
Programmable Logic Design
Quick Start Hand Book

By Karen Parnell & Nick Mehta

January 2002

Second
Edition

Programmable Logic Design Quick Start Hand Book Page 2
© Xilinx

ABSTRACT

Whether you design with discrete logic, base all of your designs on
microcontrollers, or simply want to learn how to use the latest and most
advanced programmable logic software, you will find this book an
interesting insight into a different way to design.

Programmable logic devices were invented in the late seventies and
since then have proved to be very popular and are now one of the
largest growing sectors in the semiconductor industry. Why are
programmable logic devices so widely used? Programmable logic
devices provide designers ultimate flexibility, time to market advantage,
design integration, are easy to design with and can be reprogrammed
time and time again even in the field to upgrade system functionality.

This book was written to complement the popular Xilinx Campus
Seminar series but can also be used as a stand-alone tutorial and
information source for the first of your many programmable logic
designs. After you have finished your first design this book will prove
useful as a reference guide or quick start handbook.

The book details the history of programmable logic, where and how to
use them, how to install the free, full functioning design software (Xilinx
WebPACK ISE included with this book) and then guides you through
your first of many designs. There are also sections on VHDL and
schematic capture design entry and finally a data bank of useful
applications examples.

We hope you find the book practical, informative and above all easy to
use.

Karen Parnell & Nick Mehta

Programmable Logic Design Quick Start Hand Book Page 3
© Xilinx

Programmable Logic Design
Quick Start Hand Book

Programmable Logic Design Quick Start Hand Book Page 4
© Xilinx

NAVIGATING THE BOOK

This report was written for both the professional engineer who has never
designed using programmable logic devices and for the new engineer
embarking on their exciting career in electronics design. To
accommodate this the following navigation section has been written to
help the reader decide in advance which section he/she wishes to read.

This chapter gives an overview of how and where
programmable logic devices are used. It gives a
brief history of the programmable logic devices
and goes on to describe the different ways of
designing with PLDs.

Chapter 2 describes the products and services
offered by Xilinx to ensure PLD designs enable
time to market advantage, design flexibility and
system future proofing. The Xilinx portfolio includes
both CPLD & FPGA devices, design software,
design services & support, and Cores.

The WebPACK ISE design software offers a
complete design suite based on the Xilinx
Foundation ISE series software. This chapter
describes how to install the software and what
each module does.

Chapter 2
Xilinx

Solutions

Chapter 3
WebPACK
ISE Design
Software

Chapter 1
Introduction

Programmable Logic Design Quick Start Hand Book Page 5
© Xilinx

NAVIGATING THE BOOK (Continued)

This section is a step by step approach to your
first simple design. The following pages are
intended to demonstrate the basic PLD design
entry implementation process.

This chapter discusses the Synthesis and
implementation process for FPGAs. The design
targets a Spartan IIE FPGA.

This section takes the VHDL or Schematic design
through to a working physical device. The design is
the same design as in the previous chapters but
targeting a CoolRunner CPLD.

The final chapter contains a useful list of design
examples and applications that will give you a good
jump-start into your future programmable logic
designs. It will also give you pointers on where to
look for and download code and search for
Intellectual Property (IP) Cores from the Xilinx

 Web site.

Chapter 4
WebPACK
ISE Design

Entry

Chapter 5
Implementing

FPGAs

Chapter 7
Design

Reference
Bank

Chapter 6
Implementing

CPLDs

Programmable Logic Design Quick Start Hand Book Page 6
© Xilinx

CONTENTS

ABSTRACT
NAVIGATING THE BOOK
CONTENTS
ABBREVIATIONS

Chapter 1 INTRODUCTION
1.1 The History of Programmable Logic
1.2 Complex Programmable Logic

Devices (CPLDs)
1.2.1 Why Use a CPLD?

1.3 Field Programmable Gate Arrays
(FPGAs)

1.4 The Basic Design Process
1.5 Intellectual Property (IP) Cores
1.6 Design Verification

Chapter 2 XILINX SOLUTIONS
2.1 Introduction
2.2 Xilinx Devices

2.2.1 Platform FPGAs
2.2.2 Virtex FPGAs
2.2.3 Spartan FPGAs
2.2.4 Xilinx CPLDs
2.2.5 Military and Aerospace

2.3 Design Tools
2.4 Xilinx Intellectual Property (IP) Cores
2.5 System Solutions

Programmable Logic Design Quick Start Hand Book Page 7
© Xilinx

CONTENTS (Continued)

2.5.1 ESP Emerging
Standards and Protocols

2.5.2 Xtreme DSP
2.5.3 Xilinx at Work
2.5.4 Xilinx On Line
2.5.5 Configuration Solutions
2.5.6 Processor Central
2.5.7 Memory Corner
2.5.8 Wireless Connection
2.5.9 Networking Connection
2.5.10 Video and Image

Processing
2.5.11 Computers
2.5.12 Communications and

Networking
2.5.13 Education Services
2.5.14 University Program
2.5.15 Design Consultants
2.5.16 Technical Support

Chapter 3 WebPACK ISE DESIGN
SOFTWARE

3.1 Module Descriptions
3.2 WebPACK CDROM Installation

Instructions
3.3 Getting Started

Programmable Logic Design Quick Start Hand Book Page 8
© Xilinx

CONTENTS (Continued)

Chapter 4 WebPACK ISE DESIGN ENTRY
4.1 Creating a project
4.2 VHDL Design Entry
4.3 Functional Simulation
4.4 State Machine Editor
4.5 Top Level VHDL Designs
4.6 Top Level Schematic Designs

Chapter 5 IMPLEMENTING FPGAS
5.1 Synthesis
5.2 Constraints Editor
5.3 Reports
5.4 Timing Simulation
5.5 Configuration

Chapter 6 IMPLEMENTING CPLDS
6.1 Synthesis
6.2 Constraints Editor
6.3 Reports
6.4 Timing Simulation
6.5 Programming

Chapter 7 DESIGN REFERENCE BANK
7.1 Introduction
7.2 Get the Most out of Microcontroller-

Based Designs: Put a Xilinx CPLD
Onboard

7.3 Application Notes and Example Code
7.4 Website Reference

GLOSSARY OF TERMS

Programmable Logic Design Quick Start Hand Book Page 9
© Xilinx

ABBREVIATIONS

ABEL Advanced Boolean Expression Language
ASIC Application Specific Integrated Circuit
ASSP Application Specific Standard Product
ATE Automatic Test Equipment
CDMA Code Division Multiple Access
CPLD Complex Programmable Logic Device
CLB Configurable Logic Block
DES Data Encryption Standard
DRAM Dynamic Random Access Memory
DSL Digital Subscriber Line
DSP Digital Signal Processor
DTV Digital Television
ECS Schematic Editor
EDA Electronic Design Automation
FAT File Allocation Table
FIFO First In First Out
FIR Finite Impulse Response (Filter)
Fmax Frequency Maximum
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPS Geo-stationary Positioning System
GUI Graphical User Interface
HDTV High Definition Television
IP Intellectual Property
I/O Inputs and Outputs
IRL Internet Reconfigurable Logic
ISP In-System Programming
JTAG Joint Test Advisory Group
LSB Least Significant Bit
LUT Look Up Table
MP3 MPEG Layer III Audio Coding

Programmable Logic Design Quick Start Hand Book Page 10
© Xilinx

ABBREVIATIONS (Continued)

MPEG Motion Picture Experts Group
MSB Most Significant Bit
NRE Non-Recurring Engineering (Cost)
PAL Programmable Array Logic device
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCMCIA Personal Computer Memory Card

International Association
PCS Personnel Communications System
PLA Programmable Logic Array
PLD Programmable Logic Device
PROM Programmable Read Only Memory
EPROM Erasable Programmable Read Only Memory
RAM Random Access Memory
ROM Read Only Memory
SPLD Simple Programmable Logic Device
SRAM Static Random Access Memory
SRL16 Shift Register LUT
Tpd Time of Propagation Delay through the device
UMTS Universal Mobile Telecommunications System
VHDL VHISC High Level Description Language
VHSIC Very High Speed Integrated Circuit
VSS Visual Software Solutions
WLAN Wireless Local Access Network
XST Xilinx Synthesis Technology
QML Qualified Manufacturers Listing
QPRO QML Performance Reliability of supply Off-

the-shelf ASIC

Programmable Logic Design Quick Start Hand Book Page 11
© Xilinx

INTRODUCTION

The following chapter gives an overview of how and where
programmable logic devices are used. It gives a brief history of the
programmable logic devices and goes on to describe the different ways
of designing with PLDs.

1.1 The History of Programmable Logic

By the late 70’s, standard logic devices were the rage and printed
circuit boards were loaded with them. Then someone asked the
question: “What if we gave the designer the ability to implement
different interconnections in a bigger device?” This would allow the
designer to integrate many standard logic devices into one part. In
order to give the ultimate in design flexibility Ron Cline from Signetics
(which was later purchased by Philips and then eventually Xilinx!)
came up with the idea of two programmable planes. The two
programmable planes provided any combination of ‘AND’ and ‘OR’
gates and sharing of AND terms across multiple OR’s.

This architecture was very flexible, but at the time due to wafer
geometry's of 10um the input to output delay or propagation delay
(Tpd) was high which made the devices relatively slow.

 1

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 12
© Xilinx

Figure 1.1 What is a CPLD?

MMI (later purchased by AMD) was enlisted as a second source for
the PLA array but after fabrication issues was modified to become the
Programmable Array Logic (PAL) architecture by fixing one of the
programmable planes. This new architecture differs from that of the
PLA by having one of the programmable planes fixed - the OR array.
This PAL architecture had the added benefit of faster Tpd and less
complex software but without the flexibility of the PLA structure. Other
architectures followed, such as the PLD (Programmable Logic Device).
This category of devices is often called Simple PLD (SPLD).

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 13
© Xilinx

Figure 1.2 SPLD Architectures

The architecture has a mesh of horizontal and vertical interconnect
tracks. At each junction, there is a fuse. With the aid of software
tools, the user can select which junctions will not be connected by
“blowing” all unwanted fuses. (This is done by a device programmer or
more commonly nowadays using In-System Programming or ISP).
Input pins are connected to the vertical interconnect and the horizontal
tracks are connected to AND-OR gates, also called “product terms”.
These in turn connect to dedicated flip-flops whose outputs are
connected to output pins.

PLDs provided as much as 50 times more gates in a single package
than discrete logic devices! A huge improvement, not to mention fewer
devices needed in inventory and higher reliability over standard logic.

Programmable Logic Device (PLD) technology has moved on from the
early days with such companies as Xilinx producing ultra low power
CMOS devices based on Flash technology. Flash PLDs provide the

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 14
© Xilinx

ability to program the devices time and time again electrically
programming and ERASING the device! Gone are the days of erasing
taking in excess of twenty minutes under an UV eraser.

1.2 Complex Programmable Logic Devices (CPLDs)

Complex Programmable Logic Devices (CPLD) are another way to
extend the density of the simple PLDs. The concept is to have a few
PLD blocks or macrocells on a single device with general purpose
interconnect in between. Simple logic paths can be implemented
within a single block. More sophisticated logic will require multiple
blocks and use the general purpose interconnect in between to make
these connections.

Figure 1.3 CPLD Architecture

CPLDs are great at handling wide and complex gating at blistering
speeds e.g. 5ns which is equivalent to 200MHz. The timing model for
CPLDs is easy to calculate so before you even start your design you
can calculate your in to output speeds.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 15
© Xilinx

1.2.1 Why Use a CPLD?

CPLDs enable ease of design, lower development costs, more product
revenue for your money, and the opportunity to speed your products to
market...

Ease of Design: CPLDs offer the simplest way to implement design.
Once a design has been described, by schematic and/or HDL entry, a
designer simply uses CPLD development tools to optimise, fit, and
simulate the design. The development tools create a file, which is then
used to customise (program) a standard off-the-shelf CPLD with the
desired functionality. This provides an instant hardware prototype and
allows the debugging process to begin. If modifications are needed,
design changes are just entered into the CPLD development tool, and
the design can be re-implemented and tested immediately.

Lower Development Costs: CPLDs offer very low development costs.
Ease of design, as described above, allows for shorter development
cycles. Because CPLDs are re-programmable, designers can easily
and very inexpensively change their designs. This allows them to
optimise their designs and continues to add new features to continue
to enhance their products. CPLD development tools are relatively
inexpensive and in the case of Xilinx, are free. Traditionally, designers
have had to face large cost penalties such as re-work, scrap, and
development time. With CPLDs, designers have flexible solutions thus
avoiding many traditional design pitfalls.

More Product Revenue: CPLDs offer very short development cycles,
which means your products get to market quicker and begin
generating revenue sooner. Because CPLDs are re-programmable,
products can be easily modified using ISP over the Internet. This in
turn allows you to easily introduce additional features and quickly
generate new revenue from them. (This results in an expanded time
for revenue). Thousands of designers are already using CPLDs to
get to market quicker and then stay in the market longer by continuing
to enhance their products even after they have been introduced into the
field. CPLDs decrease Time To Market (TTM) and extend Time In
Market (TIM).

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 16
© Xilinx

Reduced Board Area: CPLDs offer a high level of integration (large
number of system gates per area) and are available in very small
form factor packages. This provides the perfect solution for
designers of products which must fit into small enclosures or who
have a limited amount of circuit board space to implement the logic
design. The CoolRunner CPLDs are available in the latest chip scale
packages, e.g. CP56 which has a pin pitch of 0.5mm and is a mere
6mm by 6mm in size so are ideal for small, low power end products.

Cost of Ownership: Cost of Ownership can be defined as the
amount it costs to maintain, fix, or warranty a product. For instance,
if a design change requiring hardware rework must be made to a
few prototypes, the cost might be relatively small. However, as the
number of units that must be changed increases, the cost can
become enormous. Because CPLDs are re-programmable, requiring
no hardware rework, it costs much less to make changes to designs
implemented using them. Therefore cost of ownership is dramatically
reduced. And don't forget the ease or difficulty of design changes
can also affect opportunity costs. Engineers who are spending a lot
of time fixing old designs could be working on introducing new
products and features - ahead of the competition.

There are also costs associated with inventory and reliability. PLDs
can reduce inventory costs by replacing standard discrete logic
devices. Standard logic has a predefined function and in a typical
design lots of different types have to be purchased and stocked. If the
design is changed then there may be excess stock of superfluous
devices. This issue can be alleviated by using PLDs i.e. you only need
to stock one device and if your design changes you simply reprogram.
By utilising one device instead of many your board reliability will
increase by only picking and placing one device instead of many.
Reliability can also be increased by using the ultra low power
CoolRunner CPLDs i.e. lower heat dissipation and lower power
operation leads to decreased Failures In Time (FIT).

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 17
© Xilinx

1.3 Field Programmable Gate Arrays (FPGAs)

In 1985, a company called Xilinx introduced a completely new idea.
The concept was to combine the user control and time to market of
PLDs with the densities and cost benefits of gate arrays. A lot of
customers liked it - and the FPGA was born. Today Xilinx is still the
number one FPGA vendor in the world!

An FPGA is a regular structure of logic cells or modules and
interconnect which is under the designer’s complete control. This
means the user can design, program and make changes to his circuit
whenever he wants. And with FPGAs now exceeding the 10 million
gate limit (Xilinx Virtex II is the current record holder), the designer
can dream big!

Figure 1.4 FPGA Architecture

With the introduction of the Spartan range of FPGAs we can now
compete with Gate Arrays on all aspects - price, gate and I/O count,

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 18
© Xilinx

performance and cost! The new Spartan IIE will provide up to 300k
gates at a price point that enables Application Specific Standard
Product (ASSP) replacement. For example a Reed Solomon IP Core
implemented in a Spartan II XC2S100 FPGA has an effective cost of
$9.95 whereas the equivalent ASSP would cost around $20.

There are 2 basic types of FPGAs: SRAM-based reprogrammable and
One-time programmable (OTP). These two types of FPGAs differ in
the implementation of the logic cell and the mechanism used to
make connections in the device.

The dominant type of FPGA is SRAM-based and can be
reprogrammed by the user as often as the user chooses. In fact, an
SRAM FPGA is reprogrammed every time it is powered-up because
the FPGA is really a fancy memory chip! (That’s why you need a
serial PROM or system memory with every SRAM FPGA).

Figure 1.5 Digital Logic History

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 19
© Xilinx

In the SRAM logic cell, instead of conventional gates there is instead a
Look Up Table (LUT) which determines the output based on the values
of the inputs. (In the “SRAM logic cell” diagram above you can see 6
different combinations of the 4 inputs that will determine the values of
the output). SRAM bits are also used to make connections.

One-time programmable (OTP) FPGAs use anti-fuses (contrary to
fuses, connections are made not “blown” during programming) to make
permanent connections in the chip and so do not require a SPROM or
other means to download the program to the FPGA. However, every
time you make a design change, you must throw away the chip! The
OTP logic cell is very similar to PLDs with dedicated gates and flip-
flops.

Design Integration

The integration of 74 series standard logic into a low cost CPLD is a
very attractive proposition. Not only do you save Printed Circuit Board
(PCB) area and board layers therefore reducing your total system cost
but you only have to purchase and stock one generic part instead of
upto as many as twenty pre-defined logic devices. In production the
pick and place machine only has to place one part - therefore
speeding up production. Less parts means higher quality and better
Failure In Time (FIT) factor.

By using Xilinx CoolRunner devices (our family of ultra low power parts)
in a design customers can benefit from low power consumption and
reduced thermal emissions. This in turn leads to the reduction of the
use of heat sinks (another cost saving) and a higher reliability end
product.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 20
© Xilinx

Figure 1.6 Basic Logic Definitions

1.4 The Basic Design Process

The availability of design software such as WebPACK ISE has made
it much easier to design with programmable logic. Designs can be
described easily and quickly using either a description language such
as ABEL (Advanced Boolean Expression Language), VHDL (VHSIC
Hardware Description Language), Verilog or via a schematic capture
package.

Schematic capture is the traditional method that designers have used
to specify gate arrays and programmable logic devices. It is a
graphical tool that allows the designer to specify the exact gates he
requires and how he wants them connected. There are 4 basic steps
to using schematic capture.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 21
© Xilinx

Step one : After selecting a specific schematic capture tool and device
library, the designer begins building his circuit by loading the desired
gates from the selected library. He can use any combination of gates
that he needs. A specific vendor and device family library must be
chosen at this time (e.g. Xilinx XCR3256XL) but he doesn’t have to
know what device within that family he will ultimately use with respect
to package and speed.

Step two: Connect the gates together using nets or wires. The
designer has complete control of connecting the gates in whatever
configuration is required for his application.

Step three: The input and output buffers are added and labelled.
These will define the I/O package pins for the device.

Step four: The final step is to generate a netlist.

Figure 1.7 PLD Design Flow

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 22
© Xilinx

The netlist is a text equivalent of the circuit which is generated by
design tools such as a schematic capture program. The netlist is a
compact way for other programs to understand what gates are in the
circuit, how they are connected and the names of the I/O pins.

In the example below, the netlist reflects the actual syntax for the
circuit in the schematic. There is one line for each of the components
and one line for each of the nets. Note that the computer assigns
names to components (G1 to G4) and the nets (N1 to N8). When we
implement this design, it will have input package pins A, B, C, D and
output pins Q, R, S.

EDIF (Electronic Digital Interchange Format) is the industry-wide
standard for netlists although there are many other including vendor-
specific ones such as the Xilinx Netlist Format (XNF).

If you have the design netlist, you have all you need to determine what
the circuit does.

Figure 1.8 Design Specification - Netlist

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 23
© Xilinx

The example on the previous pages are obviously very simplistic. A
more realistic design of 10,000 equivalent gates is shown here.

The typical schematic page contains about 200 gates included the
logic contained with soft macros. Therefore, it would require 50
schematic pages to create a 10,000 gate design! Each page needs to
go through all the steps mentioned previously: adding components,
interconnecting the gates, adding I/Os and generating a netlist! This is
rather time-consuming, especially if you want to design a 20k, 50k or
larger design.

Another inherent problem with using schematic capture is the difficulty
in migrating between vendors and technologies. If you initially create
your 10,000 gate design with FPGA vendor X and then want to migrate
to a gate array, you would have to modify every one of those 50 pages
using the gate array vendor’s component library! There has to be a
better way...

And of course, there is. It’s called High Level Design (HLD),
Behavioural or Hardware Description Language (HDL). For our
purposes, these three terms are essentially the same thing.

The idea is to use a high-level language to describe the circuit in a text
file rather than a graphical low-level gate description. The term
Behavioural is used because in this powerful language, the designer
describes the function or behaviour of the circuit in words rather than
figuring out the appropriate gates needed to create the application.

There are two major flavours of HDL: VHDL and Verilog. Although it’s
not really important for you to know, VHDL is an acronym for “VHSIC
High-level Design Language”. And yes, VHSIC is another acronym
“Very High Speed Integrated Circuit”.

As an example we will design a 16 by 16 multiplier specified with a
schematic and with an HDL file. A multiplier is a regular but complex
arrangement of adders and registers which requires quite a few gates.
 Our example has two 16 bit inputs (A and B) and a 32 bit product

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 24
© Xilinx

output (Y=A*B) - that’s a total of 64 I/Os. This circuit requires
approximately 6,000 equivalent gates.

In the schematic implementation, all the required gates would have to
be loaded, positioned on the page, interconnected, and I/O buffers
added. About 3 days worth of work.

The HDL implementation, which is also 6,000 gates, requires 8 lines of
text and can be done in 3 minutes. This file contains all the
information necessary to define our 16x16 multiplier!

So, as a designer, which method would you choose? In addition to
the tremendous time savings, the HDL method is completely vendor-
independent. That means that this same code could be used to
implement a Xilinx FPGA as an LSI Logic gate array! This opens up
tremendous design possibilities for engineers. For example, what if
you wanted to create a 32X32 multiplier

Figure 1.9 Design Specification – Multiplier

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 25
© Xilinx

Obviously, you would want to modify the work already done for the
smaller multiplier. For the schematic approach, this would entail
making 3 copies of the 30 pages, then figuring out where to edit the 90
pages so that they addressed the larger bus widths. This would
probably require 4 hours of graphical editing. For the HDL
specification, it would be a matter of changing the bus references:
change 15 to 31 in line 2 and 31 to 63 in line 3 (4 seconds)!

HDL File Change Example

Before (16x 16 multiplier):

entity MULT is
port(A,B:in std_logic(15 downto 0);

Y:out std_logic(31 downto 0));
end MULT;

architecture BEHAVE of MULT is
begin

 Y <= A * B;
end BEHAVE;

After (32 x 32 multiplier):

entity MULT is
port(A,B:in std_logic(31 downto 0);

Y:out std_logic(63 downto 0));
end MULT;

architecture BEHAVE of MULT is
begin

Y <= A * B;
end BEHAVE;

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 26
© Xilinx

So HDL is ideal for design re-use, you can share you ‘library’ of parts
with other designers at your company therefore saving and avoid
duplication of effort.
I think you can see now why HDL is the way to design logic circuits!

So, now that we have specified the design in a behavioural description,
how do we convert this into gates, which is what all logic devices are
made of?
The answer is Synthesis. It is the synthesis tool that does the
intensive work of figuring out what gates to use based on the high level
description file provided by the designer. (Using schematic capture,
the designer has to do this all this manually). Since the resulting
netlist is vendor and device family specific, the appropriate vendor
library must be used. Most synthesis tools support a large range of
gate array, FPGA and CPLD device vendors.

In addition, the user can specify optimisation criteria that the
synthesis tool will take into account when selecting the gate-level
selection or Mapping. Some of these options include: optimise the
complete design for the least number of gates, optimise a certain
section of the design for fastest speed, use the best gate configuration
to minimise power, use the FPGA-friendly register rich configuration for
state machines.
The designer can easily experiment with different vendors, device
families and optimisation constraints thus exploring many different
solutions instead of just one with the schematic approach.

To recap, the advantages of high level design & synthesis are many. It
is much simpler and faster to specify your design using HLD. And
much easier to make changes to the design by the designer or
another engineer because of the self-documenting nature of the
language. The designer is relieved from the tedium of selecting and
interconnecting at the gate level. He merely selects the library and
optimisation criteria (e.g. speed, area) and the synthesis tool will
determine the results. The designer can thereby try different design
alternatives and select the best one for the application. In fact, there
is no real practical alternative for designs exceeding 10,000 gates.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 27
© Xilinx

1.5 Intellectual Property (IP) Cores

Intellectual Property (IP) Cores are defined as very complex pre-tested
system-level functions that are used in logic designs to dramatically
shorten development time. The IP Core benefits are:

• Faster Time-to-Market
• Simplifies the development process
• Minimal Design Risk
• Reduces software compile time
• Reduced verification time
• Predictable performance/functionality

IP Cores are similar to vendor-provided soft macros in that they
simplify the design specification step by removing the designer from
gate-level details of commonly used functions. IP Cores differ from
soft macros in that they are generally much larger system-level
functions such as PCI bus interface, DSP filter, PCMCIA interface,
etc. They are extensively tested (and hence rarely free of charge) to
offload the designer from having to verify the IP Core functions himself

1.6 Design Verification

To verify a programmable logic design we will probably use a
simulator, which is a software program to verify the functionality and/or
timing of a circuit

The industry-standard formats used ensure that designs can be re-
used and there is no concerns if a vendors changes their libraries - no
rework is necessary, just a synthesis recompile. Even if the customer
decides to move to a different vendor and/or technology, it is just a
compile away after selecting the new library. It’s even design tool
independent so the designer can try synthesis tools from different
vendors and pick the best results!

It is more common to have cores available in HDL format since that
makes them easier to modify and use with different device vendors.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 28
© Xilinx

After completing the design specification, you need to know if the
circuit actually works as it’s supposed to. That is the purpose of
Design Verification. A simulator is used to well ... simulate the circuit.

You need to provide the design information (via the netlist after
schematic capture or synthesis) and the specific input pattern or Test
Vectors that you want checked. The simulator will take this
information and determine the outputs of the circuit.

Figure 1.10 The PLD Design Flow

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 29
© Xilinx

i. Functional Simulation

At this point in the design flow, we are doing a Functional Simulation
which means we are only checking to see if the circuits gives us the
right combinations of ones and zeros. We will do Timing Simulation a
little later in the design flow.

If there are any problems, the designer goes back to the schematic or
HDL file, makes the changes, re-generates the netlist and then reruns
the simulation. Designers typically spent 50% of the development
time going through this loop until the design works as required.

Using HDL offers an additional advantage when verifying the design.
You can simulate directly from the HDL source file. This by passes
the time-consuming synthesis process that would be required for every
design change iteration. Once the circuit works correctly, we would
need to run the synthesis tool to generate the netlist for the next step
in the design flow - Device Implementation.

ii. Device Implementation

We now have a design netlist that completely describes our design
using the gates for a specific vendor/ device family and it has been
fully verified. It is now time to put this in a chip, referred to as Device
Implementation.

Translate consists of a number of various programs that are used to
import the design netlist and prepare it for layout. The programs will
vary among vendors. Some of the more common programs during
translate include: optimisation, translation to the physical device
elements, device-specific design rule checking (e.g. does the design
exceed the number of clock buffers available in this device). It is
during the stage of the design flow that you will be asked to select the
target device, package, speed grade and any other device-specific
options.

The translate step usually ends with a comprehensive report of the
results of all the programs executed. In addition to warnings and

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 30
© Xilinx

errors, there is usually a listing of device and I/O utilisation, which
helps the designer to determine if he has selected the best device.

iii. Fitting

For CPLDs, the design step is called Fitting to “Fit” the design to the
target device. In the diagram above, a section of the design is fit to the
CPLD. CPLDs are a fixed architecture so the software needs to pick
the gates and interconnect paths that match the circuit. This is usually
a fast process.

The biggest potential problem here is if the designer has previously
assigned the exact locations of the I/O pins, commonly referred to as
Pin Locking. (Most often this is from a previous design iteration and
has now been committed to the printed circuit board layout).
Architectures (like the Xilinx XC9500 & CoolRunner CPLDs) that
support I/O pin locking have a very big advantage. They permit the
designer to keep the original I/O pin placements regardless of the
number of design changes, utilisation or required performance.

Pin locking is very important when using In-System Programming -
ISP. This means that if you layout your PCB to accept a specific pin
out then if you need to change the design you can re-programme
confident that you pin out will stay the same.

iv. Place and Route

For FPGAs, the Place and Route programs are run after Compile.
“Place” is the process of selecting specific modules or logic blocks in
the FPGAs where design gates will reside. “Route” as the name
implies, is the physical routing of the interconnect between the logic
blocks.

Most vendors provide automatic place and route tools so the user does
not have to worry about the intricate details of the device architecture.
Some vendors have tools that allow expert users to manually place
and/or route the most critical parts of their designs and achieve better

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 31
© Xilinx

performance than with the automatic tools. Floorplanner is a form of
such manual tools.

These two programs require the longest time to complete successfully
since it is a very complex task to determine the location of large
designs, ensure they all get connected correctly, and meet the desired
performance. These programs however, can only work well if the
target architecture has sufficient routing for the design. No amount of
fancy coding can compensate for an ill-conceived architecture,
especially if there is not enough routing tracks. If the designer faces
this problem, the most common solution to is to use a larger device.
And he will likely remember the experience the next time he is
selecting a vendor.

A related program is called Timing-Driven Place & Route (TDPR).
This allows users to specify timing criteria that will be used during
device layout.

A Static Timing Analyser is usually part of the vendor’s implementation
software. It provides timing information about paths in the design.
This information is very accurate and can be viewed in many different
ways (e.g. display all paths in the design and rank them from longest
to shortest delay).

In addition, the user at this point can use the detailed layout
information after reformatting, and go back to his simulator of choice
with detailed timing information. This process is called Back-
Annotation and has the advantage of providing the accurate timing as
well as the zeros and ones operation of his design.

In both cases, the timing reflects delays of the logic blocks as well as
the interconnect.

The final implementation step is the Download or Program.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 32
© Xilinx

v. Downloading or Programming

Download generally refers to volatile devices such as SRAM FPGAs.
As the name implies, you download the device configuration
information into the device memory. The Bitstream that is transferred
contains all the information to define the logic and interconnect of the
design and is different for every design. Since SRAM devices lose their
configuration when the power is turned off, the bitstream must be
stored somewhere for a production solution. A common such place is
a serial PROM. There is an associated piece of hardware that
connects from the computer to a board containing the target device.

Program is used to program all non-volatile programmable logic
devices including serial PROMs. Programming performs the same
function as download except that the configuration information is
retained after the power is removed from the device. For antifuse
devices, programming can only be done one per device. (Hence the
term One-Time Programmable, OTP).

Programming of Xilinx CPLDs can be done In-System via JTAG (Joint
Test Advisory Group) or using a conventional device programmer e.g.
Data I/O. JTAG boundary scan – formally known as IEEE/ANSI
standard 1149.1_1190 – is a set of design rules, which facilitate
testing, device programming and debugging at the chip, board and
system levels. In-System programming has the added advantage that
devices can be soldered directly to the PCB, e.g. TQFP surface mount
type devices, and if the design changes do not need to be removed
form the board but simply re-programmed in-system. JTAG stands for
Joint Test Advisory Group and is an industry.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 33
© Xilinx

Figure 1.11 Device Implementation – Download/Program

vi. System Debug

At this point in the design flow, the device is now working but we’re not
done yet. We need to do a System Debug - verify that our device
works in the actual board. This is truly the moment of truth because
any major problems here means the engineer has made a assumption
on the device specification that is incorrect or has not considered
some aspect of the signal required to/from the programmable logic
device. If so, he will then collect data on the problem and go back to
the drawing (or behavioural) board!

Xilinx has the world’s first WebPOWERED programmable logic
devices!

This means we have the first WebFITTER , you can fit your design in
real time at our web site. Simply take your existing design to our

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 34
© Xilinx

WebFITTER webpage - these files can be HDL source code or netlists
- and specify your target device or your key design criteria - speed, low
power etc and then press ‘fit’. You will receive your results moments
later via email, which includes full fitter results, design files and
programming file (JEDEC file).
If you like the results you can then go on to get an on-line price.

You may then like to download your personal copy, which can be
downloaded in modules, so you can decide which parts you need.
Modules include the design environment (Project Navigator), XST
(Xilinx Synthesis tool), ModelSim Xilinx Edition Starter which is a 3rd
party simulator, chip viewer and eventually ECS schematic capture &
VSS.

ChipViewer (a JavaTM utility) graphically represents pin constraints and
assignments. You can also use this tool to graphically view a design
implementation from the chip boundary to the individual macrocell
equations.

Programmable Logic Design Quick Start Hand Book Page 35
© Xilinx

XILINX SOLUTION

Chapter 2 describes the products and services offered by Xilinx to ensure
PLD designs enable time to market advantage, design flexibility and
system future proofing. The Xilinx portfolio includes both CPLD & FPGA
devices, design software, design services & support, and Cores.

2.1 Introduction

Xilinx programmable logic solutions help minimise risks for
manufacturers of electronic equipment by shortening the time required to
develop products and take them to market. Designers can design and
verify their unique circuits in Xilinx programmable devices much faster
than they could than by choosing traditional methods such as mask-
programmed, fixed logic gate arrays. Moreover, because Xilinx devices
are standard parts that need only to be programmed, you are not
required to wait for prototypes or pay large non-recurring engineering
(NRE) costs. Customers incorporate Xilinx programmable logic into
products for a wide range of markets. Those include data processing,
telecommunications, networking, industrial control, instrumentation,
consumer electronics, automotive, defence and aerospace markets.

Leading-edge silicon products, state-of-the-art software solutions and
World-class technical support make up the total solution delivered by
Xilinx. The software component of this solution is critical to the success
of every design project. Xilinx Software Solutions provide powerful tools
which make designing with programmable logic simple. Push button
design flows, integrated on-line help, multimedia tutorials, plus high

 2

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 36
© Xilinx

performance automatic and auto-interactive tools, help designers achieve
optimum results. And the industry's broadest array of programmable
logic technology and EDA integration options deliver unparalleled design
flexibility.

Xilinx is also actively developing breakthrough technology that will enable
the hardware in Xilinx-based systems to be upgraded remotely over any
kind of network including the Internet even after the equipment has been
shipped to a customer. Such Xilinx Online Upgradable Systems would
allow equipment manufacturers to remotely add new features and
capabilities to installed systems or repair problems without having to
physically exchange hardware.

2.2 Devices

Figure 2.2 Xilinx Devices at a Glance

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 37
© Xilinx

2.2.1 Platform FPGAs

The Virtex-II solution is the first embodiment of the Platform FPGA,
once again setting a new benchmark in performance, and offering a
feature set that is unparalleled in the industry.

It's an era where Xilinx leads the way, strengthened by our strategic
alliances with IBM, Wind River Systems, Conexant, RocketChips, The
MathWorks, and other technology leaders.

The Platform FPGA delivers SystemIO™ interfaces to bridge emerging
standards, XtremeDSP™ for unprecedented DSP performance (up to 100
times faster than the leading DSP processor), and will offer Empower!™
processor technology for flexible high-performance system processing
needs.

The Virtex®-II solution is the first embodiment of the Platform FPGA,
once again setting a new benchmark in performance, and offering a
feature set that is unparalleled in the industry.

With densities ranging from 40,000 up to 10 million system gates, the
Virtex-II solution delivers enhanced system memory and lightning –fast
DSP through a flexible IP-Immersion fabric.

Additionally, significant new capabilities address system-level design
issues including flexible system interfaces with signal integrity
(SystemIO™ , DCI), complex system clock management (Digital Clock
Manager), and on-board EMI management (EMIControl™).

Virtex-II solutions are empowered by advanced design tools that drive
time to market advantages through fast design, powerful synthesis,
smart implementation algorithms, and efficient verification capabilities.
Not only does the fabric provide the ability to integrate a variety of soft
IP, but it also has the capability of embedding hard IP cores such as
processors and Gigabit serial I/Os in future Virtex-II families.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 38
© Xilinx

2.2.2 Virtex FPGAs

The Xilinx Virtex™ series was the first line of FPGAs to offer one million
system gates. Introduced in 1998, the Virtex product line fundamentally
redefined programmable logic by expanding the traditional capabilities of
field programmable gate arrays (FPGAs) to include a powerful set of
features that address board level problems for high performance system
designs.

The latest devices in the Virtex-E series, unveiled in 1999, offer more
than three million system gates. The Virtex-EM devices, introduced in
2000 and the first FPGAs to be manufactured using an advanced copper
process, offer additional on chip memory for network switch applications.

Figure 2.3 Platform FPGAs

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 39
© Xilinx

2.2.3 Spartan FPGAs

Xilinx Spartan™ FPGAs are ideal for low-cost, high volume applications
and are targeted as replacements for fixed-logic gate arrays and for
application specific standard products (ASSP) products such as bus
interface chip sets. The are four members of the family Spartan IIE
(1.8V), Spartan II (2.5V), Spartan XL (3.3V) and Spartan (5V) devices.

The Spartan-IIE (1.8V core) family offers some of the most advanced
FPGA technologies available today, including programmable support for
multiple I/O standards (including LVDS, LVPECL & HSTL), on-chip block
RAM and digital delay lock loops for both chip-level and board-level clock
management. In addition, the Spartan-IIE devices provide superior value
by eliminating the need for many simple ASSPs such as phase lock
loops, FIFOs, I/O translators and system bus drivers that in the past
have been necessary to complete a system design.

Figure 2.4 Spartan IIE System Integration

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 40
© Xilinx

Spartan-IIE Architectural Features

Figure 2.4 Spartan IIE Architecture

The Spartan-IIE family leverages the basic feature set of the Virtex-E
architecture in order to offer outstanding value. The basic CLB structure
contains distributed RAM and performs basic logic functions.
The four DLLs are used for clock management and can perform clock de-
skew, clock multiplication, and clock division. Clock de-skew can be
done on an external (board level) or internal (chip level) basis.
The block memory blocks are 4K bits each and can be configured from 1
to 16 bits wide. Each of the two independent ports can be configured for
width independently.

The SelectI/O feature allows many different I/O standards to be
implemented in the areas of chip-to-chip, chip-to-memory, and chip-to-
backplane interfaces

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 41
© Xilinx

Spartan-IIE Block Diagram

Figure 2.5 Spartan IIE Block Diagram

The Spartan-IIE family of Field Programmable Gate Arrays (FPGAs) is
implemented with a regular, flexible, programmable architecture of
Configurable Logic Blocks (CLBs), surrounded by a perimeter of
programmable Input/Output Blocks (IOBs), interconnected by a powerful
hierarchy of versatile routing resources. The architecture also provides
advanced functions such as Block RAM and clock control blocks.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 42
© Xilinx

Spartan-IIE Input/Output Block

Figure 2.6 Spartan IIE Input/Output Block

The Spartan-IIE IOB features inputs and outputs that support 19 I/O
signalling standards, including LVDS, BLVDS, LVPECL, LVCMOS,
HSTL, SSTL, and GTL. These high-speed inputs and outputs are
capable of supporting various state-of-the-art memory and bus interfaces.
The three IOB registers function either as edge-triggered D-type flip-flops
or as level sensitive latches. Each IOB has a clock signal (CLK) shared
by the three registers and independent clock enable (CE) signals for
each register.

In addition to the CLK and CE control signals, the three registers share a
Set/Reset (SR). For each register, this signal can be independently
configured as a synchronous Set, a synchronous Reset, an
asynchronous Preset, or an asynchronous Clear.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 43
© Xilinx

Spartan-IIE Banking of I/O Standards

Figure 2.7 Spartan IIE Banking of I/O Standards

Some of the I/O standards require VCCO and/or VREF voltages. These
voltages externally are connected to device pins that serve groups of
IOBs, called banks. Consequently, restrictions exist about which I/O
standards can be combined within a given bank. Eight I/O banks result
from separating each edge of the FPGA into two banks. Each bank has
multiple VCCO pins, all of which must be connected to the same
voltage. This voltage is determined by the output standards in use.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 44
© Xilinx

Logic Cells

The basic building block of the Spartan-IIE CLB is the logic cell (LC). An
LC includes a four-input function generator, carry logic, and a storage
element. The output from the function generator in each LC drives both
the CLB output and the D input of the flip-flop. Each Spartan-IIE CLB
contains four LCs, organised in two similar slices. In addition to the four
basic LCs, the Spartan-IIE CLB contains logic that combines function
generators to provide functions of five or six inputs. Consequently, when
estimating the number of system gates provided by a given device, each
CLB counts as 4.5 LCs.

Figure 2.8 Spartan IIE Logic Cell

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 45
© Xilinx

Spartan-IIE function generators are implemented as 4-input look-up
tables (LUTs). In addition to operating as a function generator, each LUT
can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs
within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit
synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The
Spartan-IIE LUT can also provide a 16-bit shift register that is ideal for
capturing high-speed or burst-mode data. This SRL16 (Shift Register
LUT) mode can be used to increase the effective number of flip-flops by a
factor of 16. Adding flip-flops enables fast pipelining which are ideal for
DSP applications. The storage elements in the Spartan-IIE slice can be
configured either as edge-triggered D-type flip-flops or as level-sensitive
latches.

Block RAM

Spartan-IIE FPGAs incorporate several large Block SelectRAM+
memories. These complement the distributed SelectRAM+ resources
that provide shallow RAM structures implemented in CLBs. Block
SelectRAM+ memory blocks are organised in columns. All Spartan-II
devices contain two such columns, one along each vertical edge. These
columns extend the full height of the chip. Each memory block is four
CLBs high, and consequently, a Spartan-IIE device 8 CLBs high will
contain 2 memory blocks per column, and a total of 4 blocks.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 46
© Xilinx

Figure 2.9 Spartan IIE on-chip Memory

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 47
© Xilinx

Figure 2.10 Block RAM Applications

Delay-Locked Loop

Associated with each global clock input buffer is a fully digital Delay-
Locked Loop (DLL) that can eliminate skew between the clock input pad
and internal clock input pins throughout the device. Each DLL can drive
two global clock networks. The DLL monitors the input clock and the
distributed clock, and automatically adjusts a clock delay element.
Additional delay is introduced such that clock edges reach internal flip-
flops exactly one clock period after they arrive at the input. This closed-
loop system effectively eliminates clock-distribution delay by ensuring
that clock edges arrive at internal flip-flops in synchronism with clock
edges arriving at the input.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 48
© Xilinx

Figure 2.11 Spartan IIE Clock Management

Figure 2.12 Spartan Family Comparison

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 49
© Xilinx

Configuration
Configuration is the process by which the FPGA is programmed with the
configuration file generated by the Xilinx development system. Spartan-
IIE devices support both serial configuration, using the master/slave
serial and JTAG modes, as well as byte-wide configuration employing
the slave parallel mode.

Figure 2.13 Spartan IIE Family Overview

Figure 2.14 Spartan FPGA Part Numbering Guide

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 50
© Xilinx

Xilinx CPLDs

Currently, Xilinx offers CPLD products in two categories: XC9500 and
CoolRunner. To choose a CPLD that's right for you, review the product
features below to identify the product family that fits your application,
then review the selection considerations to choose the device that best
meets your design criteria.

Product Features:

XC9500 - The XC9500 In-System Programmable (ISP) CPLD families
take complex programmable logic devices to new heights of high-
performance, feature-richness, and flexibility. These families deliver
industry-leading speeds, while giving you the flexibility of enhanced
customer proven pin-locking architecture along with extensive IEEE
Std.1149.1 JTAG boundary scan support. This CPLD family is ideal for
high speed, low cost designs.

CoolRunner - The CoolRunner product families offer extreme low power
making them the leaders in an all new market segment for CPLDs -
portable electronics. With standby current in the low micro amps and
minimal operational power consumption, these parts are ideal for any
application is that is especially power sensitive, for
example, battery powered or portable applications. CoolRunner II
extends the CPLD usage as it offers system level features such as
LVTTL & SSTL, Clocking modes and input hysteresis.

Selection Considerations:

To decide which device best meets your design criteria, take a
minute to jot down your design specs (using the list below as a
criteria reference). Next, go to a specific product family page to get
more detailed information about the device you need.

Density - for each part, an equivalent 'gate count' is given. This is an
estimate of the logic density of the part.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 51
© Xilinx

Number of registers - count up the number of registers you need for
your counters, state machines, registers and latches. The number of
macrocells in the device must be at least this large.

Number of I/O pins - How many inputs and outputs does your design
need?

Speed requirements - What is the fastest combinatorial path in your
design? This will determine the tpd (propagation delay through the device
in nano seconds) of the device. What is the fastest sequential circuit in
your design? This will tell you what fMax (Maximum frequency) you
need.

Package - What electromechanical constraints are you under? Do you
need the smallest ball grid array package possible or can you use a
more ordinary QFP? Or are you prototyping and wish to use a socketed
device, in this case a PLCC package?

Low Power - is your end product battery or solar powered? Does your
design require the lowest power devices possible? Do you have heat
dissipation concerns?

System Level Functions - Does you board have multi-voltage devices?
Do you need to level shift between these devices? Do you need to
square up clock edges? Do you need to interface to memories and
microprocessors?

XC9500 ISP CPLD Overview

The high-performance, low-cost XC9500™ families of Xilinx CPLDs are
targeted for leading-edge systems that require rapid design development,
longer system life, and robust field upgrade capability. The XC9500
families range in density from 36 to 288 macrocells and are available in
2.5-volt (XC9500XV), 3.3-volt (XC9500XL) and 5-volt (XC9500) versions.
These devices support In-System Programming (ISP) which allows
manufacturers to perform unlimited design iterations during the
prototyping phase, extensive system in-board debugging, program and
test during manufacturing, as well as field upgrades. Based upon

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 52
© Xilinx

advanced process technologies, the XC9500 families provide fast,
guaranteed timing, superior pin locking, and a full JTAG compliant
interface. All XC9500 devices have excellent quality and reliability
characteristics with 10,000 program/erase cycles endurance rating and
20 year data retention.

XC9500 5V Family

The XC9500™ In-System Programmable (ISP) CPLD family takes
complex programmable logic devices to new heights of high-
performance, feature-richness, and flexibility. This 5V family delivers
industry-leading speeds, while giving you the flexibility of an enhanced
customer proven pin-locking architecture along with extensive IEEE Std.
1149.1 JTAG boundary scan support. It features six devices ranging from
36 to 288 macrocells with a wide variety of package combinations that
both minimise board space and maintain package footprints as designs
grow or shrink. All I/O pins allow direct
interfacing to both 3 and 5 volt systems, while the latest in compact,
easy-to-use CSP and BGA packaging gives you access to as many as
192 signals.

Flexible Pin-Locking Architecture

The XC9500 devices, in conjunction with our fitter software, give you the
maximum in routeability and flexibility while maintaining high
performance. The architecture is feature rich, including individual p-term
output enables, three global clocks, and more p-terms per output than
any other CPLD. The proven ability of the architecture to adapt to design
changes while maintaining pin assignments (pin-locking) has been
demonstrated in countless real-world customer designs since the
introduction of the XC9500 family. This assured
pin-locking means you can take full advantage of in-system-
programmability and you can easily change at any time, even in the
field.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 53
© Xilinx

Full IEEE 1149.1 JTAG Development and Debugging Support

The JTAG capability of the XC9500 family is the most comprehensive of
any CPLD on the market. It features the standard support including
BYPASS, SAMPLE/PRELOAD, and EXTEST. Additional boundary scan
instructions, not found in any other CPLD, such as INTEST (for device
functional test), HIGHZ (for bypass), and USERCODE (for program
tracking), allow you the maximum debugging capability. The XC9500
family is supported by a wide variety of industry standard third-party
development and debugging tools including Corelis, JTAG Technologies,
and Asset Intertech. These tools allow you to develop boundary scan
test vectors to interactively analyse, test, and debug system failures.
The family is also supported on all major ATE platforms including
Teradyne, Hewlett Packard, and Genrad.

XC9500 Product Overview Table

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 54
© Xilinx

XC9500XL 3.3V Family

The XC9500XL CPLD family is targeted for leading-edge systems that
require rapid design development, longer system life, and robust field
upgrade capability. This 3.3V in-system programmable family provides
unparalleled performance and the highest programming reliability, with
the lowest cost in the industry. The XC9500XL CPLDs also complement
the higher density Xilinx FPGAs to provide a total logic solution, within a
unified development environment. The XC9500XL family is fully
WebPOWERED via its free WebFITTER and WebPACK ISE™ ISE™
software. Family Highlights:

• Lowest cost per macrocell
• State-of-the-art pin-locking architecture
• Highest programming reliability reduces system risk
• Complements Xilinx 3.3V FPGA families

Performance

• 5 ns pin-to-pin speed
• 222 MHz system frequency

Powerful Architecture

• Wide 54-input function blocks
• Up to 90 product-terms per macrocell
• Fast and routable FastCONNECT II switch matrix
• Three global clocks with local inversion
• Individual OE per output, with local inversion

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 55
© Xilinx

Figure 2.15 XC9500XL Block Fan-In

Highest Reliability

• Endurance rating of 10,000 cycles
• Data retention rating of 20 years
• Immune from "ISP Lock-Out" failure mode
• Allows arbitrary mixed-power sequencing and waveforms

Advanced Technology

• 3rd generation, proven CPLD technology
• Mainstream, scalable, high-reliability processing
• Fast in-system programming and erase times

Outperforms All Other 3.3V CPLDs

• Extended data retention supports longer system operating life
• Virtually eliminates in-system programming failures
• Superior pin-locking for lower design risk
• Glitch-free I/O pins during power-up
• Full IEEE 1149.1 (JTAG) ISP and boundary-scan test
• Free WebPOWERED software

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 56
© Xilinx

XC9500XV 2.5V CPLD Family

The XC9500XV 2.5V CPLD family from Xilinx is based upon an advanced
architecture that combines system flexibility and low cost to allow for
faster time-to-market and lower manufacturing and support costs.
Designed to operate with an internal core voltage of 2.5V, the XC9500XV
offers 30% lower power consumption than 3.3V CPLDs, resulting in
lower heat dissipation and increased long-term device reliability. The
XC9500XV silicon plus the powerful WebPOWERED software offers a
valuable logic solution that can't be beat when it comes to cost and
ease-of-use.

High Performance Through Advanced Technology

Manufactured on the latest generation 0.25 process, the new XC9500XV
CPLDs provide the same advanced architectural features and densities
of the 3.3V XC9500XL family, with device offerings of 36-, 72-, 144- and
288-macrocells. High performance version offering pin-to-pin delays as
low as 3.5ns and system frequencies as fast as 275 MHz will be
available later this year. The 2.5V XC9500XV devices also include
optimised support for in-system programming (ISP) through the
industry's most extensive IEEE1149.1 JTAG and IEEE 1532
programming capability which helps to streamline the
manufacturing, testing and programming of CPLD-based electronic
products, including remote field upgrades.

The System Designers' CPLD

The advanced architecture that is employed in the XC9500XV CPLD
allows for easy design integration, thus empowering the designer to fully
concentrate on this system design, and not so much on chip-level
details. The unique features offered in the XC9500XV include a 54-input
block fan-in which contributes to the device's superior pin-locking
capability, built-in input hysteresis for improved noise margin, bus-hold
circuitry for better I/O control, hot-plugging capability to eliminate the
need for power sequencing, and local and global clock control to provide
maximum flexibility.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 57
© Xilinx

XC9500XV & XC9500 XL Product Table

Figure 2.16 XC9500 CPLD Part Numbering System

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 58
© Xilinx

CoolRunner Low Power CPLDs

There are two members to the CoolRunner series, CoolRunner XPLA3
(3.3V) and CoolRunner II (1.8V). We will start by looking at the
CoolRunner XPLA3 devices.

The CoolRunner™ CPLDs combine very low power with high speed, high
density, and high I/O counts in a single device. The CoolRunner 3.3-volt
family range in density from 32 to 512 macrocells. CoolRunner CPLDs
feature Fast Zero Power technology, allowing the devices to draw
virtually no power in standby mode, making them ideal for the fast
growing market for battery operated portable electronic equipment such
as:

• Laptop PCs
• Telephone handsets
• Personal digital assistants
• Electronic games
• Web tablets

These CPLDs also use far less dynamic power during actual operation
compared to conventional CPLDs, an important feature for high
performance, heat sensitive equipment such as telecom switches, video
conferencing systems, simulators, high end testers and emulators.
Figure 2.17 Sense Amplifier vs. CMOS CPLDs

The CoolRunner™ XPLA3 eXtended Programmable Logic Array family of
CPLDs is targeted for low power applications that include portable,

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 59
© Xilinx

handheld, and power sensitive applications. Each member of the XPLA3
family includes Fast Zero Power™ (FZP) design technology that
combines low power AND high speed. With this design technique, the
XPLA3 family offers true pin-to-pin speeds of 5.0 ns, while
simultaneously delivering power that is <100µA (standby) without the
need for special "power down bits" that negatively affect device
performance. By replacing conventional sense amplifier methods for
implementing product terms (a technique that has been used in PLDs
since the bipolar era) with a cascaded chain of pure CMOS gates, the
dynamic power is also substantially lower than any competing CPLD.
CoolRunner devices are the only TotalCMOS PLDs, as they use both a
CMOS process technology and the patented full CMOS FZP design
technique.

Figure 2.18 CPLD Application Trends

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 60
© Xilinx

XPLA3 Architecture

The XPLA3 architecture features a direct input register path, multiple
clocks, JTAG programming, 5 volt tolerant I/Os and a full PLA structure.
These enhancements deliver high speed coupled with the best flexible
logic allocation which results in the ability to make design changes
without changing pin-outs. The XPLA3 architecture includes a pool of 48
product terms that can be allocated to any macrocell in the logic block.
This combination allows logic to be allocated efficiently throughout the
logic block and support as many product terms as needed per
macrocell. In addition, there is no speed penalty for using a variable
number of product terms per macrocell.
The XPLA3 family features also include industry standard IEE 1149.1
JTAG interface through In-System Programming (ISP) and
reprogramming of the device can occur. The XPLA3 CPLD is electrically
reprogrammable using industry standard device programmers from
vendors such as Data I/O, BP Microsystems and SMS.

XPLA3 Architecture

The figure below shows a high-level block diagram of the XPLA3
architecture. The XPLA3 architecture consists of logic blocks that are
inter-connected by a Zero-power Interconnect Array (ZIA). The ZIA is a
virtual cross point switch. Each logic block has 36 inputs from the ZIA
and 16 macrocells. From this point of view, this architecture looks like
many other CPLD architectures. What makes the XPLA3 family unique
is logic allocation inside each logic block and the design technique used
to implement these logic blocks.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 61
© Xilinx

Figure 2.19 CoolRunner XPLA3 Architecture Overview

Logic Block Architecture

The figure below illustrates the logic block architecture. Each logic block
contains a PLA array that generates control terms, each macrocell for
use as asynchronous clocks, resets, presets and output enables. The
other P-terms serve as additional single inputs into each macrocell.
There are eight foldback NAND P-terms that are available for ease of
fitting and pin locking. Sixteen product terms are coupled with the
associated programmable OR gate into the VFM (Variable Function
Multiplexer). The VFM increases logic optimization by implementing any
two input logic function before entering the macrocell.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 62
© Xilinx

Figure 2.20 CoolRunner XPLA3 Logic Block

Each macrocell can support combinatorial or registered inputs, preset
and reset on a per macrocell basis and configurable D, T registers, or
latch function. If a macrocell needs more product terms, it simply gets
the additional product terms from the PLA array.

FoldBack NANDs

XPLA3 utilizes FoldBack NANDs to increase the effective product term
width of a programmable logic device. These structures effectively
provide an inverted product term to be used as a logic input by all of the
local product terms.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 63
© Xilinx

Macrocell Architecture

The figure below shows the architecture of the macrocell used in
the CoolRunner XPLA3. Any macrocell can be reset or pre-set
on power-up.

Figure 2.21 CoolRunner XPLA3 Macrocell Diagram

Each macrocell register can be configured as a D-, T-, or Latch-type flip-
flop, or combinatorial logic function. Each of these flip-flops can be
clocked from any one of eight sources. There are two global
synchronous clocks that are derived from the four external clock pins.
There is one universal clock signal. The clock input signals CT[4:7]
(Local Control Terms) can be individually configured as either a
PRODUCT term or SUM term equation created from the 36 signals
available inside the logic block. There are two feedback paths to the ZIA:
one from the macrocell, and one from the I/O pin. When the I/O pin is
used as an output, the output buffer is enabled, and the macrocell
feedback path can be used to feed back the logic implemented in the
macrocell. When an I/O pin is used as an input, the output buffer will be

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 64
© Xilinx

3-stated and the input signal will be fed into the ZIA via the I/O feedback
path. The logic implemented in the buried macrocell can be fed back to
the ZIA via the macrocell feedback path.
If the macrocell is configured as an input, there is a path to the register
to provide a fast input setup time.

I/O Cell

The OE (Output Enable) Multiplexer has eight possible modes, including
a programmable weak pull-up (WPU) eliminating the need for external
termination on unused I/Os. The I/O Cell is 5V tolerant, and has a single-
bit slew-rate control for reducing EMI generation.
Outputs are 3.3V PCI electrical specification compatible (no internal
clamp diode).

Simple Timing Model

The figure overleaf shows the XPLA3 timing model which has three main
timing parameters, including T PD , T SU , and T CO . In other
architectures, the user may be able to fit the design into the CPLD, but
may not be sure whether system timing requirements can be met until
after the design has been fit into the device. This is because the timing
models of other architectures are very complex and include such things
as timing dependencies on the number of parallel expanders borrowed,
sharable expanders, varying number of X and Y routing channels used,
etc. In the XPLA3 architecture, the user knows up front whether the
design will meet system timing requirements. This is due to the
simplicity of the timing model.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 65
© Xilinx

Figure 2.22 CoolRunner XPLA3 Simple Timing Model

Slew Rate Control

XPLA3 devices have slew rate control for each macrocell output pin. The
user has the option to enable the slew rate control to reduce EMI. The
nominal delay for using this option is 2.0 ns.

XPLA3 Software Tools

Software support for XPLA3 devices is provided by Xilinx
WebPOWERED software products which include WebFITTER and
WebPACK ISE. Both tools are free. In addition, EDIF input for all major
3rd party software flows such as Cadence, Mentor, Viewlogic, Exemplar
and Synopsys are supported.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 66
© Xilinx

Figure 2.23 CoolRunner XPLA3 Summary of Features and Benefits

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 67
© Xilinx

CoolRunner XPLA3 Family

Figure 2.24 CoolRunner XPLA3 Part Number System

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 68
© Xilinx

CoolRunner II

Xilinx CoolRunner™-II CPLDs deliver the high speed and ease of use
associated with the XC9500/XL/XV CPLD family with the extremely low
power versatility of the XPLA3™ family in a single CPLD. This means
that the exact same parts can be used for high-speed data
communications,
computing systems and leading edge portable products, with the added
benefit of In System Programming (ISP). Low power consumption and
high-speed operation are combined into a single family that is easy to
use and cost effective. Xilinx patented Fast Zero Power™ (FZP)
architecture inherently delivers extremely low power performance with
out the need for any special design measures. Clocking techniques and
other power saving features extend the users’ power budget. The design
features are supported
starting with Xilinx ISE 4.1i, WebFITTER, and ISE Web-PACK.

The table show in figure 2.25 overleaf shows the CoolRunner-II CPLD
package offering with corresponding I/O count. All packages are surface
mount, with over half of them being ball-grid technologies. The ultra tiny
packages permit maximum functional capacity in the smallest possible
area. The CMOS technology used in CoolRunner-II CPLDs generates
minimal heat, allowing the use of tiny packages during high-speed
operation. There are at least two densities present in each package with
three in the VQ100 (100-pin 1.0mm QFP) and TQ144 (144-pin 1.4mm
QFP), and in the FT256 (256-ball 1.0mm spacing FLBGA). The FT256 is
particularly important for slim dimensioned portable products with mid- to
high-density logic requirements.

The table also details the distribution of advanced features across the
CoolRunner-II CPLD family. The family has uniform basic features with
advanced features included in densities where they are most useful. For
example, it is very unlikely that four I/O banks are needed on 32 and 64
macrocell parts, but very likely they are for 384 and 512 macrocell parts.
The I/O banks are groupings of I/O pins using any one of a subset of
compatible voltage standards that share the same V CCIO level. The
clock division capability is less efficient on small parts, but more useful
and likely to

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 69
© Xilinx

be used on larger ones. DataGATE, an ability to block and latch inputs
to save power, is valuable in larger parts, but brings marginal benefit to
small parts.

Figure 2.25 CoolRunner II Family Overview

CoolRunner II Architecture Description

CoolRunner-II CPLD is a highly uniform family of fast, low power CPLDs.
The underlying architecture is a traditional CPLD architecture combining
macrocells into Function Blocks (FBs) interconnected with a global
routing matrix, the Xilinx Advanced Interconnect Matrix (AIM). The
Function Blocks use a Programmable Logic Array (PLA) configuration
which allows all product tems to be routed and shared
among any of the macrocells of the FB. Design software can efficiently
synthesise and optimise logic that is subsequently fit to the FBs and
connected with the ability to utilise a very high percentage of device
resources. Design changes are easily and automatically managed by
the software, which exploits the 100% routability of the Programmable

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 70
© Xilinx

Logic Array within each FB. This extremely robust building block delivers
the industry’s highest pin-out retention, under very broad design
conditions. The architecture will be explained by expanding the detail as
we discuss the underlying Function Blocks, logic and interconnect.

The design software automatically manages these device resources so
that users can express their designs using completely generic
constructs without knowledge of these architectural details. More
advanced users can take advantage of these details to more thoroughly
understand the software’s choices and direct its results.

Figure 2.26 below shows the high-level architecture whereby Function
Blocks attach to pins and interconnect to each other within the internal
interconnect matrix. Each FB contains 16 macrocells.

Figure 2.26 CoolRunner II High Level Architecture

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 71
© Xilinx

CoolRunner II Function Block

The CoolRunner II CPLD Function Blocks contain 16 macrocells, with 40
entry sites for signals to arrive for logic creation and connection. The
internal logic engine is a 56 product term PLA. All Function Blocks,
regardless of the number contained in the device, are identical. For a
high-level view of the Function Block. At the high level, it is seen that the
product terms (p-terms) reside in a programmable logic array (PLA). This
structure is extremely flexible, and very robust when compared to fixed
or cascaded product term function blocks. Classic CPLDs typically have
a few product terms available for a high-speed path to a given macrocell.
They rely on capturing unused p-terms from neighbouring macrocells to
expand their product term tally, when needed. The result of this
architecture is a variable timing model and the possibility of stranding
unusable logic within the FB.

The PLA is different - and better. First, any product term can be
attached to any OR gate inside the FB macrocell(s). Second, any logic
function can have as many p-terms as needed attached to it within the
FB, to an upper limit of 56. Third, product terms can be re-used at
multiple macrocell OR functions so that within a FB, a particular logical
product need only be created once, but can be re-used up to 16
times within the FB. Naturally, this works well with the fitting software,
which identifies product terms that can be shared.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 72
© Xilinx

Figure 2.27 Logic Allocation – Typical PAL vs. PLA

The software places as many of those functions as it can into FBs, so it
happens for free. There is no need to force macrocell functions to be
adjacent or any other restriction save residing in the same FB, which is
handled by the software. Functions need not share a common clock,
common set/reset or common output enable to take full advantage of the
PLA. Also, every product term arrives with the same time delay incurred.
There are no cascade time adders for putting more product terms in the
FB. When the FB product term budget is reached, there is a small
interconnect timing penalty to route signals to another FB to continue
creating logic. Xilinx design software handles all this automatically.

CoolRunner II Macrocell

The CoolRunner-II CPLD macrocell is extremely efficient and streamlined
for logic creation. Users can develop sum of product (SOP) logic
expressions that comprise up to 40 inputs and span 56 product terms
within a single function block. The macrocell can further combine the

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 73
© Xilinx

SOP expression into an XOR gate with another single p-term
expression.
The resulting logic expression’s polarity is also selectable. As well, the
logic function can be pure combinatorial or registered, with the storage
element operating selectably as a D or T flip-flop, or transparent latch.
Available at each macrocell are independent selections of global,
function block level or local p-term derived clocks, sets, resets, and
output enables. Each macrocell flip-flop is configurable for either single
edge or DualEDGE clocking, providing either double data rate capability
or the ability to distribute a slower clock (thereby saving power). For
single edge clocking or latching, either clock polarity may be selected
per macrocell. CoolRunner-II macrocell details are shown in figure 2.28.
Note that in figure 2.28, standard logic symbols are used except the
trapezoidal multiplexers have input selection from statically programmed
configuration select lines (not shown). Xilinx application note XAPP376
gives a detailed explanation of how logic is created in the CoolRunner-II
CPLD family.

Figure 2.28 CoolRunner II Macrocell

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 74
© Xilinx

When configured as a D-type flip-flop, each macrocell has an optional
clock enable signal permitting state hold while a clock runs freely. Note
that Control Terms (CT) are available to be shared for key functions
within the FB, and are generally used whenever the exact same logic
function would be repeatedly created at multiple macrocells. The CT
product terms are available for FB clocking (CTC), FB asynchronous
set (CTS), FB asynchronous reset (CTR), and FB output enable (CTE).
Any macrocell flip-flop can be configured as an input register or latch,
which takes in the signal from the macrocell’s I/O pin, and directly drives
the AIM. The macrocell combinatorial functionality is retained for use as
a buried logic node if needed.

Advanced Interconnect Matrix (AIM)

The Advanced Interconnect Matrix is a highly connected low power rapid
switch. The AIM is directed by the software to deliver up to a set of 40
signals to each FB for the creation of logic. Results from all FB
macrocells, as well as, all pin inputs circulate back through the AIM for
additional connection available to all other FBs as dictated by the design
software. The AIM minimises both propagation delay and power as it
makes attachments to the various FBs.

I/O Block

I/O blocks are primarily transceivers. However, each I/O is either
automatically compliant with standard voltage ranges or can be
programmed to become so. In addition to voltage levels, each input can
selectively arrive through Schmitt-trigger inputs. This adds a small time
delay, but substantially reduces noise on that input pin. Hysteresis also
allows easy generation of external clock circuits. The Schmitt-trigger
path is best seen in Figure 2.29. Outputs can be directly driven, 3-stated
or open-drain con-figured. A choice of slow or fast slew rate output signal
is also available.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 75
© Xilinx

Figure 2.29 CoolRunner II I/O Block

Output Banking

CPLDs are widely used as voltage interface translators. To that end, the
output pins are grouped in large banks. The smallest parts are not
banked, so all signals will have the same output swing for 32 and 64
macrocell parts. The medium parts (128 and 256 macrocell) support two
output banks. With two, the outputs will switch to one of two selected
output voltage levels, unless both banks are set to the same voltage. The
larger parts (384 and 512 macrocell) support four output banks split
evenly. They can support groupings of one, two, three or four separate
output voltage levels. This kind of flexibility permits easy interfacing to
3.3V, 2.5V, 1.8V, and 1.5V in a single part.

DataGATE

Low power is the hallmark of CMOS technology. Other CPLD families
use a sense amplifier approach to creating product terms, which always

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 76
© Xilinx

has a residual current component being drawn. This residual current can
be several hundred milliamps, making them unusable in portable
systems. CoolRunner-II CPLDs use standard CMOS methods to create
the CPLD architecture and deliver the corresponding low current
consumption, without doing any special tricks.

However, sometimes designers would like to reduce their system current
even more by selectively disabling circuitry not being used.
The patented DataGATE technology was developed to permit a
straightforward approach to additional power reduction. Each I/O pin has
a series switch that can block the arrival of free running signals that are
not of interest. Signals that serve no use may increase power
consumption, and can be disabled. Users are free to do their design,
then choose sections to participate in the DataGATE function.

Figure 2.30 DataGATE Function in CoolRunner II

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 77
© Xilinx

DataGATE is a logic function that drives an assertion rail threaded
through the medium and high-density CoolRunner-II CPLD parts.
Designers can select inputs to be blocked under the control of the
DataGATE function, effectively blocking controlled switching signals so
they do not drive internal chip capacitances. Output signals that do
not switch, are held by the bus hold feature. Any set of input pins can be
chosen to participate in the DataGATE function.

Figure 2.30 shows how DataGATE basically works. One I/O pin drives
the DataGATE Assertion Rail. It can have any desired logic function on
it. It can be as simple as mapping an input pin to the DataGATE function
or as complex as a counter or state machine output driving the
DataGATE I/O pin through a macrocell. When the DataGATE rail is
asserted low, any pass transistor switch attached to it is blocked. Note
that each pin has the ability to attach to the AIM through a DataGATE
pass transistor, and thus be blocked. A latch automatically captures the
state of the pin when it becomes blocked. The DataGATE Assertion Rail
threads throughout all possible I/Os, so each can participate if chosen.
Note that one macrocell is singled out to drive the rail, and that
macrocell is exposed to the outside world through a pin, for inspection. If
DataGATE is not needed, this pin is an ordinary I/O.

Additional Clock Options: Division, DualEDGE, and CoolCLOCK

Division

Circuitry has been included in the CoolRunner-II CPLD architecture to
divide one externally supplied global clock by standard values. Division
by 2,4,6,8,10, 12, 14 and 16 are the options (see Figure 2.31). This
capability is supplied on the GCK2 pin. The resulting clock produced will
be 50% duty cycle for all possible divisions. Note that a Synchronous
Reset is included to guarantee no runt clocks can get through to the
global clock nets. Note that again, the signal is buffered and driven to
multiple traces with minimal loading and skew.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 78
© Xilinx

Figure 2.31 CoolRunner II Clock Division

DualEDGE

Each macrocell has the ability to double its input clock switching
frequency. Figure 2.28 shows the macrocell flip-flop with the DualEDGE
option (doubled clock) at each macro-cell. The source to double can be
a control term clock, a product term clock or one of the available global
clocks. The ability to switch on both clock edges is vital for a number of
synchronous memory interface applications as well as certain double
data rate I/O applications.

CoolCLOCK

In addition to the DualEDGE flip-flop, additional power savings can be
had by combining the clock division circuitry with the DualEDGE
circuitry. This capability is called CoolCLOCK and is designed to reduce
clocking power within the CPLD. Because the clock net can be an

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 79
© Xilinx

appreciable power drain, the clock power can be reduced by driving the
net at half frequency, then doubling the clock rate using
DualEDGE triggering at the macrocells.

Figure 2.32 shows how CoolCLOCK is created by internal clock
cascading with the divider and DualEDGE flip-flop working together.

Figure 2.32 CoolCLOCK

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 80
© Xilinx

Design Security

Designs can be secured during programming to prevent either accidental
overwriting or pattern theft via ‘readback’. Four independent levels of
security are provided on-chip, eliminating any electrical or visual
detection of configuration patterns. These security bits can be reset only
by erasing the entire device. Additional detail is omitted intentionally.

Figure 2.33 CoolRunner II Device Security

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 81
© Xilinx

CoolRunner II Application Examples

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 82
© Xilinx

CoolRunner II Application Examples – PDA Using CoolCOREs

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 83
© Xilinx

2.2.5 Military & Aerospace

Xilinx is the leading supplier of High-Reliability programmable logic
devices to the aerospace and defence markets. These devices are used
in a wide range of applications such as electronic warfare, missile
guidance and targeting, RADAR, SONAR communications, signal
processing, avionics and satellites. The Xilinx QPRO family of ceramic
and plastic QML designers with advanced programmable logic solutions
for next generation designs. The QPRO family also includes select
products that are radiation hardened for use in satellite and other space
applications.

2.3 Design Tools

Programmable logic design has entered an era where device densities
are measured in the millions of gates, and system performance is
measured in hundreds of MegaHertz (MHz). Given these new system
complexities, the critical success factor in the creation of a design is
your productivity.

Xilinx offers complete electronic design tools which enable the
implementation of designs in Xilinx Programmable Logic devices. These
development solutions combine powerful technology with a flexible, easy
to use graphical interface to help you achieve the best possible designs
within your project schedule, regardless of your experience level.

By focussing our resources on the challenges of productivity, Xilinx
enables you to spend more time on the creative aspects of your design.
This helps you get to market faster, and deliver a more robust product to
your customers.

Engineered for Maximum Speed, Xilinx design tools give you the speed
you need. With version 3.3i solutions, Xilinx place and route times are as
fast as 2 minutes for our 200,000 gate, XC2S200 Spartan™-II device,
and 30 minutes for our 1 million gate, system level XCV1000E Virtex™-E
device. That makes Xilinx development systems the fastest in the
industry.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 84
© Xilinx

And with the push of a button, our timing-driven tools are creating
designs that support I/O speeds in excess of 800 Mbps, and internal
clock frequencies in excess of 300 MHz. It's quick!

Xilinx design tools combine powerful technology with a flexible, easy to
use graphical interface to help you achieve the best possible designs
within your project schedule, regardless of your experience level.

2.4 Xilinx Intellectual Property

Intellectual Property (IP) is defined as very complex pre-tested system-
level functions that are used in logic designs to dramatically shorten
development time. The core benefits are:

• Faster Time-to-Market
• Simplifies the development process
• Minimal Design Risk
• Reduces software compile time
• Reduced verification time
• Predictable performance/functionality

Cores are similar to vendor-provided soft macros in that they simplify the
design specification step by removing the designer from gate-level details
of commonly used functions. Cores differ from soft macros in that they
are generally much larger system-level functions such as, PCI bus
interface, DSP filter, PCMCIA interface, etc. They are extensively tested
(and hence rarely free of charge) to offload the designer from having to
verify the core functions himself. The Xilinx website has a comprehensive
data base of Xilinx (LogiCORE) and 3rd Party (AllianceCORE) verified
& tested cores, these can be found by interrogating the on-line search
facility called the ‘IP Center’.

www.xilinx.com/ipcenter

The CORE Generator tool form Xilinx delivers highly optimised cores
that are compatible with standard design methodologies for Xilinx
FPGAs. This easy-to-use tool generates flexible, high performance cores
with a high degree of predictability and allows customers to download

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 85
© Xilinx

future core offerings from the Xilinx web site. The CORE Generator tool
is provided as part of the Xilinx Foundation iSE software offering.

2.5 System Solutions – Web Based Information Guide

The System Solutions section of the Xilinx website gives information
about where and how Xilinx devices can be used in end applications and
markets. The data ranges from application notes, white papers,
reference designs, example code, industry information and much more.
These System Solutions are updated very regularly so are ideal to book
mark and use for research into new areas or for downloading code or
design solutions to help shorten your design time to market.

The System Solutions sections on the Xilinx website are:

• eSP – Emerging Standards and Protocols
• Xtreme DSP
• Xilinx at Work
• Xilinx Online
• Configuration Solutions
• Processor Central
• Memory Corner
• Wireless Connection
• Networking Connection
• Video & Image Processing
• Computers
• Communications & Networking
• Education Services
• University Program
• Design Consultants
• Technical Support

Each of these web based sections are briefly described on the following
pages.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 86
© Xilinx

2.5.1 eSP - Emerging Standards and Protocols Web Portal

eSP is the industry's first web portal dedicated to providing
comprehensive solutions that accelerate the development of products
based upon emerging standards and protocols. The Web portal features
system block diagrams, reference designs, white papers, industry
standards, glossary of terms and a knowledge centre. The site was
designed to decrease the time spent in the pre-design phase, which has
been found to be increasing and proving to be the new Achilles heel of
the designer. It has been found that this phase of the design cycle
involves visiting seminars, learning new standards, assimilating the data,
analysing the market trends and more. The eSP web portal can save
time by proving up to date information about emerging standards and
protocols, how and where they are used, impartial information about
which one is best for your application and pre-tested reference designs
that can be purchased and used.

www.xilinx.com/esp

Figure 2.5.1 eSP Web Portal Contents

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 87
© Xilinx

2.5.2 Xtreme DSP

Xtreme DSP solutions deliver the performance and flexibility needed
today to quickly build the complex high performance DSP systems of
tomorrow.

Driven by the broadband revolution and explosive growth in wireless,
demand for new digital signal processing featuring extreme performance
and great flexibility is growing faster than conventional DSP can deliver.
The rapid convergence of different technology segments, such as 3G and
4G wireless communication systems, high-bandwidth networking, real-
time video broadcasting, and high-performance computing systems is
producing what analysts call the ”The beginning of a new information
technology era”.

Xilinx, the recognised leader in programmable logic solutions and well
established in all these technology segments, is uniquely positioned to
address this new DSP paradigm now. Xilinx XtremeDSP solutions deliver
the performance and flexibility you need today to quickly build
the complex, high-performance DSP systems of tomorrow.

XtremeDSP can give you computing capabilities approaching 1 Tera
MAC per second (1 trillion multiply and accumulate operations per
second) – more than 100 times faster than conventional DSP solutions.
Using our comprehensive line of industry-leading FPGAs easy-to-use
tools, and optimised algorithms, along with the most comprehensive
technical support, services and third-party programs in the industry,
you’ll have the confidence to tackle even the most challenging
applications using Xilinx XtremeDSP.

2.5.3 Xilinx at Work

Providing complete system solutions, Xilinx at Work allows you to
rapidly develop tomorrow's cutting-edge consumer technology, today.

Xilinx at Work showcases complete solutions of devices, software, and
IP cores/services along with illustration of how Xilinx adds value in

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 88
© Xilinx

designs for particular application segments. The applications range from
IP such as FIR Filters, DES/Triple DES data encryption, QDR SRAM
controllers and PCI solutions to where PLDs fit in Set Top Boxes, Smart
Card Readers & Internet Audio Players (MP3).

2.5.4 Xilinx Online

Access and upgrade hardware from your desktop anywhere in the world
with Internet Reconfigurable Logic (IRL). The mission of the Xilinx
Online program is to enable, identify and promote any Xilinx
programmable system that is connected to a network that can be fixed,
upgraded, or otherwise modified after the system has been deployed in
the field. The design technology for creating Xilinx Online applications is
called Internet Reconfigurable Logic or IRL™. IRL consists of robust PLD
technology, your network connectivity and software design tools. Put
these individual pieces together and network-based hardware
upgradeability becomes a reality.

2.5.5 Configuration Solutions

The Configuration Solutions section of the Xilinx website provides easy to
use pre-engineered solutions to configure all Xilinx FPGAs and CPLDs.
All aspects of configuration, whether it be from a PROM for FPGAs or via
In-system programming for CPLDs is explained. The section also
includes 3rd part boundary scan tools, embedded software solutions, ISP
cables, Automatic Test Equipment (ATE) & programmer support and
configuration storage devices.
The latest edition to the configuration solutions section is the System
ACE configuration series. With the System ACE solution, designers
can easily tap into the benefits of FPGAs, using the built-in System
ACE microprocessor interface to co-ordinate FPGA configuration directly
with system requirements. The initial member of this series, System
ACE CF, will support CompactFlash and one-inch Microdrive disk drive
technology as the storage medium.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 89
© Xilinx

In addition to supporting configuration storage of up to 8 gigabits,
System ACE CF is pre-engineered to support new capabilities that use
the flexibility of reconfigurable FPGAs, including:

• Multi-board configuration from a single source
• Multi-configuration bitstream management
• Configuration updates over a network (IRL)
• Hot-swapping
• Processor core initialisation and software storage
• Encryption

With System ACE CF, designers now have a drop-in configuration
solution with the density and flexibility to handle most FPGA
configuration needs. The added system capabilities allow designers to
use FPGAs in ways that have previously required significant additional
design effort and debug time. In addition, JTAG test and microprocessor
ports allow seamless integration of System ACE into any system.

Figure 2.5.5 System ACE CF flexibility and support

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 90
© Xilinx

Flexibility

With System ACE CF, you can use one design to serve multiple
applications, drastically reducing time to market. For example, rather
than design several similar boards to accommodate different broadcast
standards, you can design one board with multiple configurations stored
in one System ACE CF memory module. Each board can be
"customised" to different standards simply to setting as default the
appropriate configuration stored in the ACE memory module.
You can also store multiple configurations of one design in a single
System ACE CF. For example, during prototyping you can store
operational, test, and debug configurations in the ACE memory module
and select different configurations to prove your design.

To help manage multiple bit streams and integrate FPGA configuration
control with system operation, System ACE has a built-in system
microprocessor port. This port allows a system processor to change
default configuration, trigger reconfiguration, directly reconfigure individual
or groups of FPGAs, access non-configuration files stored in the
CompactFlash module, or use excess CompactFlash memory as
generic system memory.

For customers using embedded processor cores in FPGAs, System
ACE CF offer a 3-in-1 solution for hardware and software management.
System ACE CF can configure the FPGA fabric, initialise the
microprocessor core, and supply the applications software used by the
core as needed. No extra implementation hardware is required.

Density

With unprecedented density ranging to over 8Gb, one System ACE CF
can configure hundreds of FPGAs and replace arrays of configuration
PROMs. You can also store a large number of different designs for a
given array of FPGAs all in the same memory module. Because System
ACE CF uses a standard File Allocation Table (FAT) file system, you
can also store non-bitstream files (e.g., release notes, technical
schematics, user manuals) or use excess memory as standard system
memory.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 91
© Xilinx

Centralisation

System ACE CF was designed to handle a variety of configuration
management needs. Its flexibility and capacity allow one System ACE
CF to configure a board full of FPGAs or multiple boards connected
through a back-plane. This centralisation greatly simplifies configuration
management and upgrades. To change or upgrade the configuration of a
system, you can either remove the memory module and make the
necessary alterations on your desktop PC, adjust the contents in-
system through the microprocessor port, or download a new
configuration over a network using Internet Reconfigurable Logic™.

2.5.6 Processor Central

Processor Central provides the information and resources you need to
get the maximum benefit from our programmable solution joined with
your preferred microprocessor architecture and tool set.

The market for processors in embedded systems is extremely diverse.
No specific processor or particular architecture meets the needs of every
application. Today's Platform FPGA must offer high levels of
performance, flexibility and time-to-market for users of embedded
processors. It should not force users to select one that they are either
unfamiliar with or that requires them to modify their application because
the solutions available are not well suited to the task at hand.

Xilinx is committed to providing solutions that offer you freedom of
choice. The Processor Central website has been created to provide
information and resources to help get the maximum benefit from our
programmable solution joined with your preferred microprocessor
architecture and tool set. This freedom of choice Empowers! you to
create competitive solutions that your customers need.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 92
© Xilinx

2.5.7 Memory Corner

A one-stop memory shop providing solutions for leading-edge memory
technology. The Memory Corner is a one-stop memory shop providing
solutions for leading edge memory technology. The Memory Corner
represents the collaborative efforts of Xilinx and major memory
manufacturers including Cypress Semiconductor Corp., Samsung
Semiconductor, IDT, Micron Technology Inc, NEC Electronics and
Toshiba America Electronic Components Corp. (TAEC). The Memory
Corner includes a comprehensive overview of the latest memory
technologies in the form of application notes, tutorials and reference
designs to help simplify the memory selection process.

Xilinx provides embedded memory solutions as well as memory
controllers for DRAM and SRAM product families.

Figure 2.5.7 Memory Solutions on the Xilinx Website

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 93
© Xilinx

2.5.8 Wireless Connection

The Wireless Connection site provides an overview of the wireless
communications industry. A brief synopsis of most of the defined, and
emerging wireless standards like UMTS, CDMA-2000, etc are included.
The advantages of using Xilinx FPGAs (Field Programmable Gate
Arrays) in this industry are explained and solutions are provided in the
form of application notes, reference designs, or cores.

Figure 2.5.8 Wireless Solutions on the Xilinx Website

2.5.9 Networking Connection

The re-configurability of Xilinx FPGAs (Field Programmable Gate Arrays)
provides designers with the flexibility to implement fast, efficient, and
cost-effective field upgrades. This is especially important in the
networking industry, where existing standards are constantly evolving.
Xilinx FPGA re-configurability allows for system upgrades resulting from
new system features, bug fixes, or evolving standards without an impact
on hardware or board layout. This is impossible in the ASIC world
thereby making the use of FPGAs a cost-effective solution.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 94
© Xilinx

Another advantage of Xilinx FPGAs is that they are in-system re-
configurable enabling remote field upgrades. These features enable the
next generation networking products to be designed more efficiently. The
Virtex family of FPGAs has architectural features that are ideal for
implementing networking systems. The architectural features, such as
serial Shift Register LUTs (Look Up Table) (SRL16), fast adder carry
chains, and efficient multiplier implementations, make the Virtex devices
very efficient at repetitive DSP algorithm implementations and high
performance networking applications. The on-chip dual port RAM can be
used for high-speed buffering of data. These FPGAs also have integrated
support for twenty single-ended and differential I/O standards, enabling
seamless interface to other devices in the system.

2.5.10 Video & Image Processing

Image and video processing environments have very specific logic
requirements. Xilinx is adept at providing cores and expertise to meet the
many DSP needs of these markets, including solutions to address the
high resolution needs for real-time applications. We offer solutions to
meet a wide range of industry standards for image processing,
compression and the integration of multiple content sources. Our
solution set encompasses a vast array of image and video processing
applications prevalent in entertainment and business today, including:
• Video broadcast: DTV and HDTV
• Video conferencing and other multimedia business applications
• Medical image processing
• Industrial imaging, such as robotic vision, pattern recognition, and

security
• 3D graphics, image rendering
• Flight simulators
• Digital photography, film scanning systems, movie editing equipment
• Digital copiers and handlers

2.5.11 Computers

Xilinx offers superior system level solutions to meet the needs for today's
demanding computer applications. Xilinx and its partners deliver building

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 95
© Xilinx

blocks and expertise to meet the spectrum of needs that include fast
time-to-market, portability, high performance processing and throughput,
and most importantly low cost. Spartan FPGAs helps meet the rigid
cost constraints by offering an entire family of devices (up to 40,000
programmable system gates) that are all priced under $10.00 eliminating
the necessity of designing a custom IC. Xilinx delivers system level
solutions for applications including:

• Computer peripherals - storage devices, speciality printers, point of
sale terminals, speciality data capture

• PC add-in cards: peripheral controllers, multimedia, network
interface, algorithm specific or general purpose acceleration cards

2.5.12 Communications & Networking

Xilinx and its partners provide the building blocks and expertise for many
communications applications. The core solutions and consulting
services we provide help customers accelerate time to market, keep
pace with industry standards, and address the industry's demands for
high performance and low power solutions. Xilinx FPGAs have been used
to implement system level building blocks for a variety of applications,
including:

• Wireless: spread spectrum, satellite modems, cellular/PCS base
• stations, military radios and wireless local loop
• Cable: modems, spectrum management and test equipment
• xDSL technologies for high speed data over copper
• Telecommunications
• Networking
• Communications test equipment

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 96
© Xilinx

2.5.13 Education Services
Participation in a Xilinx training course is one of the fastest and most
efficient ways to learn how to design with Xilinx FPGA devices. Hands-on
experience with the latest information and software will allows you to
implement your own design in less time with more effective use of the
devices. Not only design engineers, but also test engineers, component
engineers, CAD engineers, technicians and engineering managers may
want to participate in the training in order to understand the Xilinx
products. Learning services provides a number of courses in a variety or
delivery methods.

Live E-Learning Environment
Choose from more than 70 online classes or modules covering a broad
range of topics and skills involving Xilinx products and services. The one-
hour modules are taught weekly at different times throughout the day to
support world-wide access. Live instructors present the modules in real
time. During each session, you will be able to interact with the instructor
as well as collaborate with online subject experts.

Day Segment Courses
Xilinx continues to develop and instruct traditional day length courses.
Working with various Xilinx product development groups, new courses
are created and made available to reflect the current product releases.
This serves to make training available when you need it and on the
products you need it for. These classes are held in centres around the
world. Specific onsite instruction is also available at your facility. For
more information: www.support.xilinx.com and click on Courses under
Education.

Computer Based Training (CBT)
Xilinx introduced computer based training with Verilog CBT. Verilog CBT
will allow you to learn the Verilog language at your own pace without ever
leaving your office. Verilog CBT is based on the traditional 3-day course,
converted into a computerised self-study program.
For more information please email: eurotraining@xilinx.com or
telephone: +44 (0)870 7350 548 or visit:

www.xilinx.com/support/education-home.htm

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 97
© Xilinx

2.5.14 University Program

The mission of the Xilinx University Program (XUP) is to promote Xilinx
as the technology of choice in the Academic community. The XUP has
provided donations, discounted products, and services to universities
since 1985. Today there are over 1600 universities using Xilinx in class
labs, or about 18% of all of the engineering universities
World-wide.

The resources available to Universities and education include:

Xilinx University Resource Centre

http://xup.msu.edu//

Developed and maintained by the Department of Electrical and Computer
Engineering at Michigan State University, this site is designed
specifically to support and encourage universities using Xilinx products in
the classroom. You will find references and resources regarding
everything from hardware data sheets to tutorials on using the Xilinx
search engine effectively. Vast amounts of time and energy can be
saved by using the resources contained within these pages.

Xilinx Answers Data Base:

http://www.xilinx.com/support/searchtd.htm

Xilinx Student Edition Frequently Asked Questions:

http://university.xilinx.com/univ/xsefaq1.htm

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 98
© Xilinx

2.5.15 Design Consultants

The Xilinx Xperts Program qualifies, develops and supports design
consultants, ensuring that they have superior design skills and the ability
to work successfully with customers. XPERTS is a world wide program
that allows easy access to certified experts in Xilinx devices
architectures, software tools and cores. XPERTS partners also offer
consulting in the areas of HDL synthesis and verification, customisation
and integration, system level designs and team based design
techniques. A listing of the partners in the Xilinx XPERTS program is
located on the Web at:

www.xilinx.com/ipcenter

For more information on Xilinx Products and Services please look in the
Xilinx Data Source CDROM in the back of the book or visit our
website:

www.xilinx.com

2.5.16 Technical Support

Xilinx provides 24 hour access to a set of sophisticated tools for
resolving technical issues via the Web. The Xilinx search utility scans
through thousands of answer records to return solutions for the given
issue. Several problem solver tools are also available for assistance in
specific areas, like configuration or install. A complete suite of one hour
modules is also available at the desktop via live or recorded e-learning.
Lastly, users with a valid service contract can access Xilinx engineers
over the Web by opening a case against a specific issue. For technical
support on the web, log on to:

www.support.xilinx.com

Programmable Logic Design Quick Start Hand Book Page 99
© Xilinx

WebPACK ISE DESIGN SOFTWARE

The WebPACK ISE design software offers a complete design suite based
on the Xilinx Foundation ISE series software. This chapter describes how
to install the software and what each module does.

3.1 Introduction

The individual WebPACK ISE modules give the user the ability to tailor
the design environment to the chosen programmable logic devices to be
implemented and the preferred design flow.

In general, the design flow for FPGAs and CPLDs is the same. The
designer can choose whether to enter the design in schematic form or
HDL such as VHDL or ABEL. The design can also comprise of a mixture
of schematic diagram with embedded HDL symbols. There is also a
facility to create state machines in a diagrammatic form and let the
software tools generate optimised code from a state diagram.

For simulation, WebPACK ISE incorporates a Xilinx version of ModelSim
from Model Technology, referred to as MXE (ModelSim Xilinx Edition).This
powerful simulator is capable of simulating functional VHDL before
synthesis, or simulating after the implementation process for timing
verification. WebPACK ISE offers an easy to use Graphical User Interface
(GUI) to visually create a test pattern. A testbench is then generated and
is compiled into MXE along with the design under test.

The diagram 3.1 overleaf gives an indication of the design flow. The
various modules show the requirements for the device targeted.

 3

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 100
© Xilinx

Figure 3.1 WebPACK Design Flow

Idea

Schemati
c

ECS

HDL
Design
Entry

Simulation
MXE

Testbench
HDL

Bencher

State
Machines
StateCad

Synthesis
Design Entry (XST)

Spartan
Virtex

Implemen
t

FPGA

CoolRunner
XC9500

Fitter
CPLD Fitter

Chip-
Viewer

Program
iMPACT

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 101
© Xilinx

When the design is complete and the designer is happy with the
simulation results, the design is targeted at the required device.

 For FPGAs the implementation process undertakes four key steps.

1. Translate – Interprets the design and runs a ‘design rule check’.
2. Map – Calculates and allocates resources in the targeted device.
3. Place and Route – Places the CLBs in a logical position and utilises

the routing resources.
4. Configure – Creates a programming bitstream.

For CPLDs the implementation process is as follows:

1. Translate – Interprets the design and runs a ‘design rule check’.
2. Fit – Allocates the Macrocell usage
3. Configure – Creates a JED file for programming.
The design is then ready for programming into the device.

3.2 Module Descriptions

i. WebPACK Design Entry

This module must be installed regardless of the device family targeted or
chosen design flow. The design entry module incorporates the Project
Management functionality, the XST synthesis tool and the basis of the
schematic entry package. (Even schematic designs are synthesised
through XST)

ii. WebPACK ECS Library

This module comprises of the schematic library primitives for the XC9500
and CoolRunner CPLDs as well as all supported FPGAs.

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 102
© Xilinx

iii. WebPACK StateCAD

StateCad is an optional tool for graphically entering state machine in
‘bubble diagram’ form. The user simply draws the states, transitions and
outputs. StateCad gives a visual test facility. State machines are
generated in HDL and then simply added to the WebPACK ISE project.

iv. WebPACK MXE Simulator

Modeltech Xilinx Edition (MXE) is the module for both functional and
timing simulation. The necessary libraries are already pre-compiled into
MXE and pre-written scripts seamlessly compile the design to be tested
and its testbench.

For functional simulation the written code is simulated prior to synthesis.
After fitting (CPLDs) or Place And Route (PAR) (FPGAs), the design can
be simulated using the same original testbench as a test fixture, but with
logic and routing delays added.

v. WebPACK HDL Bencher

The HDL Bencher generates the previously mentioned testbenches
allowing the design under test to be stimulated. The HDL bencher reads
the design under test and the user enters signal transitions in a graphical
timing diagram GUI. The expected simulation results can also be entered
allowing the simulator to flag a warning if the simulation did not yield the
expected results.

vi. WebPACK Spartan & Virtex Fitters

These modules give access to the FPGA implementation and synthesis
files. It is required for all Spartan II, Spartan-IIE, Virtex-E and Virtex-II
designs.

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 103
© Xilinx

vii. WebPACK CPLD Fitter

This module gives access to all the XC9500, XC9500XL, XC9500XV,
CoolRunner and CoolRunner-II device files and fitting programs.

viii. WebPACK iMPACT Programmer

For all devices available in WebPACK, the iMPACT Programmer module
allows a device to be programmed in-system. (A JTAG cable must be
connected to the PC’s parallel port.)
For FPGAs the programmer module allows a device to be configured via
the JTAG cable. Xilinx FPGAs are based on a volatile SRAM technology,
so the device will not retain configuration data when power is removed.
Therefore this configuration method is normally only used for test
purposes.

The programmer module also includes a PROM file formatter. The use of
an external PROM is a popular method of storing FPGA configuration
data. The PROM file formatter takes in the bitstream generated by the
implementation phase and provides an MCS or HEX formatted file used by
PROM programmers.

xi. WebPACK ChipViewer

The ChipViewer module can be used to examine the fitting and pin out of
all XC9500 and CoolRunner family CPLDs.

xii. WebPACK Device Support

Device Support
Virtex-II Up to XC2V250
Virtex-E Up to XCV300E
Spartan-IIE Up to XC2S300E
Spartan-II Up to XC2S200
CoolRunner-II All
CoolRunner All
XC9500 Families All

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 104
© Xilinx

3.3 WebPACK CDROM Installation Instructions

As the WebPACK ISE software is modular there may be no need to
install all of the applications. It is however recommended that all modules
are installed from the CD if possible.

1. Insert the CD and using Windows Explorer navigate to the CD drive.

2. Double click on the setup.exe file to start the installation process.
(The installation process may have already started automatically).

The InstallShield Wizard window will appear as shown below:

3. Select from the installation methods shown, either ‘Typical
Installation’ or ‘WebPACK Live’.

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 105
© Xilinx

WebPACK Live – WebPACK ISE is run from the CD with a minimal set of
files loaded onto your hard drive. This method of operation has a 7-day
grace period before CD registration is required. Designers can continue
to run the software from the CD beyond this point if so desired by
obtaining a CD Key. The CD Key is free and available to new and
registered WebPACK users.

The Typical Installation - The desired files are installed to you hard drive.
This requires the user to obtain a CD Key. The CD Key is free and
available to new and registered WebPACK users.

4. After selecting which installation method you require you will see the
following window:

Either enter you unique CD Key from a previous installation obtain a CD
Key from:

www.xilinx.com/sxpresso/webpack.htm

When at the registration web page:
Follow the on-line registration process by selecting New customer please
register from the first on-line screen. Enter the data requested at each

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 106
© Xilinx

stage. You will need to create and enter a memorable user name and
password.

When requested enter your product ID code (from your WebPACK CD
cover – it begins DWB) in the appropriate field.

Your CD Key number will then be sent to you via email (please ensure
that you have carefully entered your correct email address when entering
your details).
Your key number will look something like this:

2504-xxxx-xxxx

To proceed with the installation enter your key number into the
InstallShield Wizard CD Key window and select the ‘next’ button.

5. Select the WebPACK modules you wish to install from the following:

Design Entry, ECS Library, Chip Viewer, CPLD Fitter, FPGA Fitter
(Spartan and/or Virtex device support), CPLD Fitter, iMPACT Programmer
(CPLD and/or FPGA), HDL Bencher, State CAD & ModelSim XE.

The following table gives the minimum install options for each required
flow:

HDL Entry Schematic Simulation State
Machines

FPGA Design Entry
Spartan Fitter
Virtex Fitter
 FPGA Prog.

fpga schem lib hdl_bencher
mxe_simulator

statecad

XC9500 Design Entry
9500 Fitter
CPLD Prog.

cpld schem lib hdl_bencher
mxe_simulator

statecad

CoolRunner Design Entry
CPLD Fitter
CPLD Prog.

cpld schem lib hdl_bencher
mxe_simulator

statecad

If you have enough disk space it is recommended that you install all
modules available.

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 107
© Xilinx

3.3.1 Getting Started

Licenses

The HDL bencher and the MXE simlulator have associated licenses.

HDL Bencher will give limited performance until the application has been
registered. The registration process is automated. When using the
bencher for the first time at the export HDL stage, a window will pop up
asking for registration information (Name, address etc.) The application
creates a host ID which is used to create a password. A password will be
emailed back on application.
An upgrade can also be requested via email. The address is given when
using the bencher.

MXE Simulator is licensed via FlexLM. It requires a soft license file to be
situated on the hard drive pointed to by a set lm_license_file environment
setting.
The license is free and is applied for on line after installation.
A license.dat file will be emailed back. The license is valid for 30 days
after which period it will be necessary to reapply. From the Start menu,
Programs > ModelSimXE 5.xx > Submit License Request.

Design Entry Options

On installation of all the modules design entry options are as follows:

VHDL Abel Verilog ECS External
FPGAs v v v x
XC9500 v v v v v
XPLA v v v v v

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 108
© Xilinx

When starting a project the default location of the project will be:

c:\Xilinx_WebPACK\bin\nt

Create a unique directory on your hard drive for working on projects e.g.
c:\designs. If you need to reinstall WebPACK ISE for future releases it is
recommended that the entire WebPACK ISE directory structure is
deleted.
The external option for design entry refers to a third party design tool
output netlist. In this case an EDIF netlist file is generated externally and
is implemented by the WebFITTER.

Summary

In this chapter the functions of all the WebPACK ISE modules have been
explained along with installation of the modules you require.
You can decide which modules are necessary for your intended design
and install only relevant modules. The next section will take you through
your first PLD design using the powerful features of the WebPACK ISE
software. The example design is a simple traffic light controller which
uses a VHDL counter and a state machine. The design entry process is
identical for FPGAs and CPLDs.

Programmable Logic Design Quick Start Hand Book Page 109
© Xilinx

WebPACK ISE DESIGN ENTRY
4.1 Introduction

This section is a step by step approach to your first simple design. The
following pages are intended to demonstrate the basic PLD design entry
and implementation process.

In this example tutorial a simple traffic light controller is designed in
VHDL. The design is initially targeted at a Spartan-IIE FPGA, but the
same design entry principles can also be applied to both XC9500 and
CoolRunner CPLDs.

CPLD Users
This design entry section also applies to CPLDs. Any additional CPLD
specific information is included in italic font.

 4

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 110
© Xilinx

4.2 Design Entry

Start WebPACK ISE Software
Select Start > Programs > Xilinx WebPACK > WebPACK Project
Navigator

 Create a New Project
Select File -> New Project…

Enter the following into the New Project dialogue box:

Project Name: Traffic
Project Location:c:\Designs\Traffic
Device Family: Spartan2e
Device: 2S100E FT256-5
Synthesis Tool: XST VHDL

Figure 4.2.1 Project Properties Window
CPLD designs
Other device families can be chosen here including CPLDs. For CPLD
designs the synthesis tool can also be ABEL. Even if the flow is intended
to be purely schematic, the schematic diagram will be converted into HDL
and synthesised through the chosen synthesis tool.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 111
© Xilinx

To name your project, right-click on Untitled and select Properties.
Enter Traffic in the Project Title window.

Create a 4-bit Counter Module

Use the Language Templates to create a VHDL module for a counter as

follows:

From the Project menu select New Source .

Select VHDL Module as the source type and give it a file name counter.

Click the Next> button.

Fill out the source definition box as follows and then click Next.

Figure 4.2.2 Define VHDL Source Window

This table automatically generates the entity in the counter VHDL
module.

Click the Finish button to complete the new source file template.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 112
© Xilinx

Notice a file called counter.vhd has been added to the project in the
sources window of the project navigator.

Figure 4.2.3 Counter Window

As the project builds you will notice how WebPACK ISE manages
hierarchy and associated files in the sources window.
Double clicking on any file name in the sources window will allow that file
to be edited in the main text editor.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 113
© Xilinx

Figure 4.2.4 Source in project Window

The Language Template

The language template is an excellent tool to assist in creating HDL
code. It has a range of popular functions such as counters, multiplexers,
decoders and shift registers to assist the designer. There are also
templates for creating common operators (such as ‘IF/THEN’ and ‘FOR’
loops) often associated with software languages.
Language templates are used as a reference. They can be ‘copied and
pasted’ into the design, then customised for their intended purpose.
Usually, it is necessary to change the bus width or names of the signals
or sometimes modify the functionality. In this tutorial the template uses
the signal name ‘clk’ and the design requires the signal to be called
‘clock’. The counter in the template is too complex for this particular
requirement so some sections are deleted.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 114
© Xilinx

Open the Language Templates by clicking the button located on
the far right of the toolbar.
The language template can also be accessed from the Edit > Language

Template menu.

Click and drag the Counter template from the VHDL -> Synthesis

Templates folder and drop it into the counter.vhd architecture between

the begin and end statements. An alternative method is to place your

cursor between the begin and end statements in counter.vhd, select

Counter in the VHDL > Synthesis Templates folder and the click the

Use in counter.vhd button in the Language Templates toolbar.

Close the Language Templates.

Notice the colour coding used in the HDL editor. The green text indicates

a comment. The commented text in this template shows which libraries

are required in the VHDL header and the port definitions required if this

counter was used in its entirety. As the entity has already been created,

this information is not required

Delete the Green Comments

The counter from the template shows a loadable bi-directional counter.

For this design only a 4-bit up counter is required

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 115
© Xilinx

Edit the counter module

• Replace clk with the word ‘clock’ – by using the Edit>Replace

function

• Delete the section

if LOAD='1' then
 COUNT <= DIN;
 else
 if CE='1' then
 if DIR='1' then

• Delete the section
else
 COUNT <= COUNT - 1;
 end if;
 end if;
 end if;

The counter module should now look like figure 4.2.5 overleaf.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 116
© Xilinx

Figure 4.2.5 Counter in VHDL Window

The above design is a typical VHDL module. It consists of library
declarations, an entity and an architecture.

The library declarations are needed to tell the compiler which packages
are required.

The entity declares all the ports associated with the design. Count (3
down to 0) means that count is a 4-bit logic vector. This design has 2
inputs clock and reset, and 1 output, a 4-bit bus called ‘count’

The actual functional description of the design appears after the ‘begin’
statement in the Architecture.

The function of this design increments a signal ‘count’ when clock = 1
and there is an event on the clock. This is resolved into a positive edge.
The reset is asychronous as it is evaluated before the clock action.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 117
© Xilinx

The area still within the Architecture but before the begin statement is
where declarations reside. There will be examples of both component
declarations and signal declarations later in this chapter.
Save the counter module.

The counter module of the design can now be simulated.

With counter.vhd highlighted in the sources window, the process window
will give all the available operations for that particular module. A VHDL file
can be synthesised then implemented through to a bitstream. Normally a
design consists of several lower level modules wired together by a top
level file. This design currently only has one module which can be
simulated.

4.3 Functional Simulation

To simulate a vhdl file it is necessary to first create a testbench.

From the Project menu select New Source as before.

Select Test Bench Waveform as the source type and give it the name
counter_tb.

Figure 4.3.1 New Source Window

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 118
© Xilinx

Click Next.

The testbench is going to simulate the Counter module so, when asked
which source you want to associate the source with, select counter and
click Next. Review the information and click Finish.

The HDL bencher tool reads in the design. The Initialise Timing box sets
the frequency of the system clock, set up requirements and output
delays.

Set Initialise Timing as follows and Click OK:
Clock high time: 50 ns
Clock low time: 50 ns
Input setup time: 10 ns
Output valid delay: 10 ns

Figure 4.3.1 HDL Bencher Window

Note: The blue cells are for entering input stimulus and the yellow cells
are for entering expected response. When entering a stimulus, clicking
the left mouse button on the cell will cycle through available values for
that. Open a pattern text field and button by double clicking on a signals
cell or single clicking on a bus cell, from this pattern window you can
enter a value in the text field or click on the pattern button to open a
pattern wizard.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 119
© Xilinx

Enter the input stimulus as follows:

Set the RESET cell below CLK cycle 1 to a value of ‘1’.

Set the RESET cell below CLK cycle 2 to a value of ‘0’.

Enter the expected response as follows:

Click the yellow COUNT[3:0] cell under CLK cycle 1 and click the

Pattern button to launch the Pattern Wizard.

Set the pattern wizard parameters to count up from 0 to 1111 shown

below.

Click OK to accept the parameters.

Figure 4.3.2 Pattern Wizard Window

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 120
© Xilinx

Your waveform should look like the following:

Figure 4.3.3 Waveform Window

Click to save the waveform.

Close HDL Bencher.

The ISE source window should look like the following:

Figure 4.3.4 New Sources in Project Window

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 121
© Xilinx

Note: To make changes to the waveform used to create the testbench,
double-click counter_tb.tbw.

Now that the testbench is created you can now simulate the design.

Select counter_tb.tbw in the ISE source window. In the Process window

expand Modelsim Simulator by clicking and then right-click Simulate

Behavioural VHDL Model.

Select Properties.

In the ‘Simulation run time’ field type –all, hit OK.

By default MXE will only run for 1us. The –all property runs MXE until the
end of the testbench.

In the Process window double click on Simulate Behavioural VHDL

Model. This will bring up the Model Technology MXE dialog box.

Note: ISE automates the simulation process by creating and launching a
simulation macro file (a .do file, or in this case a .fdo file)). This creates
the design library, compiles the design and testbench source files and
calls a user editable .do file called counter_tb.udo. It also invokes the
simulator, opens all the viewing windows, adds all the signals to the Wave
window, adds all the signals to the List window and runs the simulation for
the time specified by the Simulation Run Time property.

Select ModelSim for the dialog box.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 122
© Xilinx

Maximise the Wave window and from the Zoom menu select Zoom
Full:

Figure 4.3.5 Wave Window
Close the wave window in Figure 4.3.5 and the Modelsim simulator.

Take a snapshot of your design by selecting Project > Take Snapshot

Figure 4.3.6 Project Snapshot Window

Note: Taking a snapshot of your project saves the current state of your
project in a subdirectory with the same name as the Snapshot name so
you can go back to it in the future. You can view project snapshots by
selecting the Sources window Snapshot tab in the Project Navigator.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 123
© Xilinx

If the design was to have only one module (one level of hierarchy), the
implementation phase would be the next step. This design, however, has
a further module to represent a more typical VHDL design.

4.4 State Machine Editor

For the traffic light design, the counter will act as a timer that determines
the transitions of a state machine.
The state machine will run through 4 states, each state controlling a
combination of the three lights.

State1 – Red Light
State2 – Red and Amber Light
State3 – Green Light
State4 – Amber Light

To invoke the state machine editor select New Source from the Project
Menu.

Highlight State Diagram and give it the name stat_mac and click Next,
then finish.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 124
© Xilinx

Figure 4.4.1 New Source Window

Open the State Machine Wizard by clicking in the button

on the main toolbar.

Figure 4.4.2 State Machine Wizard Window

Set the Number of states to 4 and hit Next.

Click Next to build a synchronous state machine.

In the Setup Transitions box, type TIMER in the Next: state transition

field. (Shown in Figure 4.4.3).

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 125
© Xilinx

Figure 4.4.3 Set-up Transitions Window

Click on finish and drop the state machine on the page.

Double Click on the Reset State 0 coloured yellow.

Rename the State Name RED

Hit the Output Wizard button.

This design will have three outputs named RD, AMB and GRN.

In the DOUT Field type RD to declare an output. Set RD to a constant ‘1’

with a registered output as shown in figure 4.4.4 below.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 126
© Xilinx

Figure 4.4.4 Logic Wizard Window

Click on OK and then OK the Edit State box.

In a similar fashion edit the other states.

Rename State1 to REDAMB and use the output wizard to set RD = 1

and a new output AMB equal to 1 with a registered output.

Rename State2 to GREEN and use the output wizard to set a new

output GRN equal to 1 with a registered output.

Rename State3 to AMBER and use the output wizard to set AMB = 1.

The state machine should look like the following.

Note: If you set a signal as registered in the output wizard then select

signal and re-open wizard – it is no longer ticked as registered.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 127
© Xilinx

Figure 4.4.5 State Diagram

Double-Click on the transition line between state RED and state

REDAMB.

In the Edit Condition window, set a transition to occur when timer is

1111 by editing the condition field to TIMER = “1111”. (Don’t forget the

double quotes (“) as these are part of VHDL syntax.).

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 128
© Xilinx

Figure 4.4.6 Edit Conditions Window

Repeat for the other transitions:

Transition REDAMB to GREEN, TIMER = “0100”

Transition GREEN to AMBER, TIMER = “0011”

Transition AMBER to RED, TIMER = “0000”

Hence, the traffic light completes a RED, REDAMB, GREEN, AMBER

once every three cycles of the counter.

Finally, declare the vector TIMER by clicking on the button on the

left side toolbar.

Drop the marker on the page, double click on it and enter the name

TIMER with a width of 4 bits. (Range 3:0)

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 129
© Xilinx

Figure 4.4.7 Edit Vector Window

Click OK.

Your completed state machine drawing should look like the Figure 4.4.8

overleaf.

Figure 4.4.8 State Machine Drawing

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 130
© Xilinx

Click on the button on the top toolbar.

The results window should read ‘Compiled Perfectly’. Close the dialog box

and the generated HDL browser window.

Save and Close StateCad.

The state machine can now be added to the WebPACK ISE project.

In the Project Navigator go to the Project Menu and select Add Source.

In the Add Existing Sources box find STAT_MAC.vhd.

Click on Open and declare it as a VHDL Module.

In the Project Navigator go to the Project Menu and select Add Source.

In the Add Existing Sources box find stat_cad.dia.

The State Diagram will be added to the top of the Sources window.

Double Clicking on this file will open up the state diagram in StateCad.

Figure 4.4.9 Source in Project Window showing Model View

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 131
© Xilinx

4.5 Top Level VHDL Designs

At this point in the flow two modules in the design are connected together
by a top level file. Some designers like to create a top level schematic
diagram whilst others like to keep the design entirely text based.
This section discusses the latter, hence the counter and state machine
will be connected using a top.vhd file.
If you prefer the former, jump directly to the next section, 4.6, entitled
‘Top Level Schematic Designs’. There is the opportunity to do both by
continuing through the tutorial.

Take a snapshot of the project from Project > Take Snapshot

Figure 4.5.1 Project snapshot

From the Project Menu select New Source and create a VHDL Module
called top.

Figure 4.5.2 New Source Window Showing VHDL Module

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 132
© Xilinx

Click on next and fill out the ‘Define VHDL Source’ dialog box as shown

below in figure 4.5.3:

Figure 4.5.3 Define VHDL Source Window

Click on Next, then Finish.

Your new file, top.vhd should look like figure 4.5.4 below:

Figure 4.5.4 New VHDL File

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 133
© Xilinx

In the Sources Window highlight counter.vhd

In the Process Window double click View Instantiation Template from

the Design Entry Utilities section.

Highlight and Copy the Component Declaration and Instantiation:

Figure 4.5.5 Instantiation Template

Close the Instantiation Template as shown in figure 4.5.5.

Paste the Component Declaration and Instantiation into top.vhd.

Re-arrange so that the Component Declaration lies before the begin

statement in the architecture and the instantiation lies between the begin

and end statement. (Use the picture on the next page for assistance).

Highlight stat_mac.vhd in the Sources window and double click View

VHDL Instantiation Template from the Design Utilities section.

Repeat the copy and paste procedure above.

Declare a signal called timer by adding the following line above the

component declarations inside the architecture:

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 134
© Xilinx

signal timer : std_logic_vector(3 downto 0);

Connect up the counter and state machine instantiated modules so your
top.vhd file looks like figure 4.5.6 below:

Figure 4.5.6 top.vhd File

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 135
© Xilinx

Save top.vhd and notice how the Sources window automatically manages
the hierarchy of the whole design with counter.vhd and stat_mac.vhd
becoming sub-modules of top.vhd.

The entire design can now be simulated.
Add a new Test Bench Waveform source as before but this time,
associate it with the module top.

Accept the timing in the Initialise Timing dialog box and click OK.

In the waveform diagram Enter the input stimulus as follows:
Set the RESET cell below CLK cycle 1 to a value of ‘1’.
Click the RESET cell below CLK cycle 2 to reset if low.
Scroll to the 64th clock cycle, right click and select ‘Set end of testbench’.

Figure 4.5.7 Waveform Diagram

Close the Edit Test Bench window.

Click the Save Waveform button.

Close HDL Bencher.

The top_tb.tbw file will now be associated with the top level VHDL
module.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 136
© Xilinx

Simulate Functional VHDL Model in the Process Window.

Figure 4.5.8 Waveform Window

You are now ready to go to the implementation stage.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 137
© Xilinx

4.6 Top Level Schematic Designs

It is sometimes easier to visualise designs when they have a schematic
top level which instantiates the individual blocks of HDL. The blocks can
then be wired together in the traditional method.

For designs in WebPACK ISE, the entire project can be schematic
based.

This section discusses the method of connecting VHDL modules via the
ECS schematic tool.

If you have worked through the previous session you will first need to
revert to the screen shown in Figure 4.6.1 below (two modules with no top
level file). This is achieved by:
At the bottom of Sources window select the Snapshot View Tab.
Highlight Snap2 (two modules), then in the Project menu select Replace
with Snapshot. This action will take you back to the stage in the flow
with only the counter.vhd and the stat_mac.vhd files.
WebPACK ISE will ask if you would like to take another snapshot of the
design in its current state.
Select Yes and create a third snapshot called vhdl top.
The Sources window module view should look like the following figure:

Figure 4.6.1 Sources in Project Window

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 138
© Xilinx

4.6.1 ECS Hints

The ECS schematic capture program is designed around the user
selecting the action they wish to perform followed by the object the action
is to be performed on. In general most Windows applications currently
operate by selecting the object and then the action to be performed on
that object. Understanding this fundamental philosophy of operation
makes learning ECS a much more enjoyable experience.

From the Project Menu select New Source > Schematic and give it
the name top_sch.

Figure 4.6.2 New Source Window showing top_sch

Click Next then Finish.

The ECS Schematic Editor Window will now appear.

Back in the Project Navigator highlight counter.vhd in the sources
window.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 139
© Xilinx

In the process window double click on ‘Create Schematic Symbol’
from the Design Entry Utilities Section. This will create a schematic
symbol and add it to the library in the Schematic Editor.

Create another symbol this time for the state machine by highlighting
stat_mac.vhd and double clicking on Create Schematic Symbol.

Returning to the Schematic editor, the Drawing Toolbar is permenantly
located on the right hand side of the ECS page.

Add the counter and state machine by clicking on the new library in the
Categories window in the top right of the ECS page, then selecting
counter. Move the cursor over the sheet and drop the counter symbol by
clicking where it should be placed.
Move the cursor back into the Categories window and place the
stat_mac symbol on the sheet.

Zoom in using the button so your window looks like the following:

Figure 4.6.3 Close Up of Counter and State Machine Symbols

Select the Add Wire tool from the Drawing Toolbar

Note: Click once on the symbol pin, once at each vertex and once on the
destination pin to add a wire between two pins. ECS will let the user
know that a net can be attached to a port by highlighting it with a red
square.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 140
© Xilinx

Note: To add a hanging wire click on the symbol pin to start the wire,
once at each vertex and then double-click at the location you want the
wire to terminate.

Wire up the counter and state machine as shown below in figure 4.6.4:

Figure 4.6.4 Counter and State Machine symbols with wire.

Select the Add Net Names tool from the Drawing Toolbar. Type
clock (notice that the text appears in the window in the top left of the
ECS page) and then place the net name on the end of the clock wire.

Note: To add net names to wires that will be connected to your
FPGA/CPLD I/Os, place the net name on the end of the hanging wire.

Finish adding net names so your schematic looks similar to the
following figure:

Figure 4.6.6 More Net Names

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 141
© Xilinx

ECS recognises that count(3:0) and TIMER(3:0) are buses so connects
them together with a bus rather than a single net.

I/O Markers

Select the Add I/O Marker tool from the Drawing Toolbar.

With the Input type selected, click and drag around all the inputs that

you want to add input markers to.

Repeat for the outputs but select Output type.

Your completed schematic should look like the following figure, 4.6.7:

Figure 4.6.7 Adding I/O markers

Save the design and exit the schematic editor.

Note: In the Design Entry utilities you can view the VHDL created from
the schematic when top_sch is selected in the Sources window. The
synthesis tool actually works from this file.

The entire design can now be simulated.

Highlight top_sch.sch in the sources window

Add a new Test Bench Wavefrom source by right clicking on top_sch.sch
and selecting New Source. Call this source top_sch_tb and associate it
with top.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 142
© Xilinx

Accept the timing in the Initialise Timing dialog box and click OK.

In the waveform diagram Enter the input stimulus as follows:

Set the RESET cell below CLK cycle 1 to a value of ‘1’.

Click the RESET cell below CLK cycle 2 to reset it low.

Go to the 64th clock cycle, right click and select ‘Set end of testbench’.

Figure 4.6.8 Waveform Diagram

Close the Edit Test Bench window.

Click the Save Waveform button.

Close HDL Bencher.

With Top_sch_tb.tbw selected in the sources window expand

ModelSim Simulator and double click Simulate Behavioral VHDL

Model in the Process Window.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 143
© Xilinx

Figure 4.6.9 ModelSim Simulation Window

You are now ready to go to the implementation stage.

Summary

This section covered the following topics

• Hierarchical VHDL structure and simple coding example

• Test Bench Generation

• Functional Simulation

• The State Machine Editor

• ECS Schematic Capture

The next Chapter discusses the Synthesis and implementation process

for FPGAs. CPLD users may wish to skip the next chapter. For those

intending to target a CPLD, the Constraints Editor and Translate

information may be of interest.

Programmable Logic Design Quick Start Hand Book Page 144
© Xilinx

IMPLEMENTING FPGAs
5.1 Introduction

After the design has been successfully simulated the synthesis stage
converts the text based design into an NGC netlist file. The netlist is a
non-readable file that describes the actual circuit to be implemented at a
very low level.

The implementation phase uses the netlist, and normally a ‘constraints
file’ to recreate the design using the available resources within the
FPGA. Constraints may be physical or timing and are commonly used
for setting the required frequency of the design or declaring the required
pin-out.

The first step is translate. The translate step checks the design and
ensures the netlist is consistent with the chosen architecture. Translate
also checks the user constraints file (UCF) for any inconsistencies. In
effect, this stage prepares the synthesised design for use within an
FPGA.

The Map stage distributes the design to the resources in the FPGA.
Obviously, if the design is too big for the chosen device the map process
will not be able to complete its job.

Map also uses the UCF file to understand timing and may sometimes
decide to actually add further logic (replication) in order to meet the given
timing requirements. Map has the ability to ‘shuffle’ the design around
look up tables to create the best possible implementation for the design.
This whole process is automatic and requires little user input.

 5

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 145
© Xilinx

The Place And Route (PAR) stage works with the allocated configurable
logic blocks (CLBs) and chooses the best location for each block. For a
fast logic path it makes sense to place relevant CLBs next to each other
purely to minimise the path length. The routing resources are then
allocated to each connection, again using careful selection of the best
possible routing types. E.g. if a signal is needed for many areas of the
design the Place and Route tool would use a ‘longline’ to span the chip
with minimal delay or skew.

At this point it is good practice to re-simulate. As all the logic delays
added by the LUTs and Flip Flops are now known as well as the routing
delays, MXE can use this information for timing simulation.

Finally a program called ‘bitgen’ takes the output of Place and Route and
creates a programming bitstream. Whilst developing a design it may not
be necessary to create a bit file on every implementation as the designer
may just need to ensure a particular portion of the design passes any
timing verification.

The steps of implementation must be carried out in this order. The
WebPACK ISE software will automatically perform the steps required if a
particular step is selected. E.g. If the design has only just been
functionally simulated and the designer then decides to do a timing
simulation, WebPACK ISE will automatically Synthesise, Translate,
Map and ‘PAR’ the design. It will then generate the timing information
before it opens MXE and gives the timing simulation results.

The rest of this chapter demonstrates each step required to successfully
implement the Traffic Light design in the previous chapter.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 146
© Xilinx

5.2 Synthesis

The XST synthesis tool will only attempt to synthesis the file highlighted
in the sources window. In the traffic light design top.vhd (for VHDL
designs) or top_sch (for schematic designs) instantiates two lower level
blocks, stat_mac and counter.
The synthesis tool recognises all the lower level blocks used in the top
level code and synthesises them all together to create a single
bitstream.

In the Sources window ensure top.vhd (top_sch for schematic flows) is
highlighted.
In the Process window expand the Synthesis sub-section by clicking on
the + next to Synthesize.
You can now check your design by double clicking on Check Syntax.
Ensure any errors in your code are corrected before you continue. If the
syntax check is OK a tick will appear.

The design should be OK because both the HDL Bencher and MXE have
already checked for syntax errors. (It is useful, when writing code, to
periodically check your design for any mistakes using this feature).

Figure 5.2.1 Process Window showing Check Syntax

Right Click on Synthesize and select Properties.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 147
© Xilinx

A window appears allowing the user to influence the way in which the
design is interpreted.
The help feature will explain each of the options in each tab.
Click on the HDL options Tab.

The Finite State Machine (FSM) encoding algorithm option looks for
state machines and determines the best method of optimising.
For FPGAs state machines are usually ‘one hot’ encoded. This is due to
the abundance of flip-flops in FPGA architectures. A ‘one hot’ encoded
state machine will use one flip-flop per state. Although this may seem
wasteful, the next state logic is reduced and the design is likely to run
much faster. Leave the setting on ‘auto’ to achieve this fast one hot
encoding.

In the Xilinx Specific Options tab ensure the ‘Add IO Buffers’ box is
ticked. The IO buffers will be attached to all the port names in the top
level entity of the design.

Clicking on help in each tab demonstrates the complex issue of
synthesis and how the final result could change. The synthesis tool will
never alter the function of the design but it has a huge influence on how
the design will perform in the targeted device.

OK the Process Properties window and double click on Synthesize.

When the synthesis is complete a green tick appears next to
Synthesize. Double Click on View Synthesis Report.

The first section of the report just summarises the synthesis settings.
Each entity in the design is then compiled and analysed.
The next section in the report gives the synthesis details and documents
how the design has been interpreted.
It can be seen that the state machine is one hot encoded as each state
name (red, amber, redamb and green) has been assigned its own 1 bit
register. When synthesis chooses to use primitive macros it is known as
inference. As registered outputs were selected in the state machine,
three further registers have been inferred.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 148
© Xilinx

Figure 5.2.2 Extract of Synthesis Report

The final results section shows the resources used within the FPGA.

Figure 5.2.3 Resource Report

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 149
© Xilinx

5.3 Constraints Editor

To get the ultimate performance from the device it is necessary to tell
the implementation tools what and where performance is required. This
design is particularly slow and timing constraints are unnecessary.
Constrains can also be physical and pin locking is a physical constraint.
For this design, assume the specification for clock frequency is 100MHz
and the pin out has been pre determined to that of a Spartan-IIE pre
designed board.

In the Process window expand the Design Entry Utilities section then
expand the User Constraints sub section.

Figure 5.3.2 Process Window showing User Constraints

Double click on Edit Implementation Constraints File.

Notice the Translate step in the Implement Design section runs
automatically. This is because the implementation stage must see the
netlist before it can offer the user the chance to constrain sections of the
design. When ‘Translate’ has completed the Constraints Editor Opens.

There is one global net in the design, this is the clock. Translate
detected the clock assigned it to the global tab.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 150
© Xilinx

Double Click in Period field.
Give the clock a Period Constraint of 10ns with a 50% duty cycle as
follows.

Figure 5.3.2 Clock Period Editor Window

A period constraint ensures the internal paths stating and ending at
synchronous points (Flip-Flop, Ram, Latch) have a logic delay less than
10ns.

OK the clock period and hit the Ports tab
The ports section lists all the IO in the design. The location field sets
which pin on the device the signal will connect to.

Double click in the location field for amber_light. Then, in the location
dialogue box, type G16. (If a non-Ball Grid package is used, such as a
PQ208, the syntax is slightly different. The correct syntax for each
package can be found in the online datasheet).

Repeat for the other outputs, the Clock and Reset input.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 151
© Xilinx

amber_light G16

Clock T9

green_light G15

red_light H16

Reset H13

Highlight the three outputs ‘red_light’, ‘green_light’ and ‘amber_light’
using ctrl select.

Figure 5.3.3 Constraints Editor – Create Group

In the Group Name field type lights and then hit Create Group.

In the Select Group box select lights and hit the Clock to Pad button.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 152
© Xilinx

In the clock to pad dialogue box set the time requirement to 15ns relative
to the clock. (There is only one clock but in some designs there may be
more).

Figure 5.3.4 Clock to Pad Dialogue Box

Hit OK and notice that the clock to pad fields have been filled in
automatically. Also notice that the User Constraints File (UCF)
generated has appeared in the UCF constraints tab at the bottom of the
screen. The UCF file should look similar to the following:

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 153
© Xilinx

Save the Constraints Editor session.

Translate must be re-run so the new constraints can be read. OK the
‘run translate’ window and exit the constraints editor and hit reset in
the notice window.

Click on the + next to Implement Design in the Process window.

Figure 5.3.5 Design Process Window

The implementation steps are now visible. The green tick next to
translate indicates this step has completed once before.

A right Click on each step allows the user to edit the properties for that
particular step. The properties for all the steps can be edited by right
clicking on Implement Design. There is a tab for each step.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 154
© Xilinx

Figure 5.3.6 Process Properties

The help button will explain the operation of each field.
Implement the design by double clicking on Implement Design. (Each
stage could be run separately if required).

When there is a green tick next to Translate, Map and Place and
Route the design has completed the implementation stage. For a ‘post
route’ timing report manually run the Generate Post-Route Static
Timing section.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 155
© Xilinx

Figure 5.3.7 Generate Post-Route Timing

5.4 Reports

Each of the stages has its own report. Clicking on the + next to each
stage lists the reports available. The various reports available are as
follows:

i. Translate Report – Shows any errors in the design or the UCF.

ii. Map Report – Confirms the resources used within the device. A
detailed map report can be chosen in the Properties for map. The
detailed map report describes trimmed and merged logic. It will also
describe exactly where each portion of the design is located in the
actual device.

iii. Post-Map Static Timing Report - Shows the logic delays only (no
routing) covered by the timing constraints. This design has two timing
constraints, the clock period and the ‘clock to out’ time of the three
lights. If the logic only delays don’t meet the timing constraints the
additional delay added by routing will only add to the problem.
If there was no routing delay these traffic lights would run at 216 MHz!!

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 156
© Xilinx

iv. Place and Route Report – Gives a step by step progress report.
The place and route tool must be aware of timing requirements. It will list
the given constraints and report how comfortably the design fell within or
how much it failed the constraints.

v. Asynchronous Delay Report – is concerned with the worst path
delays in the design, both logic and routing.

vi. Pad Report – Displays the final pin out of the design with information
regarding the drive strength and signalling standard.

vii. Post Place and Route Static Timing Report – Adds the routing
delays. It can now be seen that the max frequency of the clock has
dropped to 135MHz.

WebPACK has additional tools for complex timing analysis and floor
planning. Neither of these tools are covered in this introductory booklet.

5.5 Timing Simulation

The process of timing simulation is very similar to the functional method.

With top_tb.tbw or (top_sch_tb.tbw for schematic flow) selected in the
sources window, expand the Modelsim Simulator section in the
Process window and rightclick on Simulate Post-Place and Route
VHDL model.

Select Properties and in the Simulation Run Time field type ‘all’.

Click OK then double click on Simulate Post Route VHDL model

MXE opens but this time a different script file is implemented and the
post route VHDL file (time_sim.vhd) is compiled. Time_sim.vhd is a very
low level VHDL file generated by the Implementation tools. It references
the resources within the FPGA and takes timing information from a
separate file.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 157
© Xilinx

Use the Zoom features and Cursors to measure the added timing
delays.

Figure 5.5.1 Simulation Window showing Timing

5.6 Configuration

Right click on Generate Programming file and then click on
Properties. Under the Startup Options tab, ensure that the Start-Up
clock is set to JTAG Clock by selecting JTAG Clock from the drop down
menu.

Double click on Generate Programming file.

This operation creates a .bit file which can be used by the iMPACT
programmer to configure a device.

Expand the Generate Programming File tools sub section.
Double Click on Configure Device (iMPACT).

A DLC5 Parallel JTAG cable or a MultiLINX cable is required to
configure the device from the iMPACT Programmer. Ensure the cable is

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 158
© Xilinx

plugged in to the computer and the flying leads are connected properly
to the device and power supply.

Cable Device on Board
Vcc 5v, 3.3v or 2.5v
GND GND
TDI TDI Pin

TDO TDO Pin
TMS TMS Pin
TCLK TCLK Pin

Right click in the top half of the iMPACT window and select Add Xilinx
Device. Browse to the location of the project (c:\designs\traffic) and
change the file type to .bit.

Open top.bit (top_sch.bit for schematic designs). The iMPACT
Programmer has drawn a picture of the programming Chain. Click on
the picture of the device.

From the Operations Menu select Program.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 159
© Xilinx

Summary

This chapter has taken the VHDL or Schematic design through to a

working physical device. The steps discussed were:

• Synthesis and Synthesis report

• Timing and Physical Constraints using the Constraints Editor

• The Reports Generated throughout the Implementation flow

• Timing Simulation

• Creating and Downloading a bitstream.

The next chapter details a similar process but this time a CoolRunner

CPLD is targeted rather than a Spartan-IIE FPGA. FPGA users may

wish to skip the next chapter.

Programmable Logic Design Quick Start Hand Book Page 160
© Xilinx

IMPLEMENTING CPLDs
6.1 Introduction

After the design has been successfully simulated the synthesis stage
converts the text based HDL design into an NGC netlist file. The netlist
is a non-readable file that describes the actual circuit to be implemented
at a very low level.

The implementation phase uses the netlist, and normally a constraints
file to recreate the design using the available Macrocells within the
CPLD. Constraints may be physical or timing and are commonly used
for setting the required frequency of the design or declaring the required
pin-out.

Obviously, if the design is too big for the chosen device the fitter will not
be able to complete its job.

The fitter also uses the UCF file to understand timing and may
sometimes decide to change the actual design.
For example, sometimes the Fitter will change the D-Type flip-flops in
the design to Toggle Type or T-Type registers. It all depends on how well
the design converts into product terms.

Once the fitter has completed it is good practice to re-simulate. As all
the logic delays added by the macrocells, switch matrix and flip flops
are known, MXE can use information for timing simulation.

 6

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 161
© Xilinx

The fitter creates a JED file which is used to program the device either
on the board via a Parallel cable or using programming equipment.

The steps of implementation must be carried out in this order
(Synthesise, Fit, Timing Simulate, Program). The WebPACK ISE
software will automatically perform the steps required if a particular step
is selected. E.g. if the design has only just been functionally simulated
and the designer then decides to do a timing simulation, WebPACK ISE
will automatically Synthesise and Fit. It will then generate the timing
information before it opens MXE and gives the timing simulation results.

The rest of this chapter demonstrates each step required to successfully
implement the Traffic Light design in the previous chapter but now
targeting a CoolRunner XPLA3 low power CPLD.

A Spartan-IIE FPGA was chosen at the start of this tutorial it must now
be changed to an XPLA3 CPLD. The project can be changed at any
time to any device BUT, when a device family, type, package of speed
grade is changed, the design must be re-synthesised.

Double click on xc2s100e-7FT256 – XST VHDL in the Sources Window
shown below in figure 6.1.1.

Figure 6.1.1 Sources in Project Window

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 162
© Xilinx

Change the Device Family to Xilinx XPLA3 CPLDs
In the device field Select XCR3256XL CS280
Click on OK.

The Project, originally targeted at a Spartan-IIE FPGA is now targeting a
Xilinx CoolRunner CPLD. The Green ticks in the process window have
now disappeared indicating that the design must be re-synthesised and
re-implemented.

6.2 Synthesis

The XST synthesis tool will only attempt to synthesise the file
highlighted in the sources window. In the traffic light design top.vhd (for
VHDL designs) or top_sch (for schematic designs) instantiates two
lower level blocks, stat_mac and counter.

The synthesis tool recognises all the lower level blocks used in the top
level code and synthesises them all together to create a single netlist.

In the Sources window ensure top.vhd (top_sch for schematic flows) is
highlighted.

In the Process window expand the Synthesis sub-section by clicking on
the + next to Synthesize.

You can now check your design by double clicking on Check Syntax.
Ensure any errors in your code are corrected before you continue. If the
syntax check is OK a tick will appear (as shown in figure 6.2.1).
The design should be OK because both the Bencher and MXE have
already checked for syntax errors. (It is useful, when writing code, to
periodically check your design for any mistakes using this feature).

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 163
© Xilinx

Figure 6.2.1 Processes Window Showing Check Syntax has
Completed Successfully

Right Click on Synthesize and select Properties.

A window appears allowing the user to influence the way in which the
design is interpreted.

The Help feature will explain each of the options in each tab.

Click on the HDL options Tab.

In the Xilinx Specific Options tab ensure the ‘Add IO Buffers’ box is
ticked. The IO buffers will be attached to all the port names in the top
level entity of the design.

Clicking on help in each tab demonstrates the complex issue of
synthesis and how the final result could change. The synthesis tool will
never alter the function of the design but it has a huge influence on how
the design will perform in the targeted device.

OK the Process Properties window and double click on Synthesize.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 164
© Xilinx

6.3 The Constraints File

To get the ultimate performance from the device it is necessary to tell
the implementation tools what and where performance is required. The
requirement for design is particularly slow and timing constraints are
unnecessary.
Constrains can also be physical and pin locking is a physical constraint.
For this design, assume the specification for clock frequency is 100MHz
and the pin out has been pre-determined to that of a CoolRunner pre-
designed board.

In the Process window expand the Design Entry Utilities section then
expand the User Constraints sub section.

Figure 6.3.1 Process window showing synthesised design

Double click on Edit Implementation Constraints File shown above in
Figure 6.3.1.

The constraints for the design are entered in the text editor.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 165
© Xilinx

The PERIOD constraint attached to the clock informs the fitter that the
logic delay between synchronous points (flip-flops) can be a maximum of
10ns.
The LOC constraint tells the fitter which pins on the device are to be
used for a particular signal.

Figure 6.3.2 UCF File

Type in the constraints above shown in figure 6.3.2.

Save the Constraints file session. Select Reset so that the changes in
the UCF will be read.

Click on the + next to Implement Design in the Process window.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 166
© Xilinx

Figure 6.3.3 Process Window Showing Implement Design

The implementation sub-sections are now visible.

A Right Click on Implement Design allows the user to edit the
properties for each particular step.

Figure 6.3.4 Process Properties – Implement Design

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 167
© Xilinx

The Help button will explain the operation of each field.

The UCF will automatically be read by the tools. It is possible to
navigate to a different UCF in the Implementation User Conatraints
File window

Implement the design by double clicking on Implement Design. When
there is a green tick next to Implement Design the design has
completed the implementation stage. For timing report manually run the
Timing Report section.

Note: A green tick means that the design ran through without any
warnings. A yellow exclamation may mean that there is a warning in one
of the reports. A common warning, that can be safely ignored in CPLD
designs, is that an “fpga_don’t_touch” attribute has been applied to an
instance. If the design procedure outlined in this example has been
followed, there should be no errors or warnings.

6.4 CPLD Reports

The are two reports available detailing the fitting results and the
associated timing of the design. These are:

i. Fitter Report – An XCR3256XL has 16 function blocks of which only 3
have been used in this design. The design could be packed into a single
function block but the chosen IO pins dictate which macrocells, hence
which function blocks are utilised.
The first section of the report gives a summary of the total resources
available in the device (256 Macrocells, 156 IO pins etc), and how much
is used by the design. This information is then broken down into each
individual function block.
The Partition Summary looks into each function block and shows which
macrocell is used to generate the signals on the external pins.
The final section gives detailed information regarding the actual Boolean
equations implemented. A ‘.D’ indicates the logical input to a D type flip
flop. The ‘.T’ indicates a toggle flip flop provided a better implementation.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 168
© Xilinx

ii. Timing Report – A great feature of CPLDs is the deterministic timing
as a fixed delay exists per macrocell. The Timing report is able to give
the exact propagation delays, set up times and clock to out times.
These values are displayed in the first section of the timing report you
will have created.

The next section lists the longest set up time, cycle time (logic delay
between synchronous points as constrained by the PERIOD constraint)
and clock to out time.
The set up and clock to out times don’t strictly effect the performance of
the design. These parameter limitations are dependent on the upstream
and downstream devices on the board.

The cycle time is the maximum period of the internal system clock. The
report shows this design has a minimum cycle time of 7.1ns or 140.8
MHz. This delay is created within the state machine.

The next section shows all the inputs and outputs of the design and their
timing relationship with the system clock. It can be seen that the three
lights will have a 4.5ns delay with respect to the clock input.
The clock to set up section details the internal nets from and to a
synchronous point. The maximum delay in this section dictates the
maximum system frequency.

The last section details all the path delays adding up the internal timing
parameters shown at the top of the report.

A_0_, B_0_, C_0_ and D_0_ are T-Type flip-flops used to implement the
state machine.

(One drawback of using GUI’s to generate code is the designer has little
control over the internal net names).

‘inst_counter_I_count_0’ through to ‘inst_counter_I_count_3’ are the
counter T-type flip-flops.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 169
© Xilinx

‘amber_light, red_light’ and ‘green_light’ are the D-Type flip-flops used to
register the outputs.
6.5 Timing Simulation

The process of timing simulation is very similar to the functional method.

With top_tb.vhd or (top_sch_tb.vhd for schematic flow) selected in the

sources window, expand the Modelsim Simulator section in the

process window and right click on Simulate Post Fit VHDL model.

Select Properties and in the Simulation Run Time field type ‘all’.

Click OK then double click on Simulate Post Fit VHDL model.

MXE opens but this time a different script file is implemented and the
post route VHDL file (time_sim.vhd) is compiled. Time_sim.vhd is a very
low level VHDL file generated by the Implementation tools. It references
the resources within the CPLD and takes timing information from a
separate file.

Use the Zoom features and Cursors to measure the added timing
delays.

Figure 6.5.1 Simulation Waveform

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 170
© Xilinx

6.6 Programming

A DLC5 Parallel JTAG cable is required to configure the device from the
iMPACT Programmer. Ensure the cable is plugged in to the computer
and the flying leads are connected properly to the device and power
supply.

Cable Device on Board
Vcc 5v or 3.3v
GND GND
TDI TDI Pin

TDO TDO Pin
TMS TMS Pin
TCLK TCLK Pin

With top.vhd highlighted in the sources window, double Click on
Configure Device (iMPACT) in the Processes window.

Figure 6.6.1 iMPACT Programmer Main Window

Right click on the Xilinx XCR3256XL that appears in the iMPACT window
and select Program…

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 171
© Xilinx

The design will now download in to the device. Well done, you have now
successfully programmed your first CoolRunner CPLD!

Summary

This chapter has taken the VHDL or Schematic design through to a

working physical device. The steps discussed were:

• Synthesis and Synthesis report

• Creating User Constraints files for Timing and Pin Constraints

• The Fitting and Timing Reports

• Timing Simulation

• The XPLA programmer.

Programmable Logic Design Quick Start Hand Book Page 172
© Xilinx

DESIGN REFERENCE BANK
7.1 Introduction

The final chapter contains a useful list of design examples and
applications that will give you a good jump-start into your future
programmable logic designs. The applications examples have been
selected from a comprehensive list of applications notes available from
the Xilinx website and also extracts from the Xilinx quarterly magazine
called ‘Xcell’ (to subscribe please visit the following web page:
www.xilinx.com/xcell/xcell.htm). This section will also give you pointers
on where to look for and download code and search for Intellectual
Property (IP) from the Xilinx website.

7.2 Get the Most out of Microcontroller-Based Designs: Put a
Xilinx CPLD Onboard

Microcontrollers don’t make the world go round, but they most certainly
help us get around in the world. You can find microcontrollers in
automobiles, microwave ovens, automatic teller machines, VCRs, point
of sale terminals, robotic devices, wireless telephones, home security
systems, and satellites, just to name a very few applications.

In the never-ending quest for faster, better, cheaper products, advanced
designers are now pairing complex programmable logic devices (CPLDs)
with microcontrollers to take advantage of the strengths of each.
Microcontrollers are naturally good at sequential processes and
computationally intensive tasks, as well as a host of non-time-critical
tasks. CPLDs such as Xilinx® CoolRunner™ devices are ideal for

 7

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 173
© Xilinx

parallel processing, high-speed operations, and applications where lots
of inputs and outputs are required.

Although there are faster and more powerful microcontrollers in the field,
eight-bit microcontrollers own much of the market because of their low
cost and low power characteristics. The typical operational speed is
around 20 MHz, but some microcontroller cores divide clock frequency
internally and use multiple clock cycles per instruction (operations often
include fetch-and-execute instruction cycles). Thus, with a clock division
of two and with each instruction taking up to three cycles, the actual
speed of a 20 MHz microcontroller is divided by six. This works out to an
operational speed of only 3.33MHz.

CoolRunner CPLDs are much, much faster than microcontrollers and
can easily reach system speeds in excess of 100 MHz. Today, we are
even seeing CoolRunner devices with input to output delays as short as
3.5 ns (nanoseconds), which equates to impressive system speeds as
fast as 285 MHz. CoolRunner CPLDs make ideal partners for
microcontrollers, because they not only can perform high-speed tasks,
they perform those tasks with ultra low power consumption.

Also, Xilinx offers free software and low cost hardware design tools to
support CPLD integration with microcontrollers. The Xilinx CPLD design
process is quite similar to that used on microcontrollers, so designers
can quickly learn how to partition their designs across a CPLD and
microcontroller to maximum advantage.

So far, a design partition over a microcontroller and a CPLD sounds good
in theory, but will it work in the field? We will devote the rest of this
article to design examples that show how you can enhance a typical
microcontroller design by utilising the computational strengths of the
microcontroller and the speed of a CoolRunner CPLD.

7.2.1 Conventional Stepper Motor Control

A frequent use of microcontrollers is to run stepper motors. Figure 1
depicts a typical four-phase stepper motor driving circuit. The four

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 174
© Xilinx

windings have a common connection to the motor supply voltage (Vss),
which typically ranges from 5 volts to 30 volts. A high power NPN
transistor drives each of the four phases. (Incidentally, MOSFETs –
metal oxide semiconductor field effect transistors – can also be used to
drive stepper motors).

Figure 7.2.1 Stepper Motor Controller

Each motor phase current may range from 100 mA to as much as 10 A.
The transistor selection depends on the drive current, power dissipation,
and gain. The series resistors should be selected to limit the current to 8
mA per output to suit either the microcontroller or CPLD outputs. The
basic control sequence of a four-phase motor is achieved by activating
one phase at a time.

At the low cost end, the motor rotor rotates through 7.5 degrees per
step, or 48 steps per revolution. The more accurate, higher cost versions
have a basic resolution of 1.8 degrees per step. Furthermore, it is
possible to half-step these motors to achieve a resolution of 0.9 degrees
per step. Stepper motors tend to have a much lower torque than other
motors, which is advantageous in precise positional control.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 175
© Xilinx

The examples that follow show how either a microcontroller or a CPLD
can be used to control stepper motor tasks to varying degrees of
accuracy.

The examples that follow show how either a microcontroller or a CPLD
can be used to control stepper motor tasks to varying degrees of
accuracy. We can see from Figure 2 that the design flow for both is quite
similar.

Figure 7.2.2 Design Flow Comparison

Both flows start with text entry. Assembly language targets
microcontrollers. ABEL (Advanced Boolean Expression Language)
hardware description language targets PLDs. After the text “description”
is entered, the design is either compiled (microcontroller) or synthesised
(PLD). Next, the design is verified by some form of simulation or test.
Once verified, the design is downloaded to the target device – either a
microcontroller or PLD. We can then program the devices in-system
using an inexpensive ISP (in-system programming) cable.

One of the advantages of a PLD over a microcontroller occurs during
board level testing. Using a JTAG boundary scan, the PLD can be fully

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 176
© Xilinx

tested on the board. The PLD can also be used as a “gateway” to test
the rest of the board functionality. After the board level test is completed,
the PLD can then be programmed with the final code in-system via the
JTAG port.

(A JTAG boundary scan – formally known as IEEE/ANSI standard
1149.1_1190 – is a set of design rules, which facilitate the testing,
device programming, and debugging at the chip, board, and system
levels.)

Microcontrollers can include monitor debug code internal to the device
for limited code testing and debugging. With the advent of flash-based
microcontrollers, these can now also be programmed in-system.
Using a Microcontroller to Control a Stepper Motor

7.2.2 Using a Microcontroller to Control a Stepper Motor

Figure 3 shows assembly language targeting a Philips 80C552
microcontroller. The stepper motor the microcontroller will control has
four sets of coils. When logic level patterns are applied to each set of
coils, the motor steps through its angles. The speed of the stepper
motor shaft depends on how fast the logic level patterns are applied to
the four sets of coils. The manufacturer’s motor specification data sheet
provides the stepping motor code. A very common stepping code is
given by the following hexadecimal numbers:

A 9 5 6

Each hex digit is equal to four binary bits:

1010 1001 0101 0110

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 177
© Xilinx

These binary bits represent voltage levels applied to each of the coil
driver circuits. The steps are:

1010 5V 0V 5V 0V

1001 5V 0V 0V 5V

0101 0V 5V 0V 5V

0110 0V 5V 5V 0V

If you send this pattern repeatedly, then the motor shaft rotates. The
assembly language program in Figure 3 continually rotates the stepper
motor shaft. By altering the value of R0 in the delay loop, this will give
fine control over speed; altering the value of R1 will give coarse variations
in speed.

Figure 7.2.3 Assembly language program to rotate the stepper motor
shaft

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 178
© Xilinx

7.2.3 Stepper Motor Control Using a CPLD

Figure 4 shows a design written in ABEL hardware description language.
Within the Xilinx CPLD, four inputs are required to fully control the
stepper motor. The clock (CLK) input synchronises the logic and
determines the speed of rotation. The motor advances one step per
clock period. The angle of rotation of the shaft will depend on the specific
motor used. The direction (DIR) control input changes the sequence at
the outputs (PH1 to PH4) to reverse the motor direction. The enable
input (EN) determines whether the motor is rotating or holding. The
active low reset input (RST) initialises the circuit to ensure the correct
starting sequence is provided to the outputs.

Figure 7.2.4 CPLD ABEL program to control a stepper motor

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 179
© Xilinx

The phase equations (PH1 to PH4) are written with a colon and equal
sign (:=) to indicate a registered implementation of the combinatorial
equation. Each phase equation is either enabled (EN), indicating that the
motor is rotating, or disabled (!EN), indicating that the current active
phase remains on and the motor is locked. The value of the direction
input (DIR) determines which product term is used to sequence
clockwise or counter-clockwise. The asynchronous equations (for
example, ph1.AR=!rst) initialise the circuit.

The ABEL hardware description motor control module can be embedded
within a macro function and saved as a re-useable standard logic block,
which can be shared by many designers within the same organisation –
this is the beauty of design re-use. This ‘hardware’ macro function is
independent of any other function or event not related to its operation.
Therefore it cannot be affected by extraneous system interrupts or other
unconnected system state changes. Such independence is critical in
safety systems. Extraneous system interrupts in a purely software
based system could cause indeterminate states that are hard to test or
simulate.

7.2.4 PC-Based Motor Control

Our next example (Figure 5 and 6) is more complex, because now the
motor is connected to a PC-based system via an RS-232 serial
connection. This implementation has a closed loop system controlling
rotation, speed, and direction. There is also the addition of a safety-
critical emergency stop, which has the highest level of system interrupt.
This means that if the emergency stop is activated, it will override any
other process or interrupt and will immediately stop the motor from
rotating.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 180
© Xilinx

Figure 7.2.5 Design Partitioning

Figure 7.2.6 Microcontroller Implementation

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 181
© Xilinx

This design solution purely uses a microcontroller. The main functions it
performs are:

• Interrupt control

• Status feedback to the PC

• Accurate motor control.

This configuration would probably be implemented in a single
microcontroller device with specific motor control peripherals, such as a
capture-compare unit. This configuration would also need a built-in UART
(Universal Asynchronous Receiver Transmitter). These extra functions
usually add extra cost to the overall microcontroller device.

Due to the nature of the microcontroller, the interrupt handling must be
thoroughly mapped out, because interrupts could affect the speed of the
motor. In a safety-critical system, emergency stops implemented in
software require exhaustive testing and verification before they can be
used in the final system to ensure that they operate properly under all
software related conditions, including software bugs and potential
software states. The output from the motor rotation sensor is very fast,
so control of the speed of the motor could cause problems if system
interrupts occurred.

7.2.5 Design Partitioning

As we noted before, microcontrollers are very good at computational
tasks, and CPLDs are excellent in high speed systems and have an
abundance of I/Os. Figure 7 shows how we can use a microcontroller
and a CPLD in a partitioned design to achieve the greatest control over a
stepper motor.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 182
© Xilinx

Figure 7.2.7 Partitioned Design: Microcontroller and CPLD

The microcontroller:

• Interprets ASCII commands from the PC.

• Reports status of the motor to the PC.

• Converts required speed into control vectors (small mathematical

algorithm).

• Decides direction of rotation of the motor.

• Computes stop point and sets a value into the pulse count

comparison register.

• Monitors progress (control loop) and adapts speed.

• Recovers from emergency stops.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 183
© Xilinx

Although the microcontroller performs recovery from emergency stops,
the actual emergency stop is implemented by the CPLD, because this is
the safety-critical part of the design. Because the CPLD is considered
independent hardware, safety-critical proving and sign off are more
straightforward than software safety systems. Additionally, all of the
high-speed interface functions are also implemented in the CPLD,
because it is very fast and has abundant inputs and outputs.

Meanwhile, the UART & FIFO sections of the design can be
implemented in the microcontroller in the form of a costed
microcontroller peripheral or may be implemented in a larger more
granular programmable logic device like a field programmable gate array
(FPGA) – for example, a Xilinx Spartan™ device. Using a programmable
logic device in a design has the added benefit of the ability to absorb any
other discrete logic elements on the PCB or in the total design into the
CPLD. Under this new configuration, we can consider the CPLD as
offering hardware-based sub-routines or as a mini co-processor.

The microcontroller still performs ASCII string manipulation and
mathematical functions, but it now has more time to perform these
operations – without interruption. The motor control is now
independently stable and safe.

Microcontroller/CPLD design partitioning can reduce overall system
costs. This solution uses low cost devices to implement the functions
they do best – computational functions in the microcontroller and high
speed, high I/O tasks in the CPLD. In safety-critical systems, why not
put the safety critical functions (e.g. emergency stop), in “hardware”
(CPLDs) to cut down safety system approval time scales?
System testing can also be made easier by implementing the difficult-to-
simulate interrupt handling into programmable logic. Low cost
microcontrollers are now in the region of US$1.00, but if your design
requires extra peripherals (e.g., capture-compare unit for accurate motor
control, ADCs or UARTs), this can quadruple the cost of your
microcontroller. A low cost microcontroller coupled with a low cost
CPLD from Xilinx can deliver the same performance – at approximately
half the cost.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 184
© Xilinx

In low power applications, microcontrollers are universally accepted as
low power devices and have been the automatic choice of designers. The
CoolRunner family of ultra low power CPLDs are an ideal fit in this arena
and may be used to complement your low power microcontroller to
integrate designs in battery powered, portable designs (<100 µA current
consumption at standby).

7.2.6 Conclusion

Microcontrollers are ideally suited to computational tasks, whereas
CPLDs are suited to very fast, I/O intensive operations. Partitioning your
design across the two devices can increase overall system speeds,
reduce costs, and potentially absorb all of the other discrete logic
functions in a design – thus presenting a truly reconfigurable system.

The design process for a microcontroller is very similar to that of a
programmable logic device. This permits a shorter learning and designing
cycle. Full functioning software design tools for Xilinx CPLDs are free of
charge and may be downloaded from the Xilinx website. Thus, your first
project using CPLDs can not only be quick and painless, but very cost-
effective.

Extract from the Xilinx Xcell journal, Issue 39, Spring 2001.

To receive regular copies of the Xcell magazine please register
at:

http://www.xilinx.com/xcell/xcell.htm

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 185
© Xilinx

7.3 Application Notes and Example Code

The following is a list of selected application notes and example code
that can be downloaded from the Xilinx website. This list is added to
regularly as more applications are developed, for the latest list please
visit the Xilinx website (www.xilinx.com/apps/appsweb.htm).

Title Number Family Design Code
Embedded
Instrumentation
Using XC9500
CPLDs

XAPP076 XC9500

Configuring Xilinx
FPGAs using an
XC9500 CPLD and a
parallel PROM

XAPP079 XC9500

Supply Voltage
migration, 5V to
3.3V.

XAPP080 XC9500

Xilinx FPGAs: A
technical overview
for the first time
user.

XAPP097 FPGA

Choosing a Xilinx
Product Family

XAPP100 All

XC9500 Remote
Field Upgrade

XAPP102 XC9500

A CPLD VHDL
Introduction

XAPP105 XC9500

Adapting ASIC
Designs for Use with
Spartan FPGAs

XAPP119 Spartan

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 186
© Xilinx

Title Number Family Design Code
A quick JTAG
ISP Checklist

XAPP104 XC9500

170 MHz FIFOs
Using the Virtex
Block
SelectRAM+
Feature

XAPP131 Virtex

Virtex
Synthesizable
High
Performance
SDRAM
Controller

XAPP134 Virtex VHDL & Verilog

Synthesizable
143 MHz ZBT
SRAM Interface

XAPP136 Virtex VHDL & Verilog

MP3 NG: A Next
generation
Consumer
Platform

XAPP169 Spartan II

Virtex
Synthesizable
Delta-Sigma
DAC

XAPP154 Virtex

Implementing an
ISDN PCMCIA
Modem

XAPP170 Spartan

Using Delay-
Locked Loops in
Spartan-II
FPGAs

XAPP174 Spartan II VHDL & Verilog

High Speed
FIFOs In
Spartan-II
FPGAs

XAPP175 Spartan II VHDL & Verilog

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 187
© Xilinx

Title Number Family Design Code
An Inverse Discrete
Cosine Transform
(IDCT)
Implementation in
Virtex Devices
for MPEG Video
Applications

XAPP208 Virtex VHDL

8-Bit Microcontroller
for Virtex
Devices

XAPP213 Virtex &
Spartan

CoolRunner Visor™
Springboard™ LED
Test

XAPP357 CoolRunner

CoolRunner XPLA3
SMBus Controller
Implementation

XAPP353 CoolRunner VHDL & Verilog

CoolRunner CPLD
8051 Microcontroller
Interface

XAPP349: CoolRunner VHDL & Verilog

CoolRunner XPLA3
Serial Peripheral
Interface Master

XAPP348 CoolRunner VHDL & Verilog

UARTs in Xilinx
CPLDs

XAPP341 CoolRunner VHDL & Verilog

Design of a 16b/20b
Encoder/Decoder
Using a CoolRunner
CPLD

XAPP336 CoolRunner VHDL & Verilog

CoolRunner XPLA3
I2C Bus Controller
Implementation

XAPP333 CoolRunner VHDL & Verilog

Manchester
Encoder-Decoder for
Xilinx CPLDs

XAPP339 CoolRunner VHDL & Verilog

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 188
© Xilinx

Title Number Family Design Code
Design of a MP3
Portable Player using
a CoolRunner CPLD

XAPP328 CoolRunner VHDL & Verilog

Content Addressable
Memory (CAM)
in ATM Applications

XAPP202 Virtex, Virtex II VHDL & Verilog

Virtex analogue to
digital converter

XAPP155 Virtex

Designing an Eight
Channel Digital Volt
Meter with the Insight

Springboard Kit

XAPP146 CoolRunner VHDL & Verilog

Exemplar/ModelSim
Tutorial for CPLDs

Tutorial CPLDs

Workstation Flow for
Xilinx CoolRunner
CPLDs

Tutorial CPLDs

OrCAD/ModelSim
Tutorial for CPLDs

Tutorial CPLDs

Understanding the
CoolRunner-II Timing
Model

XAPP375 CoolRunner II

Understanding the
CoolRunner-II Logic
Engine

XAPP376 CoolRunner II

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 189
© Xilinx

7.4 Website Reference
The following table is a summary of useful web pages and websites that
could help with your programmable logic designs.

Website/Page Topic Resources Available
Www.xilinx.com General Xilinx

website
Product data, investor
information,
application notes etc

Www.support.xilinx.com Technical Support Comprehensive
resource for all
technical support.

Www.xilinx.com/ipcenter IP search engine Xilinx and 3rd party IP
and cores .

Www.xilinx.com/esp Emerging Standards
and Protocol web
portal

Resource portal
including data on
home networking and
Bluetooth – white
papers, application
notes, reference
designs, block
diagrams, ask the
experts, links to
industry websites

Www.xilinx.com/support/
education-home.htm

Customer Education List of customer
courses and types
available

Http://xup.msu.edu University Program
Www.xilinx.com/support/
searchtd.htm

Answers Database

Http://university.xilinx.com/
univ/xsefaq1.htm

Student edition
frequently asked
questions

Http://toolbox.xilinx.com/
cgi-bin/forum

Forums and chat
rooms

www.model.com Simulation Model Technology
Www.optimagic.com/ Programmable logic

jump station

Programmable Logic Design Quick Start Hand Book Page 190
© Xilinx

GLOSSARY OF TERMS
ABEL- Advanced Boolean Expression Language, low-level language for
design entry, from Data I/O.

AIM – Advanced Interconnect Matrix in the CoolRunner II CPLD that
provides the flexible interconnection between the PLA function blocks.

Antifuse - A small circuit element that can be irreversibly changed from
being non-conducting to being conducting with ~100 Ohm. Anti-fuse-
based FPGAs are thus non-volatile and can be programmed only once
(see OTP).

AQL- Acceptable Quality Level. The relative number of devices,
expressed in parts-per-million (ppm), that might not meet specification or
be defective. Typical values are around 10 ppm.

ASIC- Applications-Specific Integrated Circuit, also called a gate array
Asynchronous Logic that is not synchronised by a clock. Asynchronous
designs can be faster than synchronous ones, but are more sensitive to
parametric changes, and are thus less robust.

ASSP- Application-Specific Standard Product. Type of high-integration
chip or chipset ASIC that is designed for a common yet specific
application.

ATM- Asynchronous Transfer Mode. A very-high-speed (megahertz to
gigahertz) connection-oriented bit-serial protocol for transmitting data
and real-time voice and video in fixed-length packets (48-byte payload, 5-
byte header).

Back annotation- Automatically attaching timing values to the entered
design format after the design has been placed and routed in an FPGA.

Behavioral language- Top-down description from an even higher level
than VHDL.

Programmable Logic Design Quick Start Hand Book Page 191
© Xilinx

GLOSSARY OF TERMS (Continued)

Block RAM- A block of 2k to 4k bits of RAM inside an FPGA. Dual-port
and synchronous operation are desirable.

CAD Computer- Aided Design, using computers to design products.

CAE Computer- Aided Engineering, analyses designs created on a
computer.

CLB- Configurable Logic Block. Xilinx-specific name for a block of logic
surrounded by routing resources. A CLB contains 2 or 4 look-up-tables
(function generators) plus 2 or 4 flip-flops.

CMOS- Complementary Metal-Oxide-Silicon. Dominant technology for
logic and memory. Has replaced the older bipolar TTL technology in
most applications except very fast ones. CMOS offers lower power
consumption and smaller chip size compared to bipolar and now meets
or even beats TTL speed.

Compiler- software that converts a higher-language description into a
lower-level representation. For FPGAs : the complete partition, place &
route process.

Configuration- The internally stored file that controls the FPGA so that
it performs the desired logic function. Also: The act of loading an FPGA
with that file.

Constraints- Performance requirements imposed on the design, usually
in the form of max allowable delay, or required operating frequency.

CoolCLOCK – Combination of the clock divider and clock doubler
functions in CoolRunner II to further reduce power consumption
associated with high speed clocked in internal device networks.

Programmable Logic Design Quick Start Hand Book Page 192
© Xilinx

GLOSSARY OF TERMS (Continued)

CPLD- Complex Programmable Logic Device, synonymous with EPLD.
PAL-derived programmable logic devices that implement logic as sum-of-
products driving macrocells. CPLDs are known to have short pin-to-pin
delays, and can accept wide inputs, but have relatively high power
consumption and fewer flip-flops, compared to FPGAs.

CUPL- Compiler Universal for Programmable Logic, CPLD development
tool available from Logical Devices.

DataGATE – A function within CoolRunner II to block free running input
signals, effectively blocking controlled switching signals so they do not
drive internal chip capacitances to further reduce power consumption.
Can be selected on all inputs.

Input Hysteresis - Input hysteresis provides designers with a tool to
minimize external components. Whether using the inputs to create a
simple clock source, or reducing the need for external buffers to sharpen
up a slow or noisy input signal. Function found in CoolRunner II CPLDs
(may also be referred to as Schmitt Trigger inputs in the text).

DCM- Digital Clock Manager, Provides zero-delay clock buffering,
precise phase control and precise frequency generation on Xilinx Virtex II
FPGAs

DCI – Digitally Controlled Impedance in the Virtex-II solution dynamically
eliminates drive strength variation due to process, temperature, and
voltage fluctuation. DCI uses two external high-precision resistors to
incorporate equivalent input and output impedance internally for hundreds
of I/O pins.

Debugging- The process of finding and eliminating functional errors in
software and hardware.

Programmable Logic Design Quick Start Hand Book Page 193
© Xilinx

GLOSSARY OF TERMS (Continued)

Density- Amount of logic in a device, often used to mean capacity.
Usually measured in gates, but for FPGAs better expressed in Logic
Cells, each consisting of a 4-input look-up table and a flip-flop.

DLL- Delay Locked Loop, A digital circuit used to perform clock
management functions on and off-chip.

DRAM- Dynamic Random Access Memory. A low-cost\read-write
memory where data is stored on capacitors and must be refreshed
periodically. DRAMs are usually addressed by a sequence of two
addresses, row address and column address, which makes them slower
and more difficult to use than SRAMs.

DSP- Digital Signal Processing. The manipulation of analog data that
has been sampled and converted into a digital representation. Examples
are: filtering, convolution, Fast-Fourier-Transform, etc.

EAB- Embedded Array Block. Altera name for Block RAM in
FLEX10K.

EDIF- Electronic Data Interchange Format. Industry-standard
for specifying a logic design in text (ASCII) form.

EPLD- Erasable Programmable Logic Devices, synonymous with
CPLDs. PAL-derived programmable logic devices that implement logic
as sum-of-products driving macrocells. EPLDs are known to have short
pin-to-pin delays, and can accept wide inputs, but have relatively high
power consumption and fewer flip-flops than FPGAs.

Embedded RAM- Read-write memory stored inside a logic device.
Avoids the delay and additional connections of an
external RAM.

ESD- Electro-Static Discharge. High-voltage discharge can rupture the
input transistor gate oxide. ESD-protection diodes
divert the current to the supply leads.

Programmable Logic Design Quick Start Hand Book Page 194
© Xilinx

GLOSSARY OF TERMS (Continued)

5-volt tolerant- Characteristic of the input or I/O pin of a 3.3 V device
that allows this pin to be driven to 5 V without any excessive input
current or device breakdown. Very desirable
feature.

FIFO- First-In-First-Out memory, where data is stored in the incoming
sequence, and is read out in the same sequence. Input and output can
be asynchronous to each other. A FIFO needs no external addresses,
although all modern FIFOs are implemented internally with RAMs driven
by circular read and write counters.

FIT- Failure In Time. Describes the number of device failures statistically
expected for a certain number of device-hours. Expressed as failures per
one billion device hours. Device temperature must be specified. MTBF
can be calculated from FIT.

Flash- Non-volatile programmable technology, an alternative to
Electrically-Erasable Programmable Read-Only Memory
(EEPROM) technology. The memory content can be erased by
an electrical signal. This allows in-system programmability and
eliminates the need for ultraviolet light and quartz windows in the
package.

Flip-flop- Single-bit storage cell that samples its Data input at
the active (rising or falling) clock edge, and then presents the
new state on its Q output after that clock edge, holding it there
until after the next active clock edge.

Floor planning- Method of manually assigning specific parts of the
design to specific chip locations. Can achieve faster compilation, better
utilisation, and higher performance.

Footprint- The printed-circuit pattern that accepts a device and
connects its pins appropriately. Footprint-compatible devices can be
interchanged without modifying the pc-board.

Programmable Logic Design Quick Start Hand Book Page 195
© Xilinx

GLOSSARY OF TERMS (Continued)

FPGA- Field Programmable Gate Array. An integrated circuit that
contains configurable (programmable) logic blocks and configurable
(programmable) interconnect between these blocks.

Function Generator- Also called look-up-table (LUT), with N-inputs and
one output. Can implement any logic function of its N-inputs. N is
between 2 and 6, most popular are 4-input function generators.

GAL- Generic Array Logic. Lattice name for a variation on PALs Gate
Smallest logic element with several inputs and one output. AND gate
output is High when all inputs are High. OR
gate output is High when at least one input is High. A 2-input NAND gate
is used as the measurement unit for gate array complexity.

Gate Array- ASIC where transistors are pre-defined, and only the
interconnect pattern is customised for the individual application.

GTL- Gunning Transceiver Logic, is a high speed, low power back-plane
standard.

GUI- Graphic User Interface. The way of representing the computer
output on the screen as graphics, pictures, icons and windows.
Pioneered by Xerox and the Macintosh, now universally adopted, e.g by
Windows95.

HDL- Hardware Description Language.

Hierarchical design- Design description in multiple layers, from the
highest (overview) to the lowest (circuit details). Alternative: Flat design,
where everything is described at the same level of detail. Incremental
design Making small design changes while maintaining most of the lay-
out and routing.

Interconnect- Metal lines and programmable switches that
connect signals between logic blocks and between logic blocks and the
I/O.

Programmable Logic Design Quick Start Hand Book Page 196
© Xilinx

GLOSSARY OF TERMS (Continued)

IOB or I/O- Input/Output Block. Logic block with features specialised for
interfacing with the pc-board.

ISO9000- An internationally recognised quality standard. Xilinx is
certified to ISO9001 and ISO9002.

IP- Intellectual Property. In the legal sense: Patents, copyrights and
trade secrets. In integrated circuits: pre-defined large functions, called
cores, that help the user complete a large design faster.

ISP- In-System Programmable device. A programmable logic device that
can be programmed after it has been connected to (soldered into) the
system pc-board. Although all SRAM-based FPGAs are naturally ISP,
this term is only used with certain CPLDs, to distinguish them from the
older CPLDs that must be programmed in programming equipment.

JTAG- Joint Test Action Group. Older name for IEEE 1149.1
boundary scan, a method to test pc-boards and also ICs.

LogiBLOX - Formerly called X-Blox. Library of logic modules, often
with user-definable parameters, like data width. (Very similar to LPM).

Logic Cell- Metric for FPGA density. One logic cell is one 4-input look-
up table plus one flip-flop.

LPM- Library of Parameterised Modules, library of logic modules, often
with user-definable parameters, like data width. Very similar to
LogiBlox.

LUT- Look-Up-Table, also called function generator with N inputs and
one output. Can implement any logic function of its N inputs. N is
between 2 and 6, most popular are 4-input LUTs.

Macrocell- The logic cell in a sum-of-products CPLD or PAL/GAL.

Programmable Logic Design Quick Start Hand Book Page 197
© Xilinx

GLOSSARY OF TERMS (Continued)

Mapping- Process of assigning portions of the logic design to the
physical chip resources (CLBs). With FPGAs, mapping is a more
demanding and more important process than with gate arrays.

MTBF- Mean Time Between Failure. The statistically relevant up-time
between equipment failure. See also FIT.

Netlist- Textual description of logic and interconnects. See XNF and
EDIF.

NRE- Non-Recurring Engineering charges. Start-up cost for the creation
of an ASIC, gate array, or HardWire . Pays for lay-out, masks, and test
development. FPGAs and CPLDs do not require NRE.

Optimisation- Design change to improve performance. See also:
Synthesis.

OTP- One-Time Programmable. Irreversible method of programming logic
or memory. Fuses and anti-fuses are inherently OTP. EPROMs and
EPROM-based CPLDs are OTP if their plastic package blocks the
ultraviolet light needed to erase the stored data or configuration.

PAL- Programmable Array Logic. Oldest practical form of programmable
logic, implemented a sum-of-products plus optional output flip-flops.

Partitioning- In FPGAs, the process of dividing the logic into sub-
functions that can later be placed into individual CLBs.
Partitioning precedes placement.

PCI- Peripheral Component Interface. Synchronous bus standard
characterised by short range, light loading, low cost, and high
performance. 33-MHz PCI can support data byte transfers of up to 132
megabytes per second on 36 parallel data lines (including parity) and a
common clock. There is also a new 66-MHz standard.

Programmable Logic Design Quick Start Hand Book Page 198
© Xilinx

GLOSSARY OF TERMS (Continued)

PCMCIA- Personal Computer Memory Card Interface Association, also:
People Can’t Memorise Computer Industry Acronyms. Physical and
electrical standard for small plug-in boards for portable computers.

Pin-locking- Rigidly defining and maintaining the functionality and timing
requirements of device pins while the internal logic is still being designed
or modified. Pin-locking has become important, since circuit-board-
fabrication times are longer than PLD design implementation times.

PIP- Programmable Interconnect Point. In Xilinx FPGAs, a point where
two signal lines can be connected, as determined by the device
configuration.

Placement- In FPGAs, the process of assigning specific parts of the
design to specific locations (CLBs) on the chip. Usually done
automatically.

PLA – Programmable Logic Array. The first and most flexible
programmable logic configuration with two programmable planes
providing any combination of ‘AND’ and ‘OR’ gates and sharing of AND
terms across multiple OR’s. This architecture is implemented in the
CoolRunner and CoolRunner II devices.

PLD- Programmable Logic Device. Most generic name for all
programmable logic: PALs, CPLDs, and FPGAs.

QML- Qualified Manufacturing Line. For example, ISO9000.

Routing- The interconnection, or the process of creating the desired
interconnection, of logic cells to make them perform the desired function.
Routing follows after partitioning and placement.

Programmable Logic Design Quick Start Hand Book Page 199
© Xilinx

GLOSSARY OF TERMS (Continued)

Schematic- Graphic representation of a logic design in the form of
interconnected gates, flip-flops and larger blocks. Older and more
visually intuitive alternative to the increasingly more popular equation-
based or high-level language textual description of a logic design.

Select-RAM- Xilinx-specific name for a small RAM (usually 16 bits),
implemented in a LUT.

Simulation- Computer modelling of logic and (sometimes) timing
behaviour of logic driven by simulation inputs (stimuli, or vectors).

SPROM- Serial Programmable Read-Only Memory. Non-volatile memory
device that can store the FPGA configuration bitstream. The SPROM
has a built-in address counter, receives a clock and outputs a serial
bitstream.

SRAM- Static Random Access Memory. Read-write memory with data
stored in latches. Faster than DRAM and with simpler timing
requirements, but smaller in size and about 4-times more expensive than
DRAM of the same capacity.

SRL16 - Shift Register LUT, an alternative mode of operation for every
function generator (look up table) which are part of every CLB in Virtex
and Spartan FPGAs. This mode increases the number of flip-flops by 16.
Adding flip-flops enables fast pipelining - ideal in DSP applications.

Static timing- Detailed description of on-chip logic and interconnect
delays.

Sub-micron- The smallest feature size is usually expressed in micron
(µ= millionth of a meter, or thousandth of a millimetre) The state of the
art is moving from 0.35µ to 0.25µ, and may soon reach 0.18µ. The
wavelength of visible light is 0.4 to 0.8µ. 1 mil = 25.4µ.

Programmable Logic Design Quick Start Hand Book Page 200
© Xilinx

GLOSSARY OF TERMS (Continued)

Synchronous- Circuitry that changes state only in response to a
common clock, as opposed to asynchronous circuitry that responds to a
multitude of derived signals. Synchronous circuits are easier to design,
debug, and modify, and tolerate parameter changes and speed upgrades
better than asynchronous circuits

Synthesis- Optimisation process of adapting a logic design to the logic
resources available on the chip, like look-up-tables, Longline, dedicated
carry. Synthesis precedes Mapping.

SystemI/O- technology incorporated in Virtex II FPGAs that uses the
SelectI/O-Ultra™ blocks to provide the fastest and most flexible
electrical interfaces available. Each user I/O pin is individually
programmable for any of the 19 single-ended I/O standards or six
differential I/O standards, including LVDS, SSTL, HSTL II, and GTL+.
SelectI/O-Ultra technology delivers 840 Mbps LVDS performance using
dedicated Double Data Rate (DDR) registers.

TBUFs- Buffers with a 3-state option, where the output can be made
inactive. Used for multiplexing different data sources onto a common
bus. The pull-down-only option can use the bus as a wired AND function.

Timing- Relating to delays, performance, or speed.

Timing driven- A design or layout method that takes performance
requirements into consideration.

UART- Universal Asynchronous Receiver/Transmitter. An 8-bit-parallel-
to-serial and serial-to-8-bit-parallel converter, combined with parity and
start-detect circuitry and sometimes even FIFO buffers. Used widely in
asynchronous serial-communications interfaces, (e.g. modems).

USB- Universal Serial Bus. A new, low-cost, low-speed, self-clocking bit-
serial bus (1.5 MHz and 12 MHz) using 4 wires (Vcc, ground, differential
data) to daisy-chain up to 128 devices.

Programmable Logic Design Quick Start Hand Book Page 201
© Xilinx

GLOSSARY OF TERMS (Continued)

VME- Older bus standard, popular with MC68000-based industrial
computers.

XNF File- Xilinx-proprietary description format for a logic
design (Alternative: EDIF).

Peter Alfke - Glossary, September 1997(Revised for this book in June
2001 and January 2002)

