	NMI INTERRUPTS	-31
13.0	ELECTRICAL PARAMETERS	·
	13.1 GENERAL	·34
	13.2 D.C. OPERATING CHARACTERISTICS	34
	13.3 DYNAMIC OPERATING CHARACTERISTICS	38
	13.4 I/O TIMING	40
	13.5 I/O TIMING (MICROPROCESSOR TO THE ANTIC)	41
	13.6 READ I/O TIMING (ANTIC READING FROM THE RAM)	42

TITLE	ANTIC (NTSC)				
DRAWING NO.	C012296	'REV D	SHEET	2	OF 45

TABLE OF ILLUSTRATIONS

۰.

1.	NTSC DISPLAY	5
2.	OBJECT DISPLAY SOURCE	8
3.	PLAYER-MISSILE DMA	10
4.	DISPLAY INSTRUCTION OPCODES	15
5.	MEMORY MAP DISPLAY MODES	18
6.	CHARACTER DISPLAY	20
7.	IR MODE 3 - UPPER AND LOWER CASE CHARACTER DISPLAY	22
8. _. . 9.	CHARACTER MAP DISPLAY MODES	
10.	ANTIC ADDRESS TABLE	43
11.	ANTIC PIN LIST	44
12.	ANTIC BONDING DIAGRAM	45

- MATARI=	TITLE ANTIC (NTSC)			
	DRAWING NO. CO12296	REV D	SHEET 3	OF 45

1.0) GENERAL:

The ANTIC and GTIA chips generate the television display at the rate of 60 frames per second on the NTSC (U.S.) system. Each frame consists of 262 horizontal TV lines and each line is made up of 228 color clocks. The 6502 processor runs at 1.79 MHz. This rate was chosen so that one machine cycle is equivalent in length to two color clocks. One clock is approximately equal in width to two TV lines.

In any graphics mode, the display is divided up into small squares or rectangles called pixels (picture elements). The highest resolution graphics mode has a pixel size of $\frac{1}{2}$ color clock by 1 TV line. A sample display list is given in Section IV.

The current TV line may be determined by reading the vertical counter (VCOUNT). This register gives the line count divided by 2. There are 262 lines per frame, so VCOUNT runs from 0 to 130. The 0 point occurs near the end of vertical blank (see figure on the following page). Vertical blank (VBLANK) is the time during which the electron beam returns back to the top of the screen in preparation for the next frame. The ANTIC and GTIA do not do interlacing, so each frame is identical unless the program which is being executed changes the display. Vertical sync (VSYNC) occurs during the fourth through sixth lines of vertical blank (VCOUNT = hex 7D through 7E). This tells the TV set where each frame starts. After VSYNC, there are 16 more lines of VBLANK for a total of 22 lines of VBLANK. The display list jump and wait instruction (to be described later) causes the display list graphics to start at the end of VBLANK.

The primary function of the ANTIC chip is to fetch data from memory (independent of the microprocessor) for display on the TV screen. It does this with a technique called "Direct Memory Access" of DMA. It requests the use of memory access and data bus by sending a signal called HALT to the microprocessor to become "TRI-STATE" (open-circuit) all during the next computer cycle. The ANTIC chip then takes over the address bus and reads any data it wishes from memory. Another name for this type of DMA is "Cycle Stealing". Once initiated, this DMA is completely and automatically controlled by the ANTIC chip without need for further microprocessor ' intervention.

The ANTIC provides DMA by use of the following registers. They are: Character Base Address register, Player-Missile Base register, Display List Low and High Pointer, Character Control register, and DMA Control register. The ANTIC also controls vertical and horizontal scrolling. The ANTIC also provides a wait for horizontal sync (WSYNC) command that allows the microprocessor to synchronize itself to the TV horizontal line rate. There are horizontal and vertical light pen registers.

ATARI	TITLE ANTIC (NTSC)			
	DRAWING NO CO12296	REV D	SHEET	OF 45

1.0) GENERAL: (continued)

The ANTIC also provides Non-Maskable Interrupt (NMI) service to the microprocessor. The micro-processor can enable NMI through a single register. The microprocessor can read the NMI interrupt status register to determine the cause of interrupt. The status register can be reset by probing a single register.

2.0) WSYNC:_____

In addition to a Vertical Blank Interrupt, which allows the microprocessor to synchronize to the vertical TV display, this system also provides a Wait for Horizontal Sync (WSYNC) command that allows the microprocessor to synchronize itself to the TV horizontal line rate. This sync take effect when the processor writes to an I/O location called WSYNC, whenever it desires horizontal synchronization. Writing to this address sets a latch which pulls to zero a pin on the microprocessor called READY. When READY goes to zero the microprocessor stops and waits. The latch is automatically reset (returning READY true) at the beginning of the next horizontal blank interval, releasing the microprocessor to return program execution.

WSYNC (Wait for Horizontal Blank Synchronism - i.e. wait until start of next TV line.) (D40A): not used

This address sets a latch that pulls down on the RDY line to the microprocessor, causing it to wait until this latch is automatically reset by the beginning of horizontal blank. Display list interrupts may be delayed by 1 line if WSYNC is used.

3.0) VERTICAL LINE COUNTER:

The current TV line may be determined by reading the vertical counter (VCOUNT). This register gives the line count divided by 2. There are 262 lines per frame, so VCCUNT runs form 0 to 130. The 0 point occurs near the end of vertical blank.

ANTIC (NTSC)	
C012296 D	5

3.0) VERTICAL LIJE COUNTER (continued):

VCOUNT (Vertical Counter) (D40B): This address reads the Vertical TV Line Counter (8 most signifigant bits).

)7		D6		D.5	1	ם4		D3		D2		D1		DO]		
v	78 _.		V 7		V6		V5		V4		V3		V2		V1		v0	

4.0) OBJECT DMA (Direct Memory Access):

The primary function of the Antic chip is to fetch data from memory (independent of the microprocessor) for display on the TV screen. It does this with a technique called "Direct Memory Access" or DMA. It requests the use of the memory address and data bus by sending a signal called HALT to the microprocessor, causing the processor to become "TRI-STATE" (open circuit) all during the next computer cycle. The ANTIC chip then takes over the address bus and reads any data it wishes from memory. Another name for this kind of DMA is "cycle stealing". Once initiated, this DMA is completely and automatically controlled by the ANTIC chip without any need for further microprocessor intervention.

There are two types of DMA: Playfield and Player-Missile (see figure on following page). The playfield DMA control circuit on the ANTIC chip resembles a small dumb microprocessor. By halting the main microprocessor it can fetch its own instructions from memory (the display list) addressed by its program counter (display list pointer). Each instruction defines the type (alpha character or memory map) and the resolution (size of bits on the screen) and the location of the data in memory which is to be displayed on the next group of lines.

In order to begin this DMA, the main microprocessor must store a display list of instructions in memory, store data to be displayed in memory, tell the ANTIC where the display list is (initialize the display list pointer) and enable the DMA control flags on the ANTIC (DMACTL register).

In addition to the playfield DAA described above, the ANTIC chip simultaneously controls another DAA channel. This type of DAA addresses PLAYER-MISSILE graphics data stored in memory and passes the graphics data on to the CTIA chip graphics registers. This type of DAA (if enabled) occurs automatically, interspersed with the playfield DAA described previously. This PLAYER-MISSILE DAA has no display list of instructions, and is therefore much simpler than the PLAYFIELD DMA.

ATARI	TITLE ANTIC (NTSC)			
	DRAWING NO.	REV	SHEET 7	OF 45
<u> </u>	C012296	D	L	

VO not read. Two line resolution supplied.

	TITLE			
	ANTIC (NTSC)			
TATARI	DRAWING NO.	REV	SHEET	OF 45
	C012296	D	8	4.7

4.0) OBJECT DMA (Direct Memory Access) (continued):

In addition to the two types of display DMA, the ANTIC chip also generates DMA addresses for the refresh of the dynamic memory RAM used in this system. This is also completely automatic and need be considered by the programmer only if he is concerned with real-time programming where an exact count of the computer cycles is important.

The player-missile graphic registers may be reloaded by the microprocessor (GRAF (X)), or automatically from memory with direct memory access (DMA). (see figure on next page). The programmer must place the object graphics in memory, write the player-missile base address (PMBASE), and enable player-missile DMA (DMACTL, GRACTL). The transfer of object graphics from memory to display is then fully automatic. GRACTL is a control register on the GTIA chip.

DMACTL (Direct Memory Access Control) (D400):

This address writes data into the DMA Control Register.

	Not Used D.	 5	D4	D3 D2 D1 D0
•	D5	=	1	Enable instruction fetch DMA
:	. D4	Ξ	1	l Line P/M resolution
. `	D4	=	0	2 line P/M resolution
	D3	=	1	Enable Player DMA
	D2	=	1	Enable Missile DMA
	D1,D0	=	0	0 No Playfield DMA
		=	0	<pre>1 Narrow Playfield DMA (128 Color Clocks)</pre>
		=	1	<pre>0 Standard Playfield DMA (160 Color Clocks)</pre>
	-	=	1	1 Wide Playfield DMA (192 Color Clocks)

TITLE ANTIC (NTSC)				
DRAWING NO. C012296	REV D	SHEET	9	OF 25

Player-Missile Ease Address (FMEASE) = MSB of address. Resolution is controlled by bit 4 of DMACTL.

PLAYER-MISSILE DMA

ATARI	TITLE	ANTIC (NTSC)			
ATARI	DRAWING NO.	C012296	REV D	SHEET 10	of 45

•.

5.0) PLAYER MISSILE BASE ADDRESS

PMBASE specifies the most signifigant byte (MSB) of the address of the player-missile graphics. The location of the graphics for each object is determined by adding an offset to PMBASE *256 (decimal). The bytes between the base address and the missile data are not used by ANTIC so they are available to the programmer.

Only the five most signifigant bytes of PMBASE are used with single-line resolution and the six most signifigant bytes are used with two-line resolution. This means that the location of the graphics in memory is restricted to certain page boundaries. Two-line resolution means that each byte of data is repeated for two lines. (see DMACTL, bit 4). 640 (decimal) bytes (5 X 128) are required for two-line resolution and 1280 bytes (5 X 256) for one-line resolution.

Each byte in the player graphics area represents eight pixels which are to be displayed on the corresponding line(s) of the TV screen. A l indicates that the player's color-lum is to be displayed in that pixel. The graphics may be anything, not just rectangles like the ones in figure II.3. The player graphics may fill the entire height of the screen of they may be only a couple of lines high if the rest of the display data is all O's. Each byte in the missile display also represents eight pixels, two pixels for each missile. Each pixel may be 1, 2, or 4 color clocks, and is determined by the SIZE registers.

PMEASE (Player-Missile Address Base Register): This address writes data into the Player-Missile Base Register. The data specifies the MSB of the address of the player and missile DMA data. One Line Resolution

D7 1D6 1D5 1D4 1D3	not used P	MBASE	
15 114 113 112 111	10 9 8 7 6	5 4 3 2 1 0	
Ezse Address	Player-Missile Select	Player-Missile Scan Counters	
•	Two Line Resolu	tion	
D7 1D6 1D5 1D4 1D3	1 D2 1 *	2:BASE	
15 14 13 12 11		5 4 3 2 1 0	
Esse Address	Plzyer-Missile Select	Player-Missile Scan Counter	
ATARI		NTIC (NTSC)	
•	DRAWING NO.	C012296 D SHE	ET OF 45

6.0) PLAYFIELD

Playfield is always generated by DMA. There are four playfields, each identified by its own color-lum register and collision detection. Playfield is generated by two different DMA techniques: memory map and character. Both methods provide lists of instructions in memory, independent of the playermissile generation.

Unlike players and missiles, there are no horizontal position registers for playfield. Each player can only have one byte of display per line. Playfield, on the other hand, may require up to 48 bytes per line because it can fill the entire width of the screen.

There are three different playfield widths: Narrow (128 color clocks), standard (160 color clocks), and wide (192 color clocks). The width is selected by storing into DMACTL. The advantage of a narrower width is that less RAM is required and fewer machine cycles are stolen for DMA.

6.1) Display List: The display list is a sequence of display instructions stored in memory. These instructions are either one (1) byte or three (3) bytes long. The display list can be considered a display program and the Display List Counter that fetches these instructions can be thought of as a display program counter. (10 bit counter plus 6 bit base register).

The display list counter can be initialized by writing to DLISTH and DLISTL. Once initialized, this counter value is used to address the display list, fetch the instruction, display one (1) to sixteen (16) lines of data on the TV screen, increment the Display List Counter, fetch the next display instruction, and so on automatically without microprocessor control. DLISTL and DLISTH should be altered only during vertical blank or when DMA is disabled (see DMACTL).

Each instruction defines the type (alpha character or memory map) and the resolution (size of bits on the screen) and the location of data in memory to be displayed for a group (1 to 16) lines. Each group of lines is called a display block.

THE DISPLAY LIST CANNOT CROSS A 1 K BYTE MEMORY BOUNDARY UNLESS A JUMP INSTRUCTION IS USED.

ATARI	TITLE ANTIC (NTSC)	_				
	DRAWING NO.	REV	SHEET	12	OF	45
	<u>C012296</u>	D		12		

6.0) PLAYFIELD (continued):

.

DLISTL (Display List Low) (D402): This address writes data into the low byte of the Display List Counter.

DLISTH (Display List High) (D403): This address writes data into the high byte of the Display List Counter.

The Display List is a list of display instructions in memory. These instructions are addressed by the Display List Counter. Loading these registers defines the address of the beginning of the Display List. (See sections I and II.)

Note: The top 6 bits are latches only and have no count capability, therefore the display list cannot cross a 1 K byte memory boundary unless a jump instruction is used.

DLISTL and DLISTH should be changed only during vertical blank or with DMA disabled. Otherwise, the screen may roll. Bit 7 of NMIEN must be set in order to receive display list interrupts.

6.2) Display Instruction Format: Each instruction consists of either an opcode only, or of an opcode followed by two (2) bytes of operand.

Opcode -----Single Byte Display Instruction Opcode \rangle ----Triple Byte Display Instruction Operand :: Operand

, ATARI	TITLE ANTIC (NTSC)					
		DRAWING NO.	REV	SHEET 13	OF 2F	
		<u>C012296</u>	D	I		

6.2) Display Instruction Format (continued):

The opcode is always fetched first and placed in the <u>Instruction</u> <u>Register</u>. This opcode defines the type of instruction (1 or 3 bytes) and will cause two more bytes to be fetched if needed. If fetched, these next two (2) bytes will be placed in the <u>Memory Scan Counter</u>, or in the Display List Counter (if the instruction is a Jump).

Display Instruction Register (IR): This register is loaded with the opcode of the current display list instruction. It cannot be accessed directly by the programmer. There are three basic types of display list instructions: blank, jump, and display.

	This instruction is used to create 1 to 8 blank lines on the display (blackground color).
Jump (3-bytes)	D7 1 = display list instruction interrupt D6 - D4 0-7 = 1-8 blank lines D3 - D0 0 = blank D7 D6 X X 0 0 0 1
	This instruction is used to reload the Display List Counter. The next two bytes specify the address to be loaded (LSB first).
Display	D7 1 = display list instruction interrupt D6 0 = jump (creates one blank line on display) 1 = jump and wait until end of next vertical blank D5-D4 X = don't care D3-D0 1 = jump
(1 or 3 bytes)	D7 D6 D5 D4 D3 D2 D1 D0
	This instruction specifies the type of display for the next display block.
	D7 1 = display list instruction interrupt D6 0 = 1 byte instruction 1 = 3 byte instruction (reload Memory Scan Counter using address in next two bytes, LSB first).
	D5 l = vertical scroll enable D4 l = horizontal scroll enable D3-D0 2-F = display mode (memory or character map - see following pages).

Bit 7 of a display list instruction can be set to create a display list interrupt if bit 7 of NMIEN is set. The display list interrupt code can change the colors or graphics during the middle of the TV display. The type of interrupt is determined by checking NMIST. NMIRES clears NMIST.

O ALATARI	TITLE ANTIC (NTSC)					
	DRAWING NO. C012296	REV D	SHEET	14	OF 45	

	orizontal Scrollin ertical Scrolling oad memory scan (3 isplay instruction lank 1 line innk 2 lines	J ENEU / LINES 8 lines (3 byte instruction 6 walt for Vert. Bl	(also J byte) Character Mode Instructions Memory Map Mode Tnstructions	
	XX XX <td< th=""><th></th><th>02 12 22 32 42 52 62 72 82 93 73 83 93 73 83 93 73 83 53 73 83 93 74 84 94 74 84 74 84 74 84 74 84 74 84 74 84 74 84 74 84 74 84 74 7</th><th><pre>IFF 2F 3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF F umber of TV lines per cell umber of Colors (Background + Playfield type umber of Horizontal cells (standard width sc DISPLAY INSTRUCTION OPCODES</pre></th></td<>		02 12 22 32 42 52 62 72 82 93 73 83 93 73 83 93 73 83 53 73 83 93 74 84 94 74 84 74 84 74 84 74 84 74 84 74 84 74 84 74 84 74 84 74 7	<pre>IFF 2F 3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF F umber of TV lines per cell umber of Colors (Background + Playfield type umber of Horizontal cells (standard width sc DISPLAY INSTRUCTION OPCODES</pre>
S ATARI	CROL CROL NEM K I K 1 Z	7-6 " 1 MJ 1 VL	((((((((((((((((((((((((((((((((((((((

6.2) Display Instruction Format (continued):

Bits 5 and 4 of a display type of display list instructions are used to enable vertical and horizontal scrolling. The amount of scrolling depends on the values in the VSCTOL and HSCROL registers (to be described later).

6.3) Memory Scan Counter: This counter is not directly accessible by the programmer. It is loaded with the value in the last 2 bytes of a 3 byte (non-Jump) instruction.

This counter points to the location (address) in memory of data to be directly displayed (memory map display) or to the location of character name strings to be indirectly displayed (character display).

A single byte instruction does not reload this counter. This implies a continuation in memory of data to be displayed from that displayed by the previous instruction. Since this counter really consists of 4 bits of register and 12 of actual counter, a continuous memory block cannot cross 4K byte memory boundaries, unless the counter is repositioned with a 3 byte Load Memory Scan Counter instruction.

6.4) Memory Map Display Instructions: Data in memory (addressed by the Memory Scan Counter) is displayed directly when executing a memory (bit) map display instruction. As data is being displayed it is also stored in a shift register so that it can be redisplayed for as many TV lines as required by the instruction.

M ATARI'	TITLE ANTIC (NTS)	C)		
	DRAWING NO C012296	REV D	SHEET 16	OF 45

6.4) Memory Map Display Instructions: (continued)

Shift register data is displayed for four TV scan lines in this example.

In Instruction Register (IR) display modes 8 through F, one or two bits of memory are used to specify what is to be displayed on each pixel of the screen. Pixel sizes range from 1/2 clock by 1 TV line to 4 clocks by 8 TV lines.

In IR mode F, only one color (COLPF2) can be displayed. Two different luminances are available. If a bit is a zero, then the luminance of the corresponding pixel comes from COLPF2. If the bit is a one, then the luminance is determined by the contents of COLPF1 (abbreviated to PF1).

In IR modes 9, B, and C, two different colors can be displayed. A zero indicates background color and a one indicates PFO color. The difference between the various modes is is the size of the pixels.

In IR modes 8, A, D, and E, two bits are used to specify the color of each pixel. This allows four different colors to be displayed. However, only four pixels can be packed into each byte, instead of eight as in the previous modes. The bit assignments are shown below:

SHIFT REGISTER 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2 bits form one pixel

O JATARI	TITLE ANTIC (NTSC)					
	DRAWING NO. C012296	REV D	SHEET 17	OF 45		

5) MEMORY MAP DISPLAY MODES

.

.

· · ·

.

		Colors	Pixels	Bytes	Scan	Color		Bit ·		
	Inst.		per	per	Lines	Clocks	Bits	Values		
	Reg.	Mode	Std.	Std.	per	per	per	in	Reg.	
	HEX		Line	Line	Pixel	Pixel	Pixel	Pixel	Select	
	1124	1	1	· ·	1		1	00	BAK	•
	8	4	40	10	8	4	2	01	PF0	•
	. U	1 7					j .	10	PF1	
·	-	 				i		11	PF2	
•	<u> </u>	<u> </u>	!				1	1		
	9	2	80	10	4	2	1	0	BAK	
							Ì	1	PFO	
		5 5	1 1		;]	Ì	İ	İ		
	·	<u> </u>	<u></u>	 	1	1		00	BAK	
		4	80	20	4	2	2	01	PFO	•
	A	4	1 00	1 20	1 7	-	i -	10	PF1	
		1	1	1 1	1	1	i	11	PF2	
	. <u> </u>	1	<u> </u>	<u>1</u> 1	! !	<u> </u>	<u>.</u>	1 .	1	
	1 -		1	20	2	1	1	0 -	BAK	3
	В	2	1 100	1 20	1 4	1	-		PFO	l
	}		1	1	1	I 1 .	· ·	- -	1	i
		<u> </u>	<u> </u>	!	<u> </u>	1	1	<u> </u>	1	l
			160	20	1	1	1 1	0	EAK	l
	C	2	1 100	1 20		1 -			PFO	1
	į			1 t	1		1.	· ·	1	1
		<u> </u>	<u> </u>	1	<u> </u>	<u> </u>		00	BAK	i
		1			1	1	2	01	PFO	i
	D	4	160	40	2			10	PF1	i
			1	1	1	1	1	111	PF2	1
		<u></u>	<u></u>	ļ	<u> </u>	<u></u>	1	00	BAK	1
		1	1.	1	! .		1 2	01	PF0	1
	E	4	160	40	1	1		1 10	PF1	1
		1		1				•	•	1 1
		1	<u> </u>	<u> </u>	Ļ		<u> </u>	1 11	PF2	1 }
	r	1	1			1			PF2	1
	F	1 1 2	320	40	1	1/2	1		•	
	:	ł		1 - 1		ļ	1	1	PF1	1
			I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	(LUM)	I

	TITLE				
ATARI	DRAWING NO.	ANTIC (NTSC) C012296	REV	SHEET 18	OF 45
- / 1 \		CU12296		10	

6.5) Character Display Instructions: The first step in using the character map mode is to create a character set in memory. The character set contains eight bytes of <u>data</u> for the graphics for each character. The meaning of the data depends on the mode. The character set can contain 64 or 128 characters, also depending on the mode. The MSB (Most Significant Byte) of the address of the character set is stored in CHBASE. Only the most significant six or seven bits of CHBASE are used. The other one or two bits and the LSB of the address are assumed to be zero, so the character set must start at an acceptable page boundary.

. The next step is to set up the display list for the desired mode. Then the actual display is set up. This consists of a string of character <u>names</u> or codes. Each name takes one byte. The last 6 or 7 bits of the name selects a character. For a 64 character set, the name would range from 0 through 63 (decimal). For a 128 character set, the range would be 0 through 127 (decimal). The upper one or two bits of the name byte are used to specify the color or other special information, depending on the mode.

Character names (codes) are fetched by the memory scan counter, and are placed in a shift register. On any given line of display the shift register rotates, changing only the name portion of the character address, as shown below.

After a full line of character data has been displayed the line counter will increment. The next line again addresses all characters by name for that line number.

In 20 character per line modes the seven most significant bits of CHBASE are used. This requires that the character set to start upon a 512 byte memory boundary. The set must contain 64 characters, 8 bytes each giving a total of 512 bytes for the set.

The 40 character per line modes use the six most significant bits of CHBASE, forcing the character set to start on a 1K byte memory boundary. The set must have 128 characters of 8 bytes each. This gives a total of 1024 bytes for the set.

Hex Code	Graphics Mode 	Chars. Per Line	Number of Colors	Bytes per Char.	Number of Char. in set	Bytes in Char Set
2	1 0	40	2	8	128	1024
3		40	2	8	128	1 1024
4		40	4	8	128	1 1024
5		40	44	8	1 128	1024
6	1 1	20	5	8	64	512
7	1 2	20	1 5	1 8	1 54	512

ATARI	TITLE ANTIC (NTSC)			
	DRAWING NO. C012296	REV D	SHEET 19	OF 45

	TITLE	ANTIC (NTSC)				
ATARI	DRAWING NO.	C012296	REV D	SHEET	20	OF 45

6.5) Character Display Instructions: (continued)

There are six character map modes, IR modes 2 through 7. In IR modes 6 and 7, the upper two bits of each character <u>name</u> select one of four playfield colors. For each <u>data</u> bit that contains a one, the selected playfield color is displayed. For each zero data bit, the background color is displayed. The four character colors plus the background color gives a total of five different colors. The mode 6 characters are eight lines high and the mode 7 characters are sixteen lines high (each data byte is displayed for two lines).

In IR modes 4 and 5, each character is only four pixels wide instead of eight (as in other modes). Two bits per pixel of <u>data</u> are used to select one of three playfield colors, or background. Seven <u>name</u> bits are used to select the character. If the most signifigant name bit is a zero then data of 10(binary) selects PF1. If the name bit 7 is a one, then data bits of 10 select PF2. This makes it possible to display two characters with different colors, using the same data but different name bytes.

In IR modes 2 and 3, each pixel is half of a color clock in width. This makes it possible to have forty eight-pixel wide characters in a standard width line. These modes are similar to memory mode F in that two luminances can be displayed, but only one color is available at a time. In IR mode 3, each character is 10 lines high. This makes it possible to define lower case characters with descenders. The last fourth of the character set (name bits 5 and 6 equal to one) is lowered. The hardware takes the first two data bytes and moves them to the bottom of the character, displaying two blank lines at the top of the character (see next page):

In IR modes 2 and 3, bit 7 of the character name is used for inverse video or blanking. This is controlled by CHACTL (Character Control). If bit 2 of CHACTL is a one then all of the characters will be displayed upside down, regardless of mode. If CHACTL bit 1 is set, then each character which has bit 7 of its name set will be displayed in inverse video (the luminances will be reversed). If CHACTL bit 0 is set, then each character which has bit 7 set will be blanked (only background will be displayed). Characters can be blinked on and off by setting name bit 7 to 1 and toggling CHACTL bit 0. Inverse video and blank apply only to IR modes 2 and 3. If both inverse video and blank are set then the character will appear as an inverse video blank character (solid square).

ATARI	TITLE	ANTIC (NTSC)			
	DRAWING N	0 C012296	REV D	SHEET 21	OF 45

.

and a second second second second second second second second second second second second second second second I second second second second second second second second second second second second second second second secon

TITLE ANTIC (NTSC) DRAWING NO. C012296 D 22 45

8) CHARACTER MAP DISPLAY MODES

									,	
			Chars.	Scan	Color	Data	Color	Bit .	ļ	
			per	Tines	Clocks	Bits	Select	Values	Color	
	inst.	Colors	Std.	per	Der	Der	Bits In	in	Reg.	
		per Mode			Pixel	Pixel	Name	Data	Select	
	HEX	Noue			1					
	•	1 11	40	8	 }	1	i –	0	PF2	
	2	1 1 5	40	1 0	1 4		1	İ 1	PF1	
				 		•	• 		(LUM)_	
	<u> </u>	.	l			1		1		•
)			1	-	0	PF2	1
	3	1 1 5	40	10	1 2	1 -	1	1	PF1	
	•	1		1	1	1	1 1	 	(LUM)	
			<u> </u>	<u> </u>	l	<u> </u>	1	00	BAK	
•					1	2	Bit 7	01	PFO	
	. 4	5	40	8	1	1 4	⇒ 0	10	PF1	
	Į	1		ļ	1	1	1 - 0		PF2	
	1	1		l	ļ	1	1	1	1	ĺ
	1	i .	1		1	<u> </u>		1 11	PF3	1
-	Í	I	1	I		!	Bit 7	1 1 1	1	1
. •	Ì	ł	1		<u> </u>	<u> </u>	$\frac{1}{1} = 1$	1 00	BAK	ł
	1	1	1					01	PFO	i
	5	5	40	16	1	2	Bit 7	•	PF1	1 1
		i	1	1	1	1	= 0	10	PF2	1
	1	i	1	1			1	11		i t
					1	!			PF3	
			1	1	1 1		Bit 7	11		1
	1 *	1	1	1	<u> </u>		= 1	<u> </u>		1
	;		1		} .		-	0	BAK	1
	6	i 5	20	8	1	1	00		PFO	
		-	i.	1		1	01		PF1	1
		1	į	i	1	1	10	1	PF2	1
		1	i	i		<u> </u>	11	1 1	PF3	ļ.
			1	1	1	1	1 -	0	EAK	ļ
	7	15	20	16	1	1	00	1	PFO	1
	7		1 20	1	-	Ì	01	1	PF1	1
			1	1	i	1	1 10	1	PF2	ļ
			1	1	i	i	1 11	1	PF3	
			<u></u>							

• •

TITLE ATARI ANTIC (NTSC) REV ŌF SHEET DRAWING NO. 45 23 C012296

CHBASE (Character Address Base Register) (D409): This address writes lata
into the Character Address Base Register. The data specifies the most signifigent
byte (MSB) of the address of the desired character set (see section II). Note that
the last 1 or 2 bits are assumed to be 0.
40 Character Modes
D7 D6 D5 D4 D3 D2 * CHBASE
Ease Address Char Name Line Counter 20 Character Modes D7 D6 D5 D4 D3 D2 D1 * CHBASE
Base Address Char Name Line Counter
CHACTL (Character Control) (D401): This address writes data into the
Character Control Register.
Not Used D2 D1 D0
D2 Character Vertical Reflect Bit. This bit is sampled at the beginning of each line of characters. If true it causes the line of characters to reflect (invert) vertically (for upside down characters).
Dl Character Video Invert Flag (used for 40 Character Mode only). If bit 7 of character code is true this flag causes that character to be blue on white (if normal colors are white on blue).
D0 Character Blank (Blink) Flag (Used for 40 Character Mode only). If bit 7 of character code is true this flag causes that character to blank. Blinking characters are produced by setting bit 7 of the characters to 1, then periodically changing D0 of CHACTL.
7.0) Vertical and Horizontal Fine Scrolling: Playfield objects are difficult to
move smoothly. Memory map playfield can be moved by rewriting sections of memory.
However, this is extremely time-consuming if large sections of the screen must
be moved smoothly. Character playfield objects can be moved easily in a jerky

- --

ITTLE ANTIC (NTSC)

position jump from one character position to another, not a smooth motion. For this

fashion by changing the memory scan counter. However, this results in a large

ΛΤΔΡΙ [•]	ANTIC (NTSC)					
	DRAWING NO. C012296	REV D	SHEET 24	OF 45		
			*			

7.0) Vertical and Horizontal Fine Scrolling: (continued)

reason hardware registers (VSCROL and HSCROL) and counters are provided to allow smooth horizontal or vertical motion, up to one character width horizontally and up to one character height vertically. After this much smooth motion has been done by increasing the value in these registers, memory is rewritten or the memory scan counter is modified and smooth motion is resumed for another character distance.

7.1) Horizontal Scrolling:

HSCROL (Horizontal Scroll Register) (D4 04): This address writes data into the Horizontal Scroll Register. Only playfield is scrolled, not players and missles.

clock right shifts

The display is shifted to the right by the number of color clocks specified by HSCROL for each display list instruction that contains a 1 in its HSCROL Flag bit (bit 4 of instruction byte).

When horizontal scrolling is enabled, more bytes of data are needed. For a narrow playfield (see DMACTL bits 1 and 0) there should be the same number of bytes per line as for standard playfield with no scrolling. Similarly, for standard playfield use the same number of bytes as for the wide playfield. For wide playfield, there is no change in the number of bytes and background color is shifted in.

7.2) Vertical Scrolling:

A zone of playfield on the screen can be scrolled upward by using VSCROL and bit 5 of the display list instruction. The display blocks at the upper and lower boundaries of the zone must have a variable vertical size. In particular, the first display block within that zone must be shortened from the top, and the last display block must be shortened from the bottom (i.e. not all of the top and bottom blocks will be displayed).

The vertical dimension of each display block is controlled by a 4 bit counter within the ANTIC, called the 'Delta Counter' (DCTR). Without vertical scrolling, it starts at 0 on the first line, and counts up to a standard value, determined by the current display instruction. (Ex: for upper and lower case text display, the end value is 9. For 5 color character displays, it is 7 or 15.)

If bit 5 of the instruction remains unchanged between consecutive display blocks, then the second block is displayed in the normal fashion. If bit 5 of the instruction goes from 1 to 0 between two consecutive display blocks, the second block will start

ATARI	TITLE	ANTIC (NTSC)			
	DRAWING NO.	C012296	REV D	SHEET 25	OF

7.2) Vertical Scrolling: (continued)

with Delta = 0, as usual, but will count up until Delta = VSCROL, instead of the standard value. This shortens that display block from the bottom.

To define a vertically scrolled zone, the most direct method is to set bit 5 to 1 in the first display instruction for that zone and in all consecutive blocks but the last one. If the VSCROL register is not rewritten on the fly, this results in a total scrolled zone that has a constant number of lines (provided that the VSCROL value does.not exceed the standard individual block size). If N is the standard block size, the top block will be N-VSCROL lines (N>VSCROL), and the last block will be VSCROL + 1 lines: (N-VSCROL) + (VSCROL+1) = N + 1. Shown on the following page is an example of a scrolled zone, top:block, for 8 VSCROL values for N = 8.

VSCROL (Vertical Scroll Register) (D405): This address writes data into the Vertical Scroll Register.

-		•	······
not used	1	-	
	D2	D1_	DO

8 line display modes

not used		1	1	1
HOL BOOK	I D3_	D2	D1	DO

16 line display modes

The display is scrolled upward by the number of lines specified on the VSCROL register for each display list instruction that contains a 1 in its VSCROL Flag bit (bit 5 of instruction byte). The scrolled area will terminate with the first instruction having a zero in bit 5.

a parte para la constructivo de la constructivo de la construcción de la construcción de la construcción de la

ATARI	TITLE	ANTIC (NTSC)			
3 LATARI	DRAWING NO.	C012296	REV D	SHEET 26	OF 45

13.0) ELECTRICAL PARAMETERS:

13.1) GENERAL:

A)

B) C)

D)

A) Storage temperature -40°C to +90°C
 Ambient operating temperature 0°C to +70°C
 Failure rate less than 0.1% per 1000 hours
 Maximum voltage range on any pin with respect to VSS
 (Pin 1: substrate) without permanent damage to the chip -0.5V to +9.0V

-40°C to +90°C 0°C to +70°C

13.2) D.C. OPERATING CHARACTERISTICS:

All voltages are referenced to VSS (pin 1). ·-----MIN. I TYP. I MAX. UNIT ____ +4.75 +5.25 VOLTS VCC (PIN 21) ___ . 150.0 ICC (PIN 21) mΑ NON-MASKABLE INTERRUPT INPUT: (WITH INTERNAL) FULL-UP DEVICE) RNMI (PIN 6) VIH INPUT HIGH VOLTAGE: 2.0 VCC I VOLTSI VOLTS -0.5 +0.8 VIL INPUT LOW VOLTAGE: IPULL-UP INPUT PULL-UP CURRENT:Vin=2.4V υA -100.0 C_{PIN} PIN CAPACITANCE · · · . 7.0 p† ______ DATA EUS I/O: D0-D3 (FIN 30-FIN 33), D4-D7 (FIN 40-FIN 37) • INPUT: VIH INPUT HIGH VOLTAGE: I VOLTSI VCC 2.0 VOLTS VIL INPUT LOW VOLTAGE: -0.5 +0.8 LEAKAGE INPUT LEAKAGE: OUTPUT TRI-STATED 10.0 υA CPIN PIN CAPACITANCE 10.0 p۴ <u>OUTFUT:</u> V_{OH} OUTPUT HIGH VOLTAGE: I LOAD=-0.1mA I VOLTSI 2.4 V_{DL} OUTPUT LOW VOLTAGE: I LOAD=+1.6mA VOLTSI 0.4 C_{LOAD} LOAD CAPACITANCE 130.0 РŤ

	TITLE					
J ATARI	DRAWING NO.	ANTIC (NTSC) C012296	REV D	SHEET 34	OF	4 <u>5</u>

13.2) D.C. OFERATING CHARACTERISTICS:(CONT.)

All voltages are referenced to VSS (pin 1),

	 MIN. 	 TYP+ 	MAX.	UNIT	
R/W INPUT WITH INTERNAL ENHANCEMENT PULL-UP:	1		1	1	
R/W (PIN 14) V INPUT HIGH VOLTAGE:	2.0		VCC	VOLTSI VOLTSI	
V INPUT LOW VOLTAGE:	-0.5		10.0		
ILEAKAGE INPUT LEAKAGE: VIN=7.0 VOLTS		, 	7.0	pf	
C _{PIN} PIN CAPACITANCE		ι 	,		
V _{OH} OUTPUT HIGH VOLTAGE: I LOAD=-0.1mA	2.4	i I	, 	I VOLTSI	
C _{LOAD} LOAD CAPACITANCE		• •	30.0	pf 	
NORMAL OUTPUTS: AND (PIN 2), AN1 (PIN 3), AN2 (PIN 5) BD (PIN 34) V _{DH} OUTPUT HIGH VOLTAGE: I LOAD=-0.1MA	2.8		 	 VOLTS VOLTS	I
V _{OL} OUTPUT LOW VOLTAGE: I LOAD=+1.6MA C _{LCAD} LCAD CAFACITANCE	 	 	25.0	 pf	1 1 1
NORMAL OUTFUT: HALT (PIN 9), NMI (PIN 7), REF (PIN 8) V _{OH} OUTPUT HIGH VOLTAGE: I LOAD=-0.1mA V _{OL} OUTPUT LOW VOLTAGE: I LOAD=+1.6mA C _{LOAD} LOAD CAFACITANCE	 2.8 	 	 0.4 30.0	I VOLTS VOLTS VOLTS Pf	l.
READY OUTPUT: OFEN DRAIN OUTPUT RDY (PIN 15) V _{OL} OUTPUT LOW VOLTAGE: I LOAD=+1.6mA ILEAKAGE INPUT LEAKAGE: VIN=7.0 VOLTS PULL-DOWN IS TURNED OFF CLOAD LOAD CAFACITANCE			 0.4 10.0 30.0	I VOLTS UA Pf	

-...

ł

ATARI	ΠTLE	ANTIC (NTSC)				
	DRAWING NO.	C012296	REV D	SHEET	35	OF 45

13.2) D.C. OFERATING CHARACTERISTICS:(CONT.)

A11	voltages	are	referenced	to	vss	(pin	1).

. •

.

	MIN.	 TYF.	MAX.	UNIT	
ADDRESS BUS 1/0: TRI-STATED OUTPUTS		1			
A0-A3(PIN 13-PIN 10), A8-A9(PIN 24-PIN	23),	1			
A10(PIN 16),A11(PIN 22), A12-A15 (PIN 17-PIN 20)					
INPUT:	1	1 1 1	,] 1		
V _{IH} INPUT HIGH VOLTAGE:	2.0	1 1	VCC	i voltsi	
VIL INPUT LOW VOLTAGE:	-0.5		, +0.8	VOLTSI	
INPUT LEAKAGE: OUTPUT TRI-STA		1	10.0	UA I	
C _{FIN} FIN CAPACITANCE		1	10.0	i pf i i pf i	
OUTFUT:		· . 	1	i i	
V _{OH} OUTFUT HIGH VOLTAGE: I LOAD=-0.1mA	2.4	• 	1	i vo∟⊤si	
V _{OL} OUTPUT LOW VOLTAGE: I LOAD=+1.6mA		1	i 0.4	VOLTS	
CLOAD LOAD CAPACITANCE	I	; 	i 30.0	pf	· · · ·
ADDRESS BUS I/O: TRI-STATED OUTPUTS		1 1	 . 		
A4-A7(PIN 28-PIN 25)			1	• •	
INFUT:	1	1		i i	
I _{leakage} input leakage: Output tri-sta vin=+7.0 vo		1	10.0	L UA	
C _{FIN} FIN CAFACITANCE		, 	10.0	i pf	
OUTFUT:			1	1	
V _{DH} OUTFUT HIGH VOLTAGE: I LOAD=-0.1mA	2.4		1	i VOLTS	
V OUTPUT LOW VOLTAGE: I LOAD=+1.6MA		1	i 0.4	I VOLTS	-
C _{LOAD} LOAD CAPACITANCE	i	1	30.0	l pf	1

•.

i

n

J LATARI	ΠΤΙΕ	ANTIC (NTSC)			
	DRAWING NO.	C012296	REV D	SHEET 36	OF 45

13.2) D.C. OPERATING CHARACTERISTICS:(CONT.)

All voltages are referenced to VSS (pin 1).

.

		MIN.	 TYP. 	' MAX. 	UNIT	
	INFUT CLOCK :		 	 	1	
for any sole of the second	D2 (PIN 29) V _{IH} INPUT HIGH VOLTAGE:	2.0	¥ 	I VCC	I VOLTS	
· · ·	V _{IL} INPUT LOW VOLTAGE:	-0.5	 	1 +0.8	VOLTS	
	ILEAKAGE INPUT LEAKAGE: VIN=7.0 VOLTS		1	10.0	ן 1 UA	
· .	C _{PIN} PIN CAPACITANCE		• • • • • • • • • • • •	10.0	pf	
	FAST PHASE INPUT CLOCK :	 	} }	 !	1	
	FØ2 (PIN 35)	1 1	1	1		
	V _{IN} INPUT HIGH VOLTAGE:	2.8	. 		VOLTS	
	V _{IL} INPUT LOW VOLTAGE:	-0.5	1	1 +0.8	VOLTS	
	I _{LEAKAGE} INPUT LEAKAGE: VIN=7.0 VOLTS	 	 	1 10.0	UA	
	C _{PIN} PIN CAPACITANCE	, 	, 	7.0	pf	
	SCHMITT TRIGGER INPUT):	 		1	 	1
	RES (PIN 36), LP (PIN 4)	1	1	1		
	V _{T+} POSITIVE-GOING THRESHOLD VOLTAGE:	 1.9		2.6	I VOLTS	
	V _T _ NEGATIVE-GOING THRESHOLD VOLTAGE:	1 1.0	1	2.1	VOLTS	1
	HYSTERESIS:	1 0.3	1		I VOLTS	1 1 1
	LEAKAGE INFUT LEAKAGE: VIN=7.0 VOLTS	, , 1	1	10.0	 uA	1
	C _{PIN} PIN CAPACITANCE		1	7.0	l pf	1

•.

.

•

•

TITLE ANTIC (NTSC) ATARI OF 45 REV SHEET DRAWING NO. C012296 D 37

13.3) DYNAMIC OFERATING CHARACTERISTICS:

(VDD = 5V<u>+</u>5% TA = 0⁰ to 70⁰C)

1	Farameter	Note	Signal Type	 Symbol 		MAX.	UNIT	
1	CLOCK_TIMING:		 					
1	02 INPUT:			1				
ا ليه و مربق معني	LOGIC HIGH TIME			THI	230	260	nS 	
1	RISE TIME			T _R		25.	nS	
	FALL TIME			T _F		25	nS	
	FAST FHASE CLOCK INPUT: FØO	l 1					, 1	
	LOGIC HIGH TIME	1 		т _{ні}	105	135	I nS	
1	I I RISE TIME	 		T _R		30	nS	
	I FALL TIME	1		т _F		25	l nS	
	I FHASE ZERO CLOCK OUTPUT: 00	, , ;			- -	1	 	1
	I I LOGIC HIGH TIME	1		тні	270	290	i nS	1
	I RISE TIME	1	1	т _R		50	, r.S	
	I I FALL TIME	1	1	TF	: 1	i 50	l nS	1
	I OUTFUT DELAY TIME	 1 .	ALE FØO	TDS	; } !	165	nS 	
	I INFUT TIMING:	1			1 }	· · · 	1 	t
	I R/W SETUP TIME		1 1 BLE 02	l ^T rys	1 130		 nS	1
	I R/W HOLD TIME	i i	ATE Ø2	, т _{кwн}	1 30	1	l nS	
	I ADDRESS SETUP TIME: A0-A3,A8-A15	1	8LE Ø2	TADS	130	• 1 1	, r:S 	1 1
	1 1 ADDRESS HOLD TIME: 1 A0-A3,A8-A15		ALE Ø2	I ^T ADH	30 	1	nS 	, , ,
	I DATA SETUP TIME : D0-D7		I BTE 02	I ^T DSW	1 50) 1	l nS	4
	I I DATA HOLD TIME : D0-D7	1	ATE Ø2	і ^{I Т} онж	1 10	1	l nS	 1
	DATA SETUP TIME : RNMI	1	BTE 02	1	50	1	r iS	
	I DATA HOLD TIME : RNMI		ATE 02	, т _{он}	1 10		nS	

.

1) OUTFUT	L'OAD	AT	25pF	+	1	TTL	LOAD.	
-----------	-------	----	------	---	---	-----	-------	--

.

ATARI	TITLE	ANTIC	(NTSC)		_			
	DRAWING NO.	C01229	6	D	SHEET	38	OF	45

13.3) <u>CYNAMIC OFERATING CHARACTERISTICS</u>: (CONT.)

	$(VDD = 5V + 5\% TA = 0^{\circ} to 70^{\circ}$	'C						1
	 Parameter	Note	Signal Type 	Symbol	 MIN. 	MAX.	 UNIT 	
	I INPUT TIMING: (CONT.)			ł				
ĺ	DATA SETUP TIME : RES		IBTE OSCI	T _{DS}	1 50 50		nS	
	DATA HOLD TIME : RES	1 1 1 1	ATE OSCI	т _{он} і	130 130		nS	:
	DATA SETUP TIME : LP	1	BTE 2021		50 1		nS	
		 	BLE 22	DS	, 1 50 1		, 1 nS 1	
	DATA HOLD TIME : LP	1	ATE 021	т _{рн}	1 850) 	nS I	
		 	ALE 02	T _{DH}	850	i 1	nS	
	I OUTPUT TIMING:							· · · · ·
	R/W SETUP TIME	12	ATE Ø2	T _{RNS}		230	inS nS	
I	 R/W HOLD TIME	2	1 ATE 2021		1 23	1	i nS i nS	1
	I ADDRESS SETUP TIME: A0-A15	2	I ATE Ø21	TADS		1 145	ו הS ו	
	 ADDRESS HOLD TIME: A0-A15	1	ATE Ø21	T _{ADH}	14	1 1	i InSi	
	I DATA SETUP TIME : D0-D7	3	ALE 221	T _{DSH}	1	1 185	i nS	1
	I I DATA HOLD TIME : D0-D7	1 3	ATE 021	тоны	10	1 1 1	l InS∣	
	DATA SETUP TIME : HALT, NHI	12	ATE D2	TDS		350	l nS	
	I DATA HOLD TIME : HALT, NHI	1 2	ATE D21	тон	1 35	1 1 1	l nS	
	 DATA SETUP TIME : RDY	1 2	ATE 02	TDS	+ 	180	nS	1
	DATA HOLD TIME : RDY	1 2	ATE 02	^т он	18	1	l nS	
	DATA SETUP TIME : REF	2	I ATE 021	T _{DS}	1	i 150	nS	1
	DATA HOLD TIME : REF	2	ATE 02	т _{рн}	15	• 	nS	1
	I DATA SETUP TIME : ANO-AN2	1 1	IALE FØ01	Tos	1	195	nS] [
	I DATA HOLD TIME : ANO-AN2 	1 1	IALE FØ0	т _{он}	19	1	i nS	•
· . :	NOTE: 1) OUTPUT LOAD AT 25PF + 1 T 2) OUTPUT LOAD AT 30PF + 1 T 3) OUTPUT LOAD AT 30PF + 1 4) LIGHT PEN INPUT CAN OCCUR OCCUR ON WILL DETERMINE THE VA	TL LO TTL L ON B	AD. DAD. DTH EDGES	5 OF 02. AST SIGNI	THE EDGE	THAT IT D	0ES	I

•.

 $(UDD = 5V+5% TA = 0^{\circ} to 70^{\circ}C)$

.

•

TITLE ANTIC (NTSC)						
DRAWING NO. C012296	REV	SHEET 39	OF 45			

ATARI'	TITLE	ANTIC	(NTSC)			
	DRAWING NO.	C0122	96	REV D	SHEET 40	OF 45

 ITTLE
 ANTIC (NTSC)

 DRAWING NO.
 CO12296
 REV
 SHEET
 OF
 45

ANTIC ADDRESS TABLE

•

·· · ·

	I	1	WRITE	1	READ
	ADDRESS	NAME	LDESCRIPTION	I NAME	DESCRIPTION
	I	1	1	[1
	D400	DMACTL	DMA CONTROL REGISTER		L
	ł	l i	I CHARACTER CONTROL	1	l i i i i i i i i i i i i i i i i i i i
	D401	CHACTL	REGISTER	<u> </u>	L
	1		DISPLAY LIST POINTER		
	D402	DLISTL	(LOW BYTE)	1	
	D403	I DLISTH	DISPLAY LIST POINTER (HIGH BYTE)		
	1 <u>.0703</u> .		HORIZONTAL SCROLL		1
	D404	HSCROL	I REGISTER		1 f
	<u></u>	1	VERTICAL SCROLL	1	t
	D405	VSCROL	REGISTER	1	r 1
	·	1		1	1
	D406	1		i	
		1	PLAYER-MISSILE BASE	1	
	D407	PHEASE	ADDRESS REGISTER	i	
		1	1	1	1
	D408	l	L	1	L
		l T	CHARACTER BASE	1	
	D409	CHBASE	ADDRESS REGISTER	1	<u> </u>
	:	1	WAIT FOR HORIZONTAL	1	l
1	D40A	WSYNC	ELANK SYNCHRONISM	1	<u> </u>
		1	l	1	l
	D40E	L		VCOUNT	VERTICAL LINE COUNTER
					HORIZONTAL LIGHT PEN
	<u></u>			FENH	REGISTER
					VERTICAL LIGHT PEN
	D40D			PENU	REGISTER
	D40E	NMIEN	I ENABLE NMI INTERRUPTS		
	טדטב		RESET NMI INTERRUPT	1	NMI INTERRUPT
	D40F	I NATEES	I STATUS REGISTER	I NMIST	STATUS REGISTER
		1		1 111231	I STRIUS REGISTER
	D410	i N			
	7115				
		. > REPEA	ATED 15 TIMES AS ABOVE		
		1			
		Î Î			
		1			
		1			•
		L			

) IL ATARI	TITLE	ANTIC	(NTSC)			
	DRAWING NO.	C01229	6	REV D	SHEET 43	OF 45

.

•

ANTIC PIN LIST	
----------------	--

.

.

. •

•

			AME DESCRIPTION	
	F'IN ‡	FIN N		
	1	VSS	GROUND	
	2	AN0	ANTIC INTERFACE TO GTIA	
	3.	AN1	ANTIC INTERFACE TO GTIA	
	4	LF	LIGHT PEN INPUT	1
		ANZ	ANTIC INTERFACE TO GTIA	{
	5	HIL		1
		ENNET	NMI INTERRUPT INFUT	
	6	RNMI		
	7	NMI	RAM REFRESH OUTPUT	
	8	<u>REF</u>	RAN REFRESH OUT OF	
•	9	HALT	HALT OUTPUT	
	10	A3	ADDRESS I/O	
	11	A2	ADDRESS I/O	
	12	A1	ADDRESS 1/0	
	. 13	AŬ	ADDRESS 1/0	
	•	R/W	READ/WRITE I/O	
N	14	RDY	READY OUTPUT	1
	15			
		A10	ADDRESS I/O	3
	16		ADDRESS I/O	
	17	A12	ADDRESS I/O	
	- 18	A13		
	19	A14	ADDRESS I/O	
	20	A15	ADDRESS I/O	
	21	VCC	POWER +5V	
	22	A11	ADDRESS I/O	
	23	A9	ADDRESS I/O	
	24	AB	ADDRESS I/O	
	25	A7	ADDRESS I/O	
	. <u> </u>	<u>_</u>		· · · · · · · · · · · · · · · · · · ·
	26	A6	ADDRESS 1/0	
	27	A5	ADDRESS I/O	
		A4	ADDRESS I/O	
	28		COMPUTER PHASE 2 INFUT	•
	29	Ø2	DATA BUS I/O	
	30	D0		
			DATA BUS I/O	
	31	D1		
	32	02	DATA BUS I/O	
	33	D3	DATA BUS I/O	
	34	2 0	PHASE 0 OUTPUT	
	35	FØO	FAST PHASE 0 INPUT	
	36	RES	RESET INFUT	
	37	D7	DATA EUS I/O	•
	38	D6	DATA EUS I/O	
	39	D5	DATA BUS I/O	
	40	D4	DATA BUS I/O	-

TITLE			
ANTIC (NTS	SC)		
RAWING NO.	REV	SHEET	OF
C012296	D	44	45
	ANTIC (NTS	ANTIC (NTSC) RAWING NO. REV	ANTIC (NTSC) RAWING NO. REV SHEET

.

c. Assembly Code: TCF-X
D. Special Processing No Yes-See added page
E. Bond

ATARI	TITLE	ANTIC (NTSC)					
ATARI	DRAWING NO.	C012296	REV	D	SHEET	45	OF 45