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LFSR counters implement
binary polynomial generators

Tom BALPH, MOTOROLA SEMICONDUCTOR

LFSR counters make ideal pseudorandom-
number generators, but make sure to provide

a reset function to prevent lockup.

You can use linear-feedback shift registers (LFSRs) as alterna-
tives to conventional bi-nary counters (Reference 1). An
LFSR reduces the amount of required logic and minimizes
routing complexity. A possible disadvantage is that the count
sequence is not the normal binary increment or decrement
sequence. An LFSR counter, in effect, implements a binary
polynomial generator. These generators find common use for
pseudorandom-number generation. This article provides
some guidelines for implementing LFSR-based counters.
Some general points include
® An LFSR with n flip-flops can implement only a (2"-1)-
state counter. The all-zeros state is normally not allowed
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To implement an x*+x+1-polynomial LFSR counter, you have
the choice of a “many-to-one” configuration (a) or a “one-to-
many” configuration (b).

because the counter
locks up.

® Good design practice
demands a reset condi-
tion that provides start-
up in a known condi-
tion and also ensures
that the counter does
not power up in a zero
condition and stay
locked up.

® The choice of the poly-
nomial used should
ensure 2"-1 states—with
no repeated states; such
a polynomial is known
asa “primitive,” or max-
imal-length polynomi-
al.

To implement a counter
with a divide ratio other
than 2"-1, you must first
select a primitive polynomi-
al that has the proper degree. The degree, or power of two,
must be large enough to allow the desired number range. As
an example, a divide-by-35 counter must use a polynomial of
the sixth degree (yielding 25-1=63 possible states). You can
typically find primitive polynomials in tables in textbooks
that deal with testing and pseudorandom numbers. The val-
ues in Table 1 derive from Reference 2.

The values in Table 1 are the exponents of terms in prim-
itive binary polynomials. The numbers listed represent the
smallest number of terms for a primitive polynomial of each
degree. For example, the entry 12: 7 4 3 0 represents the poly-
nomial x¥2+x"+x*+x3+1. Once you select a polynomial, you

TABLE 1—EXPONENTS FOR
PRIMITIVE POLYNOMIALS
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LFSR COUNTERS

first implement a counter for just that polynomial. As a
design example, assume you need a divide-by-12 counter.
From Table 1, you select the fourth-degree polynomial
(x*+x+1) because it allows as many as 15 possible states.

You can implement the polynomial in logic as either a
“many-to-one” (Figure 1a) or a “one-to-many” (Figure 1b)
design. Note that, although either approach implements the
same polynomial, the count sequences differ. At this point,
you should add a synchronous reset to the design to force an
all-ones condition at reset.

Figure 2a shows the one-to-many design example.
Through simulation, you can observe the count sequence
and verify that the selected polynomial repeats after 2"-1
states (in this case, 15 states) and that no state repeats with-
in each sequence. Table 2 gives the sequence for this exam-
ple.

To complete the counter design, you can decode the
desired final count and force the normal sequence to trun-
cate back to the reset condition. For the divide-by-12 exam-
ple, you decode state 12, in which the count value equals two
hex. Figure 2b shows the reset-modification hardware.
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TABLE 2—SEQUENCE FOR
~ DIVIDE-BY-12 COUNTER
State | Value (hex)
D Q D Q D Q D Q
RESET X4 X3 X2 X1 1 F
— CLK —A>CLK - CLK CLK
. ° 2 E
3 7
CLOCK O
@ 4 A
5 5
6 B
7 ©
8 6
RESET D Q D Q D QR D Q-
X4 X3 X2 X1 9 3
— CLK - CLK > CLK |' ck 10 8
CLOCKO — — 11 4
12 2 (decode to force a reset)
46_— 13 1
(b) I
14 9
15 D

A synchronous reset forces an all-ones condition on reset in a divide-by-12 counter
(a); decoding circuitry (b) forces the sequence to truncate back to the reset condi-

tion.



	Figure 1
	Figure 2
	Table 1
	Table 2
	Biography

